The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 9 of 3234
Back to Result List

Sound Spatialization Resource Management in Virtual Reality Environments

  • In a virtual reality environment users are immersed in a scene with objects which might produce sound. The responsibility of a VR environment is to present these objects, but a system has only limited resources, including spatialization channels (mixels), MIDI/audio channels, and processing power. The sound spatialization resource manager controls sound resources and optimizes fidelity (presence) under given conditions. For that a priority scheme based on human psychophysical hearing is needed. Parameters for spatialization priorities include intensity calculated from volume and distance, orientation in the case of non-uniform radiation patterns, occluding objects, frequency spectrum (low frequencies are harder to localize), expected activity, and others. Objects which are spatially close together (depending on distance and direction) can be mixed. Sources that can not be spatialized can be treated as a single ambient sound source. Important for resource management is the resourceIn a virtual reality environment users are immersed in a scene with objects which might produce sound. The responsibility of a VR environment is to present these objects, but a system has only limited resources, including spatialization channels (mixels), MIDI/audio channels, and processing power. The sound spatialization resource manager controls sound resources and optimizes fidelity (presence) under given conditions. For that a priority scheme based on human psychophysical hearing is needed. Parameters for spatialization priorities include intensity calculated from volume and distance, orientation in the case of non-uniform radiation patterns, occluding objects, frequency spectrum (low frequencies are harder to localize), expected activity, and others. Objects which are spatially close together (depending on distance and direction) can be mixed. Sources that can not be spatialized can be treated as a single ambient sound source. Important for resource management is the resource assignment, i.e., minimizing swap operations, which makes it desirable to look-ahead and predict upcoming events in a scene. Prediction is achieved by monitoring objects’ speed and past evaluation values. Fidelity is contrasted for Zifferent kind of resource restrictions and optimal resource assignment based upon unlimited dynamic scene look-ahead. To give standard and comparable results, the VRML 2.0 specification is used as an application programmer interface. Applicability is demonstrated with a helical keyboard, a polyphonic MIDI stream driven animation including user interaction (user moves around, playing together with programmed notes). The developed sound spatialization resource manager gives improved spatialization fidelity under runtime constraints. Application programmers and virtual reality scene designers are freed from the burden of assigning and predicting the sound sources.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jens HerderORCiDGND, Michael Cohen
Fachbereich/Einrichtung:Hochschule Düsseldorf / Fachbereich - Medien
Hochschule Düsseldorf / Fachbereich - Medien / Sound and Vibration Engineering​
Hochschule Düsseldorf / Fachbereich - Medien / Creative Media Production and Entertainment Computing
Document Type:Conference Proceeding
Year of Completion:1997
Language of Publication:English
Place of publication:Tokyo
Parent Title (English):ASVA’97 ‐- Int. Symp. on Simulation, Visualization and Auralization for Acoustic Research and Education
First Page:407
Last Page:414
Licence (German):keine Lizenz - nur Metadaten
Release Date:2019/02/15
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.