• search hit 4 of 539
Back to Result List

Model Predictive Control and Service Life Monitoring for Molten Salt Solar Power Towers

  • A two-component system for control and monitoring of solar power towers with molten salt receivers is proposed. The control component consists of a model predictive control applica-tion (MPC) with a flexible objective function and on-line tunable weights, which runs on a In-dustrial PC and uses a reduced order dynamic model of the receiver’s thermal and flow dy-namics. The second component consists of a service-life monitoring unit, which estimates the service-life consumption of the absorber tubes depending on the current mode of operation based on thermal stresses and creep fatigue in the high temperature regime. The calculation of stresses is done based on a detailed finite element study, in which a digital twin of the re-ceiver was developed. By parallelising the model solver, the estimation of service-life con-sumption became capable of real-time operation. The system has been implemented at a test facility in Jülich, Germany, and awaits field experiments. In this paper, theA two-component system for control and monitoring of solar power towers with molten salt receivers is proposed. The control component consists of a model predictive control applica-tion (MPC) with a flexible objective function and on-line tunable weights, which runs on a In-dustrial PC and uses a reduced order dynamic model of the receiver’s thermal and flow dy-namics. The second component consists of a service-life monitoring unit, which estimates the service-life consumption of the absorber tubes depending on the current mode of operation based on thermal stresses and creep fatigue in the high temperature regime. The calculation of stresses is done based on a detailed finite element study, in which a digital twin of the re-ceiver was developed. By parallelising the model solver, the estimation of service-life con-sumption became capable of real-time operation. The system has been implemented at a test facility in Jülich, Germany, and awaits field experiments. In this paper, the modeling and archi-tecture are presented along simulation results, which were validated on a hardware-in-the-loop test bench. The MPC showed good disturbance rejection while respecting process variable constraints during the simulation studies.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Wolfgang Grote-Ramm, Felix Schönig, Peter Schwarzbözl, Maximilian Drexelius, Daniel Maldonado Quinto, Matthias Binder
Fachbereich/Einrichtung:Hochschule Düsseldorf / Fachbereich - Maschinenbau und Verfahrenstechnik
Document Type:Conference Proceeding
Year of Completion:2023
Language of Publication:English
Parent Title (English):29th SolarPACES Conference, Sydney
Tag:Dynamic Modelling; Model Predictive Control; Molten Salt; Service-life Monitoring; Solar Power Tower
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Licence (German):keine Lizenz - nur Metadaten
Release Date:2024/02/08
Note:
Eingereichter Beitrag
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.