The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 60 of 100
Back to Result List

Experimental Study on Pressure Losses in Circular Orifices With Inlet Cross Flow

  • The ability to understand and predict the pressure losses of orifices is important in order to improve the air flow within the secondary air system. This experimental study investigates the behavior of the discharge coefficient for circular orifices with inlet cross flow which is a common flow case in gas turbines. Examples of this are at the inlet of a film cooling hole or the feeding of air to a blade through an orifice in a rotor disk. Measurements were conducted for a total number of 38 orifices, covering a wide range of length-to-diameter ratios, including short and long orifices with varying inlet geometries. Up to five different chamfer-to-diameter and radius-to-diameter ratios were tested per orifice length. Furthermore, the static pressure ratio across the orifice was varied between 1.05 and 1.6 for all examined orifices. The results of this comprehensive investigation demonstrate the beneficial influence of rounded inlet geometries and the ability to decrease pressure losses,The ability to understand and predict the pressure losses of orifices is important in order to improve the air flow within the secondary air system. This experimental study investigates the behavior of the discharge coefficient for circular orifices with inlet cross flow which is a common flow case in gas turbines. Examples of this are at the inlet of a film cooling hole or the feeding of air to a blade through an orifice in a rotor disk. Measurements were conducted for a total number of 38 orifices, covering a wide range of length-to-diameter ratios, including short and long orifices with varying inlet geometries. Up to five different chamfer-to-diameter and radius-to-diameter ratios were tested per orifice length. Furthermore, the static pressure ratio across the orifice was varied between 1.05 and 1.6 for all examined orifices. The results of this comprehensive investigation demonstrate the beneficial influence of rounded inlet geometries and the ability to decrease pressure losses, which is especially true for higher cross flow ratios where the reduction of the pressure loss in comparison to sharp-edged holes can be as high as 54%. With some exceptions, the chamfered orifices show a similar behavior as the rounded ones but with generally lower discharge coefficients. Nevertheless, a chamfered inlet yields lower pressure losses than a sharp-edged inlet. The obtained experimental data were used to develop two correlations for the discharge coefficient as a function of geometrical as well as flow properties.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Daniel Feseker, Mats Kinell, Matthias Neef
Fachbereich/Einrichtung:Hochschule Düsseldorf / Fachbereich - Maschinenbau und Verfahrenstechnik
Document Type:Conference Proceeding
Year of Completion:2017
Language of Publication:English
Publisher:The American Society of Mechanical Engineers
Place of publication:New York
Parent Title (English):Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition - 2017: presented at the ASME Turbo Expo 2017: Turbine Technical Conference and Exposition, June 26-30, 2017
Editor: The American Society of Mechanical Engineers
Related URL:https://asmedigitalcollection.asme.org/GT/proceedings/GT2017/50886/Charlotte, North Carolina, USA/241903
DOI:https://doi.org/10.1115/GT2017-64143
ISBN:978-0-7918-5088-6
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Licence (German):keine Lizenz - nur Metadaten
Release Date:2019/12/18
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.