

Mobile Cross-Platform Development
from a Progressive Perspective

An analysis of NativeScript applications based on the

characteristics of progressive web applications

Nils Mehlhorn

mail@nils-mehlhorn.de

Matriculation Number: 649194

Bachelor Thesis

B.Sc. Media Informatics

May 17, 2017

Supervisors

Prof. Dr. Manfred Wojciechowski

Andreas Hartmann

2 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Declaration of authorship

English

I hereby declare that the paper submitted is my own unaided work. All direct or

indirect sources used are acknowledged as references. This paper was not

previously presented to another examination board and has not been published.

German

Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit

selbständig angefertigt habe. Die aus fremden Quellen direkt und indirekt

übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde

weder einer anderen Prüfungsbehörde vorgelegt noch veröffentlicht.

_______________________ _______________________

first and last name city, date and signature

Mobile Cross-Platform Development from a Progressive Perspective | 3

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Abstract

Progressive web applications (PWAs) seem to be the next big thing in the mobile

landscape. These are web applications with “super-powers” which are meant to

provide the kinds of user experiences previously only native mobile

applications could. Therefore they are able to match native applications in their

capabilities but still thrive on the reachability of the web. They achieve this by

implementing certain characteristics which originate from innovative

standards and sophisticated best practices. Conveniently, as it is the web, PWAs

are working seamlessly cross-platform. One of the closest things to a PWA so far

may be an application created with the NativeScript framework. Such an

application is also developed with web technologies yet able to use any native

interface directly. This is made possible by using a designated runtime for

mediating between JavaScript and the mobile system. Eventually, NativeScript

is able to offer a high degree nativity yet also of convenient abstraction during

development.

This paper is set out to deliver further insight into both approaches by

contrasting them based on the characteristics of PWAs. For this purpose, these

characteristics are elaborated and adjusted to be applicable to native mobile

applications. Hence a reasonable basis for what to expect from a native

application is derived. Then NativeScript is assessed on this basis by the means

of transferable concepts and technologies as well as a prototypic mobile

application. Finally, an informed discussion and conclusion is performed based

on the results.

The comprehensive characteristics of PWAs resolve previous shortcomings with

well thought out concepts and new technologies. These are transferable to

native mobile applications to a far extent and may also be put into practice with

NativeScript. The framework’s approach may be very well called ingenious,

however, in the long run it might fall short of the innovative concept of PWAs.

Having said this, it is still able to serve as a practical measure for creating

appealing user experiences for multiple systems with arguably little effort. Due

to large overlap a transformation between the two application types is a realistic

option. Either way, web technologies are far from what they used to be and it is

exciting to see how the mobile and web landscape will evolve in the future.

4 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Table of contents

1 Introduction .. 8

1.1 Structure .. 8

1.2 Goals .. 8

1.3 General approach .. 9

1.4 Scope and delimitations .. 9

1.5 Problem statement and motivation .. 10

2 Background .. 11

2.1 Progressive web applications .. 11

2.1.1 Emergence and classification .. 11

2.1.2 Characteristics .. 13

2.1.3 Notable aspects of development .. 20

2.2 Mobile cross-platform development with NativeScript 20

3 Developing a progressive perspective ... 23

3.1 Preliminary considerations... 23

3.2 Criteria derivation ... 24

4 Assessing NativeScript .. 28

4.1 Prototype ... 28

4.2 Implementation of functional requirements .. 31

5 Discussion .. 39

6 Conclusion and outlook .. 42

7 References ... 44

Appendix .. 51

A. Breakdown of assessment results .. 51

B. Startup optimization data ... 53

C. Exemplifying code listings for deep linking support 54

Mobile Cross-Platform Development from a Progressive Perspective | 5

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Figures

Figure 1 Share of time spent on mobile apps and web, data source: 9 p. 12 11

Figure 2 Envisaged classification of PWAs regarding capability and reach,

inspired by: 8 ... 12

Figure 3 UML activity diagram for the workflow of an offline capable app

implemented by service workers, inspired by: 15 ... 14

Figure 4 Illustration of a PWA’s application shell without content (left) and

filled with content (right) .. 16

Figure 5 Illustration of layered view on progressive enhancement 18

Figure 6 UML component diagram illustrating the architecture of NativeScript

applications and their integration with the Android system 21

Figure 7 UML sequence diagram illustrating simplified execution flow in

NativeScript runtimes ... 22

Figure 8 UML component diagram illustrating differences and similarities

between progressive web and NativeScript application architecture layers ... 23

Figure 9 Simplified illustration of a Kanban board ... 28

Figure 10 Partial UML use case diagram for the Kanban board application 29

Figure 11 Detail view for single card in the Kanban board application on

Android ... 30

Figure 12 Detail view for single board in the Kanban board application on

Android ... 30

Figure 13 UML component diagram illustrating simplified two-tier architecture

for the Kanban board application .. 31

Figure 14 Launch screen for Kanban board application on Android 33

Figure 15 UML sequence diagram illustrating the deep linking mechanism

based on Digital Asset Links used for the Kanban board application 35

Figure 16 UML activity diagram illustrating the dispatch and handling of push

notifications for watched cards .. 36

file:///C:/Users/mehlhorn/ownCloud/FH/Semester_7/Bachelorarbeit/converting/ba_static.docx%23_Toc482717970
file:///C:/Users/mehlhorn/ownCloud/FH/Semester_7/Bachelorarbeit/converting/ba_static.docx%23_Toc482717970
file:///C:/Users/mehlhorn/ownCloud/FH/Semester_7/Bachelorarbeit/converting/ba_static.docx%23_Toc482717971
file:///C:/Users/mehlhorn/ownCloud/FH/Semester_7/Bachelorarbeit/converting/ba_static.docx%23_Toc482717971
file:///C:/Users/mehlhorn/ownCloud/FH/Semester_7/Bachelorarbeit/converting/ba_static.docx%23_Toc482717973

6 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Tables

Table 1 Characteristics of PWAs, each with associated intent and technical

properties .. 19

Table 2 Evaluation criteria derived from the characteristics of PWAs, each with

associated objective and functional requirements .. 27

Mobile Cross-Platform Development from a Progressive Perspective | 7

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

List of abbreviations

AOT Ahead-Of-Time Compilation

API Application Programming Interface

APK Android Package Kit

BaaS Backend as a Service

DOM Document Object Model

dp device-independent pixel

DPI Dots per Inch

HTTP Hypertext Transfer Protocol

HTTPS HTTP Secure

JSON JavaScript Object Notation

MVC Model-View-Controller

PWA Progressive Web Application

REST Representational State Transfer

SPA Single-Page Application

SSL Secure Sockets Layer

TLS Transport Layer Security

URL Uniform Resource Locator

8 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

1 Introduction

1.1 Structure

In the first chapter of this paper general conditions are laid down and a

motivation for the paper’s topic is established. Afterwards appropriate and

necessary background information is provided in the second chapter. The third

chapter contains the foundation for the analysis and its derivation. In chapter

four the analysis itself is described and its results presented. Lastly, the

discussion of the results is to be found in chapter five with a consequential

conclusion and outlook in chapter six.

1.2 Goals

The substantive goals of this paper are outlined as follows

(a) The specifically covered field of mobile cross-platform development and

development of progressive web applications (PWAs) is to be sufficiently

defined and delimited. Furthermore, the general approach for a

comparative analysis of both fields is to be described.

(b) PWAs as well as the characteristics of their development are to be

illustrated. In doing so, the reasons or motivation for their emergence are

to be presented in detail and aspects of popularity to be considered. In

this context the concepts behind the characteristics are to be examined.

(c) The results from (b) are to be contrasted with the challenges from the field

of mobile cross-platform development. Eventually a set of criteria for

evaluation of the mobile cross-platform solution NativeScript is to be

developed from the requirements for PWAs (insofar as applicable).

(d) The attainability of the set of criteria from (c) by NativeScript applications

is to be analyzed by the means of transferable concepts and technologies

as well as a prototypical implementation of a mobile application.

(e) The findings derived by the paper are to be summarized and weighed.

The opportunities and areas of application of both approaches are to be

comparatively debated. Moreover an outlook in regard to the foreseeable

future progression is to be given.

