The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 32 of 1640
Back to Result List

Experimental investigation of a low pressure steam Rankine cycle for waste heat utilization of internal combustion engines

  • High heat losses via exhaust gas and coolant in internal combustion engines (ICE) are the basis for numerous investigations regarding downstream processes for power generation. The most promising concepts are Organic Rankine Cycles (ORC) and Steam Rankine Cycles (SRC). In previous work of the Center of Innovative Energy Systems, Düsseldorf (Germany), the technical and economic feasibility of a low pressure SRC has been investigated and the advantages in comparison to organic Rankine cycles are highlighted. A distinctive feature of the cycle is the use of the ICE coolant heat for evaporation, which limits the cycles maximum steam pressure to values below atmospheric pressure. This work presents first results of a test rig with data reconciliation according to DIN 2048 to validate the simulation results and design calculations. As a basis for the experimental investigations, a gas fired CHP plant was selected. The design of the test rig is optimized for the operation in the laboratory,High heat losses via exhaust gas and coolant in internal combustion engines (ICE) are the basis for numerous investigations regarding downstream processes for power generation. The most promising concepts are Organic Rankine Cycles (ORC) and Steam Rankine Cycles (SRC). In previous work of the Center of Innovative Energy Systems, Düsseldorf (Germany), the technical and economic feasibility of a low pressure SRC has been investigated and the advantages in comparison to organic Rankine cycles are highlighted. A distinctive feature of the cycle is the use of the ICE coolant heat for evaporation, which limits the cycles maximum steam pressure to values below atmospheric pressure. This work presents first results of a test rig with data reconciliation according to DIN 2048 to validate the simulation results and design calculations. As a basis for the experimental investigations, a gas fired CHP plant was selected. The design of the test rig is optimized for the operation in the laboratory, where the coolant heat is emulated by a tempering device and the exhaust heat of the CHP plant is emulated by a gas burner. With the designed test rig, it is possible to control the volume flow and the temperatures of the coolant and exhaust gas, so that different load conditions of the gas fired CHP plant can be investigated. For initial tests, the turbine in the SRC is replaced by a throttle to achieve the pressure drop of the turbine. The experimental results show, that the exhaust and coolant heat of a 36 kWel CHP plant can be emulated and the performance expectations of the cycle can be met in stable steady-state conditions. Based on the measurement results and the turbine design calculations an electric power output of the cycle of 3.8 kW will be possible, which results in a cycle efficiency of about 6.5 % and an increase of the electrical power output of the CHP plant of about 10 %. The results show that the plant concept is technically feasible and, with further optimization, also represents an alternative to ORC plants in terms of increasing the efficiency of a cogeneration plant.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christoph Laux, Andreas Gotter, Matthias Neef
Fachbereich/Einrichtung:Hochschule Düsseldorf / Fachbereich - Maschinenbau und Verfahrenstechnik
Document Type:Conference Proceeding
Year of Completion:2019
Language of Publication:English
Publisher:The National Technical University of Athens (NTUA)
Place of publication:Athens
Parent Title (English):Proceedings of the 5th International Seminar on ORC Power Systems
ISBN:978-90-9032038-0
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Licence (German):keine Lizenz - nur Metadaten
Release Date:2019/12/18
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.