• search hit 56 of 1614
Back to Result List

Water-Cooled Thermoelectric Generators for Improved Net Output Power: A Review

  • Thermoelectric generators (TEGs) have the ability to convert waste heat into electrical energy under unfavorable conditions and are becoming increasingly popular in academia, but have not yet achieved a broad commercial success, due to the still comparably low efficiency. To increase the efficiency and economic viability of TEGs, research is performed on the materials on one hand and on the system connection on the other. In the latter case, the net output power of the cooling system plays a key role. At first glance, passive cooling seems preferable to active cooling because it does not affect the net electrical output power. However, as shown in the present review, the active cooling is to be preferred for net output power. The situation is similar in air and water-cooling. Even though air-cooling is easier to set up, the water-cooling should be preferred to achieve higher net output power. It is shown that microchannel cooling has similar hydraulic performance to conventionalThermoelectric generators (TEGs) have the ability to convert waste heat into electrical energy under unfavorable conditions and are becoming increasingly popular in academia, but have not yet achieved a broad commercial success, due to the still comparably low efficiency. To increase the efficiency and economic viability of TEGs, research is performed on the materials on one hand and on the system connection on the other. In the latter case, the net output power of the cooling system plays a key role. At first glance, passive cooling seems preferable to active cooling because it does not affect the net electrical output power. However, as shown in the present review, the active cooling is to be preferred for net output power. The situation is similar in air and water-cooling. Even though air-cooling is easier to set up, the water-cooling should be preferred to achieve higher net output power. It is shown that microchannel cooling has similar hydraulic performance to conventional cooling and inserts increase the net output power of TEG. As the review reveals that active water-cooling should be the method of choice to achieve high net output power, it also shows that a careful optimization is necessary to exploit the potential.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Björn Pfeiffelmann, Ali Cemal BenimORCiD, Franz Joos
open access (DINI-Set):open_access
Qualitätssicherung:peer reviewed
open access :Gold - Erstveröffentlichung mit Lizenzhinweis
Fachbereich/Einrichtung:Hochschule Düsseldorf / Fachbereich - Maschinenbau und Verfahrenstechnik
Document Type:Article
Year of Completion:2021
Language of Publication:English
Publisher:MDPI
Parent Title (English):Energies
Volume:14
Issue:24
Article Number:8329
URN:urn:nbn:de:hbz:due62-opus-37323
DOI:https://doi.org/10.3390/en14248329
ISSN:1996-1073
Tag:DOAJ
Control and Optimization; Electrical and Electronic Engineering; Energy Engineering and Power Technology; Renewable Energy, Sustainability and the Environment
Corresponding Author:Ali Cemal Benim
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Licence (German):Creative Commons - CC BY - Namensnennung 4.0 International
Release Date:2022/05/18
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.