The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 8 of 10
Back to Result List

Heterogeneous binocular camera-tracking in a Virtual Studio

  • This paper presents a tracking of parts of a human body in a virtual TV studio environment. The tracking is based on a depth camera and a HD studio camera and aims at a realistic interaction between the actor and the computer generated environment. Stereo calibration methods are used to match corresponding pixels of both cameras (HD color and depth image). Hence the images were rectified and column aligned. The disparity is used to correct the depth image pixel by pixel. This image registration results in row and column aligned images where ghost regions are in the depth image resulting from occlusion. Both images are used to generate foreground masks with chroma and depth keying. The color image is taken for skin color segmentation to determine and distinguish the actor’s hands and face. In the depth image the flesh colored regions were used to determine their spatial position. The extracted positions were augmented by virtual objects. The scene is rendered correctly with virtualThis paper presents a tracking of parts of a human body in a virtual TV studio environment. The tracking is based on a depth camera and a HD studio camera and aims at a realistic interaction between the actor and the computer generated environment. Stereo calibration methods are used to match corresponding pixels of both cameras (HD color and depth image). Hence the images were rectified and column aligned. The disparity is used to correct the depth image pixel by pixel. This image registration results in row and column aligned images where ghost regions are in the depth image resulting from occlusion. Both images are used to generate foreground masks with chroma and depth keying. The color image is taken for skin color segmentation to determine and distinguish the actor’s hands and face. In the depth image the flesh colored regions were used to determine their spatial position. The extracted positions were augmented by virtual objects. The scene is rendered correctly with virtual camera parameters which were calculated from the camera calibration parameters. Generated computer graphics with alpha value are combined with the HD color images. This compositing shows interaction with augmented objects for verification. The additional depth information results in changing the size of objects next to the hands when the actor moves around.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Matthias Flasko, Patrick Pogscheba, Jens HerderORCiDGND, Wolfgang Vonolfen
Fachbereich/Einrichtung:Hochschule Düsseldorf / Fachbereich - Medien
Document Type:Conference Proceeding
Year of Completion:2011
Language:English
Place of publication:Wedel
Parent Title (English):8. Workshop Virtuelle und Erweiterte Realität der GI-Fachgruppe VR/AR
Tag:camera-tracking; virtual studio
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
Licence (German):keine Lizenz - nur Metadaten
Release Date:2019/01/11