Mobile Cross-Platform Development from a Progressive Perspective | 9

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

1.3 General approach

In advance, intensive scholarly research is conducted. As PWAs are a rather

recent emergence, a literary landscape is pretty much not yet existent. The

books on the topic of PWAs used are in an unfinished state at the time of

publication of this paper. Yet, other major sources regarding the topic are fully

available online and therefore primarily consulted. Based on the gained insights

and set goals, a scope for the paper is defined. Hereby it is intended to form an

understanding about the covered field and avoid confusion about substantive

aspects of the paper. Afterwards a problem statement is given to provide

motivation for the topic itself. Subsequent to this introduction, the field of PWAs

is illustrated by reflecting their definition, examining underlying concepts and

describing their development. These findings are then considered regarding

their practicality for mobile cross-platform development. This is done with

respect to the eventual evaluation of NativeScript applications to form an

assessable set of criteria. This assessment is consecutively conducted and

includes the prototypical implementation of a mobile application. Hereby

multiple aspects of PWAs are meant to be specifically reproduced in a

proof-of-concept fashion. Furthermore, transferable concepts and technologies

are to be assessed. The defined approaches for evaluation are conducted and the

results presented. These results are then summarized and weighed in a

discussion. Eventually a conclusion is formed and an outlook on foreseeable

future progression in the field formulated.

1.4 Scope and delimitations

The term of “(mobile) cross-platform development” used in this paper refers to

the creation of software products from one main codebase targeted to run on

multiple contemporary mobile operating systems.

The main parts of this paper’s scope consist of the examination of PWAs and

their concepts themselves as well as the assessment of NativeScript’s ability to

fulfill the requirements made to the former. A fair amount of knowledge about

web applications and mobile cross-platform development is assumed. This

paper does not focus on the development of web or mobile cross-platform

applications as self-contained topics, but is rather set out to contrast two

commensurable approaches in these fields. This is done with a general regard

to consumer applications.

10 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

To ensure a reasonable scope for the paper any integration concepts and

implementations for an underlying mobile platform are limited to explanations

regarding the Android system.

1.5 Problem statement and motivation

Put in simple terms, the goal of mobile cross-platform development is the

creation of mobile applications which run on multiple platforms with ideally

native experience while originating from just one codebase (1 p. 14). The

software solution NativeScript offers promising prospects for fulfilling this goal.

However, the development of NativeScript applications shows great proximity

to how web applications are developed these days (1 pp. 34-35). Therefore it

could proof to be worthwhile to approach the solution from a different angle.

Yet, evaluating NativeScript on its capabilities for developing web applications

when its output is meant to perform as native mobile applications would not be

very meaningful. A recent emergence in web development provides a way more

reasonable basis for analysis. With the introduction of PWAs a certain set of

requirements is laid down regarding aspects of reliability, performance and

engagement (2).

“Progressive Web Apps bring features we expect from native apps

to the mobile browser experience in a way that uses

standards-based technologies […]” (3)

Back when smartphones were introduces the web just could not compete with

the features provided by native applications. By now, this shortcoming seems to

be increasingly patched up (4 p. 9). Normally it would be difficult to argue what

exactly is to be expected from a native mobile app. In this case, with the

definitions for PWAs, specific metrics are in place to allow for convenient

evaluation (5). With the combination of these concrete requirements and such a

suitable candidate for evaluation as NativeScript, insights on aspiring concepts

and approaches for working with foreseeable changes in the landscape of

consumer application development may be gained.

Mobile Cross-Platform Development from a Progressive Perspective | 11

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

2 Background

2.1 Progressive web applications

2.1.1 Emergence and classification

PWAs are actually not a technological innovation which was introduced from

one day to the next. Rather the term is meant to group together several

characteristics of really modern web applications. The adoption of new

standards in browsers, especially the specification for service workers, allowed

for a further evolution of web development (6). In 2015, the Google Chrome

engineer Alex Russell took a closer look at these trending characteristics and

labeled the corresponding web applications as progressive. According to him,

this “[…] new class of applications […] deliver[s] an even better user experience

than traditional web apps [are able to]” (7). This improved user experience is

achieved by the usage of capabilities which ordinary web applications lack.

Compared to the mobile web, users spent a considerably high amount of time

on mobile apps (see Figure 1). The engineers behind PWAs substantiate this fact

with the inferior capabilities of web applications on mobile. Without these, they

would just not be able to be as engaging as native mobile apps were (8). After

the native app is installed, it enjoys several benefits over its web-based

complement. An icon on the user’s home screen and push notifications allow

them to reconnect with users in convenient ways. So far, web applications

would not have these chances for making the user come back (4 pp. 12-13).

Figure 1 Share of time spent on mobile apps and web, data source: 9 p. 12

87% 88% 83%

13% 12% 17%

0%

20%

40%

60%

80%

100%

Mobile Smartphone Tablet

Share of time spent on mobile

Time spent in apps Time spent on web

12 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

PWAs are meant to provide remedy. In the right environment they can perform

in an app-like fashion. They are able to send out push notifications, launch in

hardware-accelerated full-screen and use a wide range of sensors. Various

innovative interfaces like the Push API or Geolocation API are making this

possible (10) (11). Hereby, features which were previously reserved for native

applications are made accessible in a standardized way. In concept, PWAs are

meant to be on a par with native apps regarding their capabilities (see Figure 2).

Figure 2 Envisaged classification of PWAs regarding capability and reach, inspired by: 8

The average monthly audiences of mobile web properties are about three times

the size of the ones of comparable mobile apps. In addition, the mobile web

audiences grow with twice the speed of their counterpart (9 p. 15). This means

that web apps have a major advantage regarding reach on mobile systems. A

PWA is meant to leverage this fact by being just that eventually: a web

application.

“Establishing app audiences is harder, but their real value is in

their loyalty.” (9 p. 19)

Although the web predominates in terms of audience size, the engagement of

their audiences needs to be considered, too. As already stated, the time spent on

apps is outpacing the mobile web by far. Users show far more engagement for

them. Yet, this engagement is mostly limited to a handful of apps (9 p. 30). PWAs

are supposed to combine the loyalty for native applications with the reachability

of the web.

Mobile Cross-Platform Development from a Progressive Perspective | 13

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Several approaches in the field of cross-platform development stem from the

incentive for building mobile applications with web technologies. Solutions like

Apache Cordova bundles web resources into a native application wrapper. This

workaround allows for building applications with the means of web

development while leveraging native features (1 pp. 19-21). In theory, with

PWAs it should no longer be necessary to deliver a web application in any kind

of proprietary native wrapper. Implementing the defined technical

requirements makes “[…] good old web sites […] exhibit super-powers […]” (12).

Thus, the mobile browser itself takes care of filling the gap to the system. The

result is a standardized solution for building web applications which may feel

like native apps.

2.1.2 Characteristics

It becomes clearer which role PWAs are meant to play in the mobile landscape

when looking at their characteristics one by one. Originally named by Russell, a

PWA should be all of the following:

 Responsive Fresh Re-engageable

 Installable Safe Discoverable

 Linkable Connectivity

independent

 App-like

interactions

These are the dictated characteristics a web application needs to have in order

to certify as progressive. Every characteristic is represented by certain technical

properties. A subset of these properties forms a baseline for web applications to

be detected as a PWA by a browser (5) (13). Google also provides a way for

asserting many of the baseline properties automatically with a tool called

Lighthouse (14). For the following elaboration the characteristics are organized

according to the definitions on the Mozilla Developer Network as these arguably

make up for a more suitable separation in this case (12). The associated

classifications by Russel are listed accordingly.

Network independent (Fresh, Connectivity independent)

A central component of a PWA is the service worker. It represents a previously

mostly non-existent instance between a web page and the corresponding server.

The service worker is defined and registered via JavaScript for a single or

multiple pages. After its registration it listens to events broadcasted by the web

page (4 pp. 15-17). With this new instance in place, the offline state for web

applications is meant to be improved. Instead of ending up with no functionality

14 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

at all in a situation with no network or low transmission rate, a reasonable

offline experience can be delivered. The service worker is able to offer cached

assets and data independent of network availability. In the best case the

application can allow for browsing previously visited pages while displaying

cached content. The bare minimum for the characteristic of being network

independent would be displaying a custom offline page (13).

Figure 3 UML activity diagram for the workflow of an offline capable app
implemented by service workers, inspired by: 15

As service workers guaranty a response for requests made by the application,

be it populated with cached data, they need to intercept HTTP communications

for being able to alter or replace their contents. To allow for this process to be

carried out in a secure environment, web pages registering a service worker

have to be served via secure HTTP (HTTPS). Otherwise man-in-the-middle

attacks can take place (4 pp. 27-28).

Safe

So PWAs have to be safe, thus use HTTPS, for service workers to work. But there

are more reasons justifying a standalone characteristic of safeness. HTTPS is

based on the successor of the cryptographic specification for the Secure Sockets

Layer (SSL), called Transport Layer Security (TLS). It prevents tampering of web

communications. Without the protocol in place, intruders may be able to access

sensitive information or exploit the connection to insert advertisements, for

example. But it is not just useful to secure sensitive connections with HTTPS.

Even web pages which seem irrelevant from a security perspective can be

violated for gathering usage data illegitimately (16). Implementing HTTPS even

favors how a web page is ranked in search engines (17). Moreover, some web

technologies may work even better on HTTPS connections (4 p. 28).

Mobile Cross-Platform Development from a Progressive Perspective | 15

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Discoverable

Unlike native mobile applications, web applications do not have central points

like app stores or market places for being discovered. Instead they may be

discoverable via search engines or social media links. This plays into the aspect

of reach. A central place for app distribution is limited in the number of apps it

can represent efficiently and thus a new application “[…] can seem like a grain

of sand on a beach” (18 p. 6).

“These apps aren’t packaged and deployed through stores, they’re

just websites that took all the right vitamins.” (7)

However, PWAs may be market in a way more dynamic way. Any platform

complying with the standards is able to handle them. A fundamental artifact for

this characteristic is the web app manifest. This file contains metadata in the

JavaScript object notation (JSON) format with essential information about the

application. Assets like app icon or splash screens are defined and identification

data like the application name or author is provided. Moreover an entry point

for the application is to be specified in the manifest. The manifest compares very

well to something like the application manifest for native Android applications.

Just like it describes how the Android system should handle a packaged

application, the web app manifest describes the PWA in a way any modern

browser may be able to understand (18 pp. 3,6) (19) (20) (21).

Installable (App-like-interactions)

The web app manifest is also required for making the web application

installable. In this context installable refers to being able to add an icon to the

user’s home screen. This way the PWA can be started in a similar manner to

native mobile applications. For this to work within Google Chrome on an

Android system, a couple of requirements have to be met. Firstly, the manifest

has to provide basic information about the app. Its name, a shortened name, an

icon image and the already mentioned entry point in form of a Uniform

Resource Locator (URL) are required. Furthermore, an appropriate display

mode for a screen filling presentation has to be specified. Secondly, the

application has to be able to start while offline. As already stated, this is to be

ensured via service workers. Lastly, implicated by the service worker, the web

site has to be served over HTTPS for being installable. Eventually, if the

requirements are met and a certain degree of engagement is determined, the

browser prompts for adding the PWA to the home screen (13) (22).

16 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Figure 4 Illustration of a PWA’s application shell without content (left)
and filled with content (right)

A PWA launched from the home screen should execute in an application shell

providing a fast startup. The shell may consist of static user interface elements

which are cached during the installation. This guaranties a network

independent provision of the application infrastructure which can then be filled

with content (see Figure 4). With this separation of infrastructure from content

the perceived performance and thus the user experience are enhanced (18 pp.

18-23) (23).

Linkable

Having a discoverable PWA means it is approachable in terms of technical

handling. It allows for accessing the app similar to how a native mobile app

would be accessed. In contrast, the fact that PWAs are linkable refers to

approachability from the web perspective. To use a specific feature of an

ordinary mobile app it is required to be installed first. And even then the ways

for accessing the feature might be limited.

Web applications can be accessed almost at any point without preliminary work

by just having the right URL. The high reachability of the web thrives from this

simplicity. A high amount of traffic originates from unassignable sources

resulting in a phenomenon called “dark social” (24). While its extent might be

Mobile Cross-Platform Development from a Progressive Perspective | 17

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

controversial, it shows how there may be access channels to an application

which might not be seen in advance. PWAs leverage this aspect by working

without installation and therefore being easily shareable (7).

Re-engageable (App-like-interactions)

As pointed out, the engagement for web applications is rather low. PWAs are

meant to overcome this. With an icon sitting on the home screen and push

notifications they are supposed to re-engage the user just like native apps can.

Google’s model example for this characteristic is the e-commerce site Flipkart.

When their web presence was relaunched as a PWA, the time that users spent

on the site tripled. More than half of their users now visited the site via the home

screen icon. Among them the conversion rate would be 70% higher compared to

the average user (25). Flipkart substantiates these numbers with the use of the

new technologies. Based on the Push API they were able to send messages to

their clients’ service workers, which in turn would then notify the user via the

Notifications API. As the service workers “[…] live beyond the lifetime of the

browser” (26), such ways of interacting with the user would now be possible for

web applications (26).

Responsive

“PWAs are quickly becoming a set of best practices. The steps you

take to build a Progressive Web app will benefit anyone who

visits your website, regardless of what device they choose to use.”

(18 p. 4)

One of the best practices brought together by PWAs is the one of responsive

design. Mobile-first approaches changed the way websites are designed

substantially, and one might say rightfully so. Today, two thirds of the time spent

on digital media takes place on mobile systems (9 p. 6). This grants valid reason

for making an effort to deliver highly mobile friendly websites. With a

heterogeneous landscape regarding device specifications, the goal has to be a

proper display regardless of form factor. This is commonly achieved by using

media queries and advanced features of CSS like device adaption and the

flexible box layout (27).

18 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Progressive

Just like a PWA should display properly on any device regardless of its form

factor, it should also work properly regardless of the browser in use. Not

everyone is able to keep pace with the mentioned emergence of advanced

interfaces. For example, service workers are not yet overall supported by

common browser vendors (28). The established web development principle of

progressive enhancement is used to deal with this circumstance. Similar to

mobile-first, it relates to building a web application by starting with a small but

working foundation and then layering more functionality on top. The usage of

advanced technologies (e.g. low-level APIs such as the ones for push

notifications) would be admissible as long as some kind of fallback is provided.

Thereby, the website is made “[…] more accessible to all audiences” (4 p. 27).

Figure 5 Illustration of layered view on progressive enhancement

The principle is often described as being layered. The base layer would be made

up by the site’s content with subsequent layers for design and interaction. This

way, even clients that are not supporting JavaScript or CSS may get access to a

site’s content. The metaphor can also be applied within these layers where

different levels of support may be present (see Figure 5). For example, some

browsers may be proficient in JavaScript but may not implement the most

recent standards (4 p. 27). With progressive enhancement these clients will still

be able to deliver less yet reasonable functionality. Regardless of a client’s

currency, the website may not be completely broken.

Mobile Cross-Platform Development from a Progressive Perspective | 19

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Hereinafter, all characteristics of PWAs are listed collectively with a certain

described intent and the technical properties used to instantiate them. The

characteristics Linkable and Progressive lack specific technical properties as

their implementation is innate to web development itself. With them, it is rather

about the definition of their concept than the emergence of a new technology.

Table 1 Characteristics of PWAs, each with associated intent and technical properties

CHARACTERISTIC INTENT TECHNICAL PROPERTIES

NETWORK

INDEPENDENT

Enhance offline

experience

 Service workers

SAFE Secure communication HTTPS

DISCOVERABLE Identification of

applications

 Web app manifest

 Service worker

registration

INSTALLABLE Enhance performance

and user experience

 Web app manifest with

required information

 Service worker

registration

 HTTPS

LINKABLE Allow easy access for

reachability purposes

Innate to the web

RE-ENGAGEABLE Enhance user engagement Push API

 Notifications API

 Service workers

RESPONSIVE Allow for proper display

on different form factors

 Media queries

 CSS device adaptation

 CSS flexible box layout

PROGRESSIVE Allow for an acceptable

execution in any browser

Innate to the web

20 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

2.1.3 Notable aspects of development

As mentioned, PWAs are no singular technology but rather a combination of

existing concepts. Therefore no further dependencies are dictated beside the

standardized browser interfaces. Developing a PWA does not differ from

developing any other web application in terms of the tools used. Although there

are several solutions available which may help with the task, the only

mandatory requirement is the implementation of the characteristics by using

the associated technical properties (see Table 1).

As a matter of fact, the development of PWAs is somewhat progressive in itself.

There is no particular need for redeveloping a web application from scratch to

make it progressive. Rather small steps can be taken to implement one

characteristic after another. Thereby the capabilities of the web application and

thus the user experience are successively enhanced (18 p. 16).

2.2 Mobile cross-platform development with NativeScript

Web applications, which PWAs are in the end, rely on standards and web

browsers supporting these standards. Hereby they can run on any platform with

a sufficiently capable browser. For native mobile applications such a principle

is not in place. Google’s Android and Apple’s iOS are the market leaders for

mobile operating systems (29). When wanting to deploy an app to these

platforms, one would have to carry out two considerably different software

developments. With Android development being performed with Java and XML

whereas iOS applications are developed with Objective-C and Swift, one ends up

with two separate code bases. This means the application has to be written twice

while delivering ultimately the same functionality. Cross-platform solutions are

used to avoid such expensive development overheads. These solutions allow for

serving applications for multiple platforms at once from a single code base.

Yet, the differences between platforms do not exists only on a programmatic

level. Mobile users are accustomed to a specific user experience on their device.

Appearance and behavior need to conform to their expectations. Therefore a lot

more is needed when transferring an app to another platform than just

rewriting the code in a different language. Several aspects of developing native

applications have to be abstracted whilst ideally delivering the same result.

Cross-platform solutions have the goal of delivering applications which perform

like they were developed natively while being significantly more efficient in

regard to the application development itself.

Mobile Cross-Platform Development from a Progressive Perspective | 21

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

The NativeScript framework addresses the requirements made to mobile

cross-platform solutions with a unique approach. Just like the already

mentioned Apache Cordova, NativeScript leverages certain web technologies to

allow for abstracted development. Application code is written using JavaScript,

but instead of recreating user interface components with HTML, the framework

instantiates native view elements. These are typically defined in a declarative

way using XML. Styling and animations are to be applied using CSS. Not just the

ones for view management but any system interface is available within

NativeScript applications. This is enabled by a platform-specific runtime which

is bundled with the application code and provides access to the system runtime

directly from JavaScript (30 pp. 7-9) (31).

Figure 6 UML component diagram illustrating the architecture of NativeScript applications and

their integration with the Android system

The application code executes inside the system’s JavaScript engine. Preliminary

to its execution, proxies for the system interfaces are injected into the JavaScript

namespace. These are JavaScript objects which are connected to appropriate

Android types beforehand generated during build-time. Any call made to the

proxies is forwarded to the associated native complement and in return any

changes originating from the system are reflected upon the JavaScript objects

22 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

(see Figure 7) (31) (32). With this mechanism the app executes very close to how

a native app would do, resulting in a high nativity. This in turn accounts for a

relatively good performance of NativeScript applications, which are eventually

able to provide a decent user experience (1 pp. 30-33).

Figure 7 UML sequence diagram illustrating simplified execution flow in NativeScript runtimes

The calls to the specific system interface are usually wrapped into designated

modules. This way the application code can be written in a more abstract

fashion. The modules are meant to distinguish between the systems interfaces

while the business logic can be agnostic of the underlying platform (33

NativeScript Modules). In combination with single-page application (SPA)

frameworks the development of NativeScript applications can be performed

very similar to web developments. Frameworks like Angular enforce concepts

such as separation of concern or the Model-View-Controller (MVC) pattern. With

these, a proper architecture can be constructed which encapsulates accesses to

the platform in a maintainable way. NativeScript approaches platform

integration and application architecture in a way that offers a high degree of

nativity regarding execution but also of abstraction during development (34).

Mobile Cross-Platform Development from a Progressive Perspective | 23

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

3 Developing a progressive perspective

3.1 Preliminary considerations

The presented solutions may differ in their starting point, yet they overlap in

their general intent. The concept of PWAs is supposed to elevate web

development to a place where it is able to compete with native implementations.

Mobile cross-platform development, as represented by NativeScript, aims to

mitigate the need for developing natively and therefore developing multiple

times. Both solutions are set out to replace native development of mobile

applications. While PWAs are coming from an abstracted point which gains

instantiation through new standards, NativeScript takes the matter into its own

hands. The execution takes place on an unrivaled low level, however the result

is an installable application and ideally very similar to native ones. PWAs are

just similar to native applications in regard to their capabilities, yet meant to be

more versatile. Still, similar ways are used to reach similar goals. The actual

application development is emphasized while the execution is meant to be

handled by the appendant infrastructure. With an appropriate architecture the

similarities and differences become apparent. Commonly, SPA frameworks are

used in both cases, thus the solutions align on a logical layer. At the same time

wide disparities regarding presentation and system connection are present (see

Figure 8). In the eventual application usage these differences may be potentially

irrelevant as both approaches are set out to deliver sophisticated user

experiences. However, in regard to the technical result it may be very much

relevant which approach is more convenient or sustainable.

Figure 8 UML component diagram illustrating differences and similarities between progressive
web and NativeScript application architecture layers

24 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

3.2 Criteria derivation

Hereinafter, the criteria for assessing NativeScript by will be derived from the

characteristics of PWAs (see Table 1). This is to be done by mapping out how

these characteristics may apply to natively running mobile applications. Due to

the differences between both solutions, some characteristics may not be

transferable at all or only in a modified way. Omissions or modifications as well

as underlying characteristics for a criterion are noted accordingly.

Network independence (Characteristic: Network independent)

Installed applications are innately network independent to a certain extent. The

resources for displaying blank user interface elements are allocated as a result

of the installation. Therefore a native application would be able to execute

regardless of network availability without any further preparations. Yet, the

actual goal of the associated characteristic is enhancement of the offline

experience. The corresponding criterion therefore may refer to the provision of

a meaningful behavior or functionality when no network connection exists.

Without network independence of any kind, a web application will end up with

a generic browser error message when the network is offline. This may be rated

as an arguably substandard offline experience. If an installed application does

not implement any offline workflow (alike illustrated in Figure 3) it may offer a

similarly or even worse result as the web counterpart. Exemplary, a generic

error message or an application crash would definitely imply a failure in regard

to the criterion. Instead the application may provide useful data from a previous

session and allow for data input which may be synchronized later on.

Obviously, the application’s general functionality has to be essentially network

dependent for the criterion to be applicable. An application which might work

solely in an offline state would not provide for a meaningful assessment.

Security (Characteristic: Safe)

PWAs are safe through the usage of HTTPS for all internet communication. This

aspect is easily transferable into a criterion with the same goal and similar

measures. Although the application itself is not provided over the web, the

concept can be applied to its server communication. Besides the already

mentioned application resources acquired during installation, any subsequent

server requests may use the proper protocol for secure communications.

Mobile Cross-Platform Development from a Progressive Perspective | 25

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Marketability (Characteristics: Discoverable, Installable)

Discoverability can hardly be transferred in a meaningful way as the products

of NativeScript developments are supposed to resemble native applications and

are therefore already identifiable as such. A web app manifest cannot be

assessed, yet its native complement the already mentioned application manifest

will be present for the Android platform. Therefore, the requirement derived

from the characteristic may rather refer to the existence of proper metadata in

such a manifest. This also serves towards a possible publication of the

application. For a release on the Google Play store, the application’s name, id

and package name may be provided (35).

For the same reasons a similar modification has to be applied to the

characteristic regarding installation. The application metadata is necessary for

building a valid Android application, thus making it installable. Yet, the

registration of a service worker is not suitable within a native application as it

may use the platform’s threading model (36). Furthermore, resources like splash

screens and application shell may be already present before the first time the

application is started. Due to these considerations, both characteristics may be

transferred into a criterion of marketability. The goals of application

identification and enhancement of user experience are meant to further the

application’s approachability in this case. By having a properly configured

application with appropriate metadata, one may be in a good position for

publishing it. Through this, compatibility issues, licensing concerns and other

aspects of production readiness may be streamlined (37).

“Branded launch screens provide momentary brand exposure,

freeing the UI to focus on content.” (38)

At the same time, by following the launch screen pattern an elegant initial

impression is to be conveyed. Memorable brand assets may be displayed during

a cold launch, meaning the initial execution. This way brand recognition can be

enhanced (38).

Linkability (Characteristic: Linkable)

While PWAs are made linkable fairly easy due to their residence on the web, this

characteristic is hardly found in native applications. These applications are not

on the web, thus they are not able to profit from its innate reachability. Yet, with

the right preparations it may be reproduced. Android applications may define

certain ways for being accessed, namely intent filters. Usually used for inter-app

26 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

communication, they can also allow for deep linking to specific parts of an

application. Just like on the web, the desired content can be reached by having

the right URL. Such a link will redirect a user to a certain activity inside the

application, thus allowing for the application to be called linkable (39).

Moreover, a linkable application becomes accessible to search engines. These

may crawl the application’s content and subsequently offer new convenient

ways for reaching them (40).

Re-engagement (Characteristic: Re-engageable)

Web applications are gaining capabilities for reengaging the user through

emerging interfaces. Native applications already have access to all these

capabilities. As of their installation they present themselves on the user’s home

screen in form of an application icon and therefore may be revisited more

frequently. Push notifications can be sent via a combination of a designated

cloud messaging API and client implementations for displaying them (41) (42).

So, the possible ways for reconnecting with the user are basically the same.

Therefore the resulting criterion is analogue to the corresponding characteristic.

The user experience is to be enhanced by dispatching push notifications and

thus repeatedly initiating interaction with the application.

Responsiveness (Characteristic: Responsive)

In contrast to web applications, native mobile applications are virtually never

initially designed for desktop computers. Therefore the question of mobile

friendliness may not be applicable. Yet, these applications still have to be

responsive in a similar way. They also face a variety of screen sizes and

resolutions which they shall adapt to. In cross-platform developments, this

aspect may weigh even heavier as even more devices are meant to be supported

by the same application. The ways for making responsive web applications are

standardized while “each of the three major mobile platforms (Android, iOS and

Windows) offers its own way of dealing with device fragmentation and loading

resource files (layout, images etc.)” (43). As a result, certain mechanisms have to

be in place for dealing with different hardware specifications. These need to

eventually integrate with the platforms approaches for ensuring responsiveness

or provide different ways of adapting the user interface appropriately.

Progressiveness (Characteristic: Progressive)

For native implementations the barrier of standardized APIs is non-existent and

therefore any device capability provided may be used in an application. Yet, this

Mobile Cross-Platform Development from a Progressive Perspective | 27

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

also leaves the problem of handling different feature sets to the application code

itself. Backwards compatibility has to be ensured so that the target audience is

not limited to a certain system version or specific device. On the Android

platform, this aspect is generally covered by the usage of designated support

libraries. These allow for “[…] backward-compatible implementations of

import, core platform features” (44) and may be used to “[…] create more

modern app interfaces on earlier devices” (44). Ideally, these ought to be

leveraged by a NativeScript application. Alternatively, different approaches for

providing progressive behavior may be applied.

Table 2 Evaluation criteria derived from the characteristics of PWAs, each with associated
objective and functional requirements

CRITERION OBJECTIVE FUNCTIONAL REQUIREMENTS

NETWORK

INDEPENDENCE

Provision of

meaningful offline

experience

 Presentation of cached data

 Subsequent synchronization

SECURITY Protection of server

communication

 Usage of HTTPS

MARKETABILITY Further

approachability and

production readiness

 Display of launch screen

 Provision proper application

metadata

LINKABILITY Converge to web in

terms of reachability

 Deep linking support

RE-ENGAGEMENT Enhance user

experience by

initiating anew

interaction

 Dispatch of push notifications

RESPONSIVENESS Allow for proper

display on different

form factors

 Integration of platform

mechanisms for

responsiveness or alternative

PROGRESSIVENESS Allow for an

acceptable execution

on different system

versions or devices

 Integration of platform

mechanisms for

backwards-compatibility or

alternative

28 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

4 Assessing NativeScript

4.1 Prototype

The laid down criteria is now to be assessed by the means of a prototypic

NativeScript application. The concept for this application is loosely based on the

Kanban method used in lean software development approaches. More precise,

the application is meant to allow for working with Kanban boards. Kanban

boards are tools for managing individual tasks in form of cards. These cards are

organized in multiple columns or lists (see Figure 9). Usually, the cards are

moved from left to right over the board as the corresponding project tasks are

processed (45 pp. 87-89).

Figure 9 Simplified illustration of a Kanban board

The actual Kanban method enforces arguably strict rules upon then operation

of the board which are not transferred to the prototypical application. Instead,

a more liberal approach for interpreting the method is taken. The ability of

boards to visualize tasks in a convenient and useful way is emphasized. Thus

the application is rather meant to be used along the lines of methods like

Personal Kanban (46).

To determine basic functional requirements for the application, the general

interactions with a Kanban board are transformed into exemplary use cases (see

Figure 10). The most obvious one is the creation of a board itself. Such a board

is subsequently managed by, among other things, the creation of lists and cards.

Mobile Cross-Platform Development from a Progressive Perspective | 29

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

The lists are holding the actual cards which may be moved from one list to

another. Several more features come to mind for managing boards, lists, and

cards, like updating their properties or deleting them. These are excluded here

as they may be omitted as major use cases, yet the application is meant to

implement such features eventually.

Figure 10 Partial UML use case diagram for the Kanban board application

Implementation of the mobile application is performed with NativeScript 2.5,

consisting of the corresponding Android runtime, the core cross-platform

modules and command line interface (CLI). This setup is complemented by the

usage of the SPA framework Angular in its fourth version. As a result, the

application architecture aligns with the common one of PWAs in the desired way

(compare Figure 6). The Angular framework is written in TypeScript, a typed

superset language of JavaScript (47). The language is also used for large parts of

NativeScript itself ensuring “[…] integration with all NativeScript APIs and even

all native APIs when you use TypeScript” (48). Out of convenience, the

application code is also implemented with TypeScript (48) (49 pp. 4-5).

The prototype consists out of three main views. The entry point for the

application displays the existing boards and allows for the creation of new ones.

Selecting a board leads to a view for its detailed representation (see Figure 12).

Here the board’s lists are laid out with compact depictions of the cards they

contain. In this view, additional lists and cards can be added to the board.

Clicking a card brings the user to its detail view (see Figure 11). Here the user

30 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

may edit the card’s description or provide a picture for it. The card may also be

renamed or moved to another list at this point.

The previously defined functional requirements for the prototype are not only

dependent on client-side implementations. They also require extensive backend

support to implement features such as push notifications. To streamline the

prototype development, the backend as a service (BaaS) provider Firebase is

used. This platform provides a real-time database and several other cloud-based

services such as for messaging or file storage. Firebase is used in a design

pattern where it acts as the single source for dynamic content. Consequently, a

two-tier architecture is formed where the mobile application itself may only

consist of static assets and is directly connected to the real-time database (see

Figure 13). Database security and consistency may be achieved through the use

of rules which are to be defined on the data schemes. The BaaS may also be

extended by custom backend code to adapt it to the application’s needs (50) (51).

Figure 12 Detail view for single board in the
Kanban board application on Android

Figure 11 Detail view for single card in the
Kanban board application on Android

 In

Mobile Cross-Platform Development from a Progressive Perspective | 31

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Figure 13 UML component diagram illustrating simplified two-tier architecture

 for the Kanban board application

4.2 Implementation of functional requirements

Due to the extensive utilization of Firebase, a designated NativeScript plugin is

employed for its use. It encapsulates the official Firebase SDKs for the respective

mobile platforms. As mentioned before, this is a standard approach within

NativeScript which is combining the benefit of being able to access any native

interface with a proper modularization. Eventually, this results in high nativity

as well as a low amount of platform-specific code. Through this, the SDKs are

made accessible directly from TypeScript in a platform-agnostic way (52). This

setup allows for seamless integration of the cloud services provided by the

backend, thus building the foundation for the implementation of several

functional requirements described below.

Presentation of cached data and subsequent synchronization

“Firebase apps automatically handle temporary network

interruptions. Cached data is available while offline and Firebase

resends any writes when network connectivity is restored.” (53)

A specific Angular service is presented with the task of mediating between the

services which are handling the application’s business logic and the abstracted

Firebase SDK. Server requests are resolved asynchronously and will either

return freshly retrieved server data or a cached representation of the former.

For this to work, the application will cache all retrieved data on the devices disk

until a size limitation of 10MB is reached. At this point, any new arriving data

32 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

will overwrite the least significant parts of the cached data. Any write operations

made during an offline state will also be cached and subsequently performed at

a later point when network connectivity is restored.

The process described above will take care of supplying the primary application

data, referring to information about boards, lists and cards. However, assets like

the images attached to cards (as introduced on p. 30) are handled by retrieving

the source URL from the BaaS and passing it to a designated component for their

display. Instead of the ordinary NativeScript component for displaying images

an enhanced version is used which utilizes native caching libraries. For

Android, the Facebook Fresco library is employed (54). This allows for a

platform-agnostic image presentation in a web-like fashion whilst leveraging

highly performant native image processing capabilities.

Usage of HTTPS

When using Firebase as a backend provider, the server communication has to

be encrypted either way. Initially available, all REST endpoints are disabled for

usage with plain HTTP by now. Furthermore, all JavaScript clients are

configured to use HTTPS “[…] regardless of the protocol specified in the Firebase

database URL” (55). As Firebase is the only web endpoint used within the

application, all server communication is consequently protected by proper

encryption. A valid HTTPS certificate is provided by the BaaS and

communication is secured by cryptographic operations of the respective SDKs

(55) (56). However, these are not open source, meaning this process cannot be

completely retraced. Only, the usage of an open source component for the HTTP

communication is hinted for the Android SDK (57).

Alternatively, the usage of HTTPS could be implemented through a renowned

plugin for NativeScript which wraps open source native implementations and is

also open source itself (58).

Provision of proper application metadata

Provision of the necessary metadata for Android applications is done through

the Android application manifest. This file is accessible during the development

of NativeScript applications for performing platform-specific configurations.

However, many cases will not even call for its manual modification. During

build time, it is augmented with the most vital metadata by the framework and

may not require further treatment for the application to work (59) (49 pp. 20-

Mobile Cross-Platform Development from a Progressive Perspective | 33

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

22). Among other things, package name and application id, both needed for

publishing, are generated from the NativeScript build configuration (60).

During the prototype development, a few adjustments are made to the Android

manifest to enable the implementation of all functional requirements. For

instance, Android specific intent filters and service definitions (respectively

required for deep linking and push notifications, see below) are declared to

connect the application code to certain system hooks.

Display of launch screen

The launch screen is the first view a user will

see when starting the Kanban board

application. It is displayed to bridge the time

gap which occurs when the NativeScript

runtime is preparing for executing of the

actual application code. In this state access to

the NativeScript APIs is obviously severely

restricted. Therefore the launch screen has to

be configured in a platform-specific manner.

A branded launch screen is implemented

which displays the application’s icon and

name in a simplistic manner. This is achieved

by defining an appropriate layout with native

view components. For Android, a view

definition is composed via XML and placed

into the application’s resource location for

the specific platform. During launch the

NativeScript framework will pick up the view

definition and display it until all preparations

are complete. Afterwards the control flow is

passed to the Angular application (61) (30 pp.

290-295).

Regardless of the effort put into the launch screen it is desirable to have it show

up as brief as possible. This way the user experience may not be impaired right

at the application start. Therefore the startup time is optimized by leveraging

Angular’s Ahead-Of-Time compilation (AOT) capabilities with the Webpack

module bundler (see also appendix B) (62).

Figure 14 Launch screen for Kanban
board application on Android

34 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Deep linking support

The apparent use case for a deep linking functionality may be the standardized

sharing of individual cards or whole boards through a link. By this, the dynamic

contents would be made accessible outside of the application’s initial scope.

References to specific application parts may be forwarded independently and

eventually lead back to their actual representation.

Due to the proximity of the implementations to the ones of ordinary web

applications, a convenient gateway is already in place. The Angular component

router allows for URL-based navigation within the application itself. Every page

of the mobile application is indexed by a specific route. The corresponding

components are attached to the routes and will be loaded upon valid navigation

(63). Therefore, if such a navigation route is transferrable to the router, the deep

linking mechanism may be functioning without further ado. Yet, getting the

route to the Angular application, however, requires platform-specific handling

of inter-app communications.

For the Android platform, the application’s main activity is extended within

TypeScript by leveraging NativeScript’s proxy mechanism for Java classes (64).

Using this in combination with a designated intent filter, incoming Android

intents may be intercepted, thus providing access to data passed to the

application by the platform. At this point, other applications on the platform are

able to invoke application routes by using specific data URLs. These are shaped

after the pattern illustrated below.

Android data URL pattern

<application-scheme>://<route>

Android data URL example linking to specific board

kard://boards/-Khw-Jg-491o1ouI-Qgn

Now, for obtaining the ability to map actual web addresses to application routes,

another capability of the BaaS is leveraged. Google’s standard for Digital Asset

Links defines a mechanism for websites to be associated with separate

applications (65). Based on this standard, Firebase is able to generate dynamic

web links which will eventually invoke the applications already implemented

intent handling. As a prerequisite for this mechanism, the application has to be

installed on the device which is accessing the link (50). The dynamic links are

following the hereinafter illustrated pattern.

Mobile Cross-Platform Development from a Progressive Perspective | 35

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Dynamic link Pattern

https://<application-code>.<application-name>.goo.gl/

?link=<deep-link>&apn=<application-package-name>

Dynamic link example linking to specific board

https://k1234.app.goo.gl/

?link=https://kard.de/boards/-Khw-Jg-491o1ouI-Qgn

&apn=de.mehlhorn.Kard

With this setup the deep linking functionality is completed. Hence, any link

meeting the described form may lead to the respective application content (see

also appendix C). In relation to the definitions for Digital Asset Links the

platform or a browser may act as the statement consumer when the user is

opening a dynamic link. Afterwards, the statement consumer requests the

statement list from the BaaS which is acting as the principal according to the

standard. If a valid statement matching the specifications of the link is found, a

suitable intent containing an Android data URL will be passed to the application

(65). The overall process is again illustrated by Figure 15.

Figure 15 UML sequence diagram illustrating the deep linking mechanism based on Digital
Asset Links used for the Kanban board application

Dispatch of push notifications

Within the Kanban board application the cards are holding crucial information

about tasks and their performance. Therefore it may be useful to be informed

about any changes made to a specific card. A user may opt-in to notifications

36 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

about updates to a card by “watching” it. Watching a card will subscribe the user

to the BaaS cloud messaging service and register him for receiving subsequent

notifications. This feature also requires extension of the BaaS through custom

implementations. Hereby, database triggers are setup which will be activated

when any changes to data nodes associated with a card occur. In this case a

custom notification is constructed which gets the appropriate data attached for

being handled on the mobile client. Afterwards the notification is pushed to all

devices subscribed to updates for the specific card. Upon arrival, the notification

will appear in the system’s notification tray. When clicked there, the application

resumes by displaying the respective card. In case the application is already

running in the foreground when the notification arrives, the user will be

informed about the update through an alert dialog (see Figure 16).

Figure 16 UML activity diagram illustrating the dispatch and handling
of push notifications for watched cards

Receiving push notifications while the application is running in the background

is made possible by the registration of a native Android service. This service is

able to handle platform intents which are produced as a result of a push

notification. Such an intent is then parsed by the service and subsequently

passed to the application’s NativeScript code.

While the Kanban board application facilitates push notifications by leveraging

the Firebase SDK, it is also possible to achieve interoperability with any other

cloud messaging service. Additionally, NativeScript itself provides another

plugin for generic push notification support, which could be the foundation of

such implementations (66).

Mobile Cross-Platform Development from a Progressive Perspective | 37

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Mechanisms for responsiveness

As previously announced, NativeScript applications are not reliant on

web-based view mechanisms like the Document Object Model (DOM). Therefore

appropriate platform-agnostic counterparts are provided. Different layout

containers may be used to organize view elements in a grid or stack them on top

of each other, for example. Even a custom implementation of the CSS flexible

box layout is available (67 Predefined Layouts). As mentioned earlier, the layout

containers can be defined programmatically or in a declarative way. However,

in any case, the layout definitions are solely represented by JavaScript

components and are therefore completely cross-platform (49 p. 46). Each of

these components wraps the access to native layout elements and manages their

construction by “[…] measuring and positioning the child views of a Layout

container” (67 Layout Process).

NativeScript applications are not working on the DOM, but they may still be

styled with an adjusted subset of CSS. The framework works with

device-independent pixels (dp) which are mapped to real device pixels

depending on the device’s pixel density measured in dots per inch (DPI).

Consequently, all instructions regarding display sizes or element positions are

specified using dp or relative percentage values (68) (30 pp. 51-52).

Indicated in the explanations for displaying the launch screen (see p. 33), the

platform-specific ways for responsive resource handling are useable during the

application development. Native assets in form of images or view definitions

may be supplied directly and thus provide remedy in cases where the

framework’s limits are reached. This approach is used in the prototype to, for

instance, make platform-specific icons available in the application. These are

referenced in the view markup simply by their identifier. While building the

application for a specific target system, NativeScript will pick up the appropriate

asset representation automatically. During the actual execution, the system’s

innate responsive resource handling will take effect. On Android, this works by

deploying multiple assets in different resolutions in the installer called Android

Package Kit (APK). Eventually, a particular asset copy matching the device

specifications will be displayed (30 pp. 140-143).

A similar mechanism may be used to provide multiple layout markups for a

single NativeScript view component. By that, different devices may be served

with appropriate view definitions for their specifications (43). Unfortunately,

this approach is not utilizable in combination with Angular as it conflicts with

38 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

the way how the framework’s AOT works (69). Therefore this feature is not

implementable for the Kanban board application.

Mechanisms for progressiveness

Regarding the sole execution of JavaScript code, NativeScript relies on the

progressiveness of the respective JavaScript engines of the underlying

platforms. Any interface which is not directly related to DOM operations is

useable from within NativeScript code. These, just like when they are used for

running web applications, always lag behind the official standard in their

available feature set. And, just like on the web, this situation is dealt with by

leveraging polyfills. These are shims which implement innovative features for

older API sets. Because the superset language TypeScript is used for developing

the prototype, this procedure is not necessarily needed. As TypeScript code is

transpiled1 to JavaScript code, the target API specification may be declared in

the same step. Therefore the generated JavaScript code will be directly

compatible with a specified feature set. For the Kanban board application this

target feature set resolves to the specification for ECMAScript 5 to guarantee an

untroubled execution.

The targeted system API level is in turn crucial for calls to native interfaces. Due

to the framework’s architecture, NativeScript is able to compile an application

against almost any system SDK version. For Android, the necessary metadata for

executing an application is generated by iterating over all available Java types.

Therefore, the most recent SDK version is seamlessly supported by the

framework itself. However, obviously the application code itself also has to be

compatible with the version in use (70). In terms of backwards compatibility,

the NativeScript Android runtime is able to support Android APIs down to level

10. This is achieved by, among other things, leveraging the Android support

libraries (71). Yet, the core cross-platform modules are commonly relying on

much more advanced API levels. Due to these restrictions, the prototype can

only provide backwards compatibility down to Android API level 17 (72).

1 source-to-source compilation between programming languages

Mobile Cross-Platform Development from a Progressive Perspective | 39

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

5 Discussion

Hereinafter the results for the assessment of NativeScript are discussed. This is

done by going through each criterion of the previously laid down set of criteria

and evaluating how the prototype implementations and findings regarding the

corresponding functional requirements justify their degree of fulfillment.

Furthermore, aspects of efficiency and usefulness of the functions and their

implementations may be discussed (see also appendix A).

The prototype application is eventually functioning regardless of network state

to the greatest possible extent. A reliable caching concept for every part of the

application is implemented. Thus, access to application data including binary

assets is ensured. Even outward communication for manipulative operations is,

in theory, independent of network availability. However, the meaningfulness of

performing any operation at an unspecified later point may be controversial.

Here, a concrete concept for dealing with conflicting requests would be needed

to allow for a proper multi-user support. Yet, the criterion of network

independence may be classified as largely fulfilled as the implemented offline

experience is otherwise mainly meaningful. This is further attested by the fact

that the offline workflow illustrated in Figure 3 can be evidently retraced for the

prototype application.

The criterion of security may also be seen as met by the findings. As any network

request is ultimately using HTTPS, the server communication is consequently

protected by a credible measure to prevent tampering. Yet, what might be seen

as an issue is that the SDKs responsible for the cryptographic operations used in

the prototype are not open source. This might be unfavorable from a security

perspective. However, it is still possible to leverage HTTPS within NativeScript

applications in a cross-platform way whilst relying on solid open source

implementations.

With the ability to directly influence the native metadata, NativeScript offers

great control over the way the application eventually is deployable. At the same

time the framework takes on most of the heavy lifting by generating the most

vital metadata completely by itself. This combination allows for producing

application packages which are in no way inferior to natively developed ones,

consequently enabling convenient publishing. Though the application‘s launch

screen is not configurable via abstract view definitions, it is easily integrated

through the thought out asset mechanisms and immediately picked up by the

40 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

framework. Unfortunately, despite optimization efforts, the application loading

time is still lasting unpleasantly long. Yet, overall the criterion of marketability

is met as production readiness is achievable without much further ado and the

launch screen serves its purpose of furthering the approachability.

At first sight the implementations for fulfilling the criterion of linkability may

seem cumbersome. Yet, the corresponding functionality is arguably easier put

into practice with NativeScript than with native measures. The Angular

framework saves a great deal of work by providing preconfigured application

routing. Outside of the mobile application’s scope it would be necessary to

leverage concepts like Digital Asset Links either way to implement dynamic deep

linking. It might not work innately like it is the case for web applications, yet the

added value is undeniable. Eventually, the resulting mobile application is almost

on par with web applications regarding reachability, thus constituting a

satisfying fulfillment of the criterion.

The dispatch of push notifications was performable without any restrictions.

Though the prototype implementations are arguably strongly coupled with the

BaaS in use, NativeScript applications may be easily integrated with any cloud

messaging provider. The corresponding plugins are not conformant with

standards like the Push API, but are still able provide the same features. As the

use of push notifications was originally restricted to native implementations,

this does not come as a surprise. With NativeScript such platform features are

simply wrapped into cross-platform modules and consequently offer abstracted

handling. However, the prototype is ultimately able to deliver an enhanced user

experience and spark anew user interaction unlike it could without push

notifications. By implication, the criterion of re-engagement is attainable when

building upon NativeScript.

Various mechanisms for building a responsive mobile application seem to be in

place. Layout and styling may be applied independent of platform or device

specifications. Regarding these aspects, responsive views may be constructed

while working at an abstracted development layer. However, assets have to be

handled almost entirely with native principles. Having this option may be rated

as a useful characteristic in itself, yet, the absence of any platform-agnostic asset

handling is definitely a shortcoming. Though, it is not quite predictable how well

such an approach would perform eventually, it could probably ease

development quite a bit. Furthermore, NativeScript is not able to differentiate

between multiple screen sizes when used in combination with Angular. This has

Mobile Cross-Platform Development from a Progressive Perspective | 41

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

to be also deemed as quite problematic as the application views may need to be

broadly adjusted depending on the device’s screen specifications. Consequently,

the criterion of responsiveness cannot be fully attested. Several beneficial

features for ensuring responsive behavior might be in place, nevertheless the

mentioned issues prevent fulfilling the criterion in its entirety. Having said this,

it also has to be pointed out that the tasks of providing flawless responsive

capabilities while offering high nativity and abstraction is anything but simple.

With this in mind, NativeScript is actually performing quite well in this area.

Regarding the progressive enhancement of JavaScript code, NativeScript

applications are completely similar to PWAs as they are able to use the same

approaches for providing backwards compatibility while leveraging innovative

language features. In terms of compatibility with the underlying platform

NativeScript is always on the edge. The most recent system interfaces are

immediately available, but the backwards compatibility has its limits. And these

limits might be a deal breaker for certain developments where support for older

devices is an important requirement. Still, the criterion is attainable to a far

extend. An abstracted development makes it easy to provide filler code and the

limited API support seems to be a less technical problem. Therefore NativeScript

applications are able to certify very well for progressiveness in this context.

42 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

6 Conclusion and outlook

PWAs are meant to close the existing gap between the web and native mobile

applications. Due to the emergence of sophisticated yet standardized

technologies they are able to implement characteristics which eventually allow

them to deliver a significantly enhanced user experience. Consequently, PWAs

may offer intriguing opportunities by elevating the web to native spheres.

Several of the leveraged technologies may be still evolving and it might take

some time until they are widely supported, however, with concepts like

progressive enhancement this does not constitute a problem. Rather it fits in

perfectly with the overall idea. The established characteristics may be

implemented incrementally and subsequently improve the experience for

everyone in the application’s audience.

Meanwhile, NativeScript demonstrates how technologies, previously only used

on the web, can be used today to develop highly native applications on a

conveniently abstracted development layer. The starting point of PWAs poses

interesting environment for looking at NativeScript applications. Though not all

characteristics are directly applicable, they still offer a solid foundation for

knowing what may be expected from a mobile application. All of these

requirements could be practicably implemented or otherwise certified through

the presence of certain properties, concepts or features of NativeScript to a far

extent. Of course certain issues occurred during the development and

shortcomings were identified, yet NativeScript may be able to provide some

characteristics earlier than it would be possible on the web. At the same time,

however, development can be conducted very much like for the web. Indeed,

with the right architecture to ensure proper encapsulation it may even be

possible to seamlessly share large parts between a PWA and a NativeScript

application.

The differences between both solutions in relation to individual features are

rather minor. They both seem to allow for the creation of more than decent user

experiences while mitigating the need for cumbersome native developments.

However, NativeScript might not be able to offer the same progressive nature as

PWAs. The successive elevation of web applications presents innovative ways to

think about user funnel optimization. NativeScript applications just cannot

compete here as they are inevitably working in the same realms as plain native

ones. On the other hand, the framework may allow the use of advanced features

on systems which are not yet compatible with the most recent web standards.

Mobile Cross-Platform Development from a Progressive Perspective | 43

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Therefore, as often is the case, the individual priorities have to be evaluated

when deciding between the approaches as they both seem to offer interesting

opportunities but might not fit everyone’s needs. It may well be that PWAs

eventually gain great general attention in the future, yet, one may implement a

NativeScript application today and transform it into a PWA at a later point. This

may be accomplished with arguably little effort due to the technical and

architectural overlaps.

Looking forward, web technologies, especially JavaScript, seem to grow

increasingly powerful and extend to more and more areas of application. As

shown, their usage is not restricted to simply making web content slightly more

dynamic but rather be the basis for full-featured applications delivering

immersive user experiences to various platforms. Furthermore, during the

creation of this paper, the third major version of NativeScript was released. With

improvements in performance, the elimination of several issues and new

features it poses even better abilities to implement the criteria laid down in this

paper (73). Hence, the prospects for the future development of web and mobile

development are exciting as they seem to converge in certain aspects and

conflict in others, consequently sparking progress and remarkable innovations.

In the course of this paper, PWAs and the characteristics of their development

could be described in detail after the conditions for the later conducted analysis

were defined. Moreover, the thematic backgrounds regarding mobile

cross-platform development with NativeScript were provided in order to

subsequently prepare the analysis by laying down verifiable criteria. The

afterwards derived criteria was comprehensively applied through prototypic

implementations and sound research to assess NativeScript and applications

developed with the framework. The findings of these examinations were then

summarized and weighed accordingly in a discussion. Lastly, the relevant

solutions were comparatively debated against the established background

resulting in concluding considerations and an appropriate outlook.

44 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

7 References

1. Mehlhorn, Nils. Modern Cross-Platform Development for Mobile

Applications. Faculty of Media, Hochschule Düsseldorf University of Applied

Sciences. Düsseldorf, 2016/2017. Scientific Consolidation. Publication revision.

2. Google Inc. Progressive Web Apps. Google Developers. [Online] [Cited:

March 6, 2016.] https://developers.google.com/web/progressive-web-apps.

3. Lync, May. What are Progressive Web Apps? The Official Ionic Blog. [Online]

May 18, 2016. [Cited: March 6, 2017.] http://blog.ionic.io/what-is-a-progressive-

web-app/.

4. Ater, Tal. Building Progressive Web Apps. Third Early Release. Sebastopol,

CA : O’Reilly Media Inc., 2016. ISBN 978-1-491-96158-2.

5. Google Inc. Progressive Web App Checklist. Google Developers. [Online]

Februar 9, 2017. [Cited: March 6, 2017.]

https://developers.google.com/web/progressive-web-apps/checklist.

6. Russel, Alex, Song, Jungkee and Archibald, Jake. Service Workers. World

Wide Web Consortium. [Online] June 25, 2015. [Cited: March 9, 2017.]

https://www.w3.org/TR/2015/WD-service-workers-20150625/.

7. Russell, Alex. Progressive Web Apps: Escaping Tabs Without Losing Our

Soul. Infrequently Noted. [Online] June 15, 2015. [Cited: March 7, 2017.]

https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-

our-soul/.

8. Google Chrome Developers. Opening Keynote (Progressive Web App

Summit 2016). YouTube. [Online] June 22, 2016. [Cited: March 9, 2017.]

https://www.youtube.com/watch?v=9Jef9IluQw0.

9. comScore Inc. The 2016 U.S. Mobile App Report. Virginia, 2016.

10. Beverloo, Peter, et al. Push API. World Wide Web Consortium. [Online]

February 22, 2017. [Cited: March 9, 2017.] https://www.w3.org/TR/2017/WD-

push-api-20170222/.

11. Popescu, Andrei. Geolocation API Specification 2nd Edition. Wolrd Wide

Web Consortium. [Online] November 8, 2016. [Cited: March 9, 2017.]

https://www.w3.org/TR/2016/REC-geolocation-API-20161108/.

Mobile Cross-Platform Development from a Progressive Perspective | 45

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

12. Mills, Chris. Progressive web apps - App Center. Mozilla Developer

Network. [Online] March 8, 2016. [Cited: March 8, 2017.]

https://developer.mozilla.org/en-US/Apps/Progressive.

13. Russell, Alex. What, Exactly, Makes Something A Progressive Web App?

Infrequently Noted. [Online] September 12, 2016. [Cited: March 9, 2017.]

https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-

web-app/.

14. Google Inc. Lighthouse. Google Developers. [Online] March 1, 2017. [Cited:

March 9, 2017.] https://developers.google.com/web/tools/lighthouse/.

15. Shepherd, Eric, Mills, Chris and sabiwara. Working Offline - App Center.

Mozilla Developer Network. [Online] October 26, 2016. [Cited: March 10, 2017.]

https://developer.mozilla.org/en-US/Apps/Fundamentals/Offline.

16. Basques, Kayce. Why HTTPS Matters. Google Developers. [Online]

February 9, 2017. [Cited: March 10, 2017.]

https://developers.google.com/web/fundamentals/security/encrypt-in-

transit/why-https.

17. Bahajji, Zineb Ait and Illyes, Gary. HTTPS as a ranking signal. Official

Google Webmaster Central BLog. [Online] August 6, 2014. [Cited: March 10,

2017.] https://webmasters.googleblog.com/2014/08/https-as-ranking-

signal.html.

18. Hume, Dean Alan. Progressive Web Apps. Manning Early Access Program

Version 2. Shelter Island, NY : Manning Publications Co., 2016. ISBN 978-1-617-

29458-7.

19. Caceres, Marcos, et al. Web App Manifest. World Wide Web Consortium.

[Online] March 2, 2017. [Cited: March 9, 2017.]

https://www.w3.org/TR/2017/WD-appmanifest-20170302/.

20. Knight, Robert, Mattisson, Jonas and Blackburn, Nathaniel. Web App

Manifest. Mozilla Developer Network. [Online] February 26, 2017. [Cited: March

9, 2017.] https://developer.mozilla.org/en-US/docs/Web/Manifest.

21. Google Inc. App Manifest. Android Developers. [Online] [Cited: March 9,

2017.] https://developer.android.com/guide/topics/manifest/manifest-

intro.html.

46 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

22. Gaunt, Matt and Kinlan, Paul. Web App Install Banners. Google

Developers. [Online] February 9, 2017. [Cited: March 14, 2016.]

https://developers.google.com/web/fundamentals/engage-and-retain/app-

install-banners.

23. Osmani, Addy. The App Shell Model. Google Developers. [Online] February

9, 2017. [Cited: March 17, 2017.]

https://developers.google.com/web/fundamentals/architecture/app-shell.

24. Madrigal, Alexis C. Dark Social: We Have the Whole History of the Web

Wrong. The Atlantