• search hit 8 of 177
Back to Result List

Novel developments of refractive power measurement techniques in the automotive world

  • Refractive power measurements serve as the primary quality standard in the automotive glazing industry. In the light of autonomous driving new optical metrics are becoming more and more popular for specifying optical quality requirements for the windshield. Nevertheless, the link between those quantities and the refractive power needs to be established in order to ensure a holistic requirement profile for the windshield. As a consequence, traceable high-resolution refractive power measurements are still required for the glass quality assessment. Standard measurement systems using Moiré patterns for refractive power monitoring in the automotive industry are highly resolution limited, wherefore they are insufficient for evaluating the camera window area. Consequently, there is a need for more sophisticated refractive power measurement systems that provide a higher spatial resolution. In addition, a calibration procedure has to be developed in order to guarantee for comparability of theRefractive power measurements serve as the primary quality standard in the automotive glazing industry. In the light of autonomous driving new optical metrics are becoming more and more popular for specifying optical quality requirements for the windshield. Nevertheless, the link between those quantities and the refractive power needs to be established in order to ensure a holistic requirement profile for the windshield. As a consequence, traceable high-resolution refractive power measurements are still required for the glass quality assessment. Standard measurement systems using Moiré patterns for refractive power monitoring in the automotive industry are highly resolution limited, wherefore they are insufficient for evaluating the camera window area. Consequently, there is a need for more sophisticated refractive power measurement systems that provide a higher spatial resolution. In addition, a calibration procedure has to be developed in order to guarantee for comparability of the measurement results. For increasing the resolution, a measurement setup based on an auto-correlation algorithm is tested in this paper. Furthermore, a calibration procedure is established by using a single reference lens with a nominal refractive power of 100 km-1. For the calibration of the entire measurement range of the system, the lens is tilted by an inclination angle orthogonal to the optical axis. The effective refractive power is then given by the Kerkhof model. By adopting the measurement and calibration procedure presented in this paper, glass suppliers in the automotive industry will be able to detect relevant manufacturing defects within the camera window area more accurately paving the way for a holistic quality assurance of the windshield for future advanced driver-assistance system (ADAS) functionalities. Concurrently, the traceability of the measurement results is ensured by establishing a calibration chain based on a single reference lens, which is traced back to international standards.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dominik Werner Wolf, Markus Ulrich, Alexander BraunORCiD
open access (DINI-Set):open_access
Qualitätssicherung:peer reviewed
Fachbereich/Einrichtung:Hochschule Düsseldorf / Fachbereich - Elektro- & Informationstechnik
Document Type:Article
Year of Completion:2023
Language of Publication:English
Publisher:IOP Publishing
Parent Title (English):Metrologia
Issue:ACCEPTED MANUSCRIPT
Related URL:http://iopscience.iop.org/article/10.1088/1681-7575/acf1a4
DOI:https://doi.org/10.1088/1681-7575/acf1a4
ISSN:1681-7575
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Licence (German):Creative Commons - CC BY - Namensnennung 4.0 International
Release Date:2023/08/25
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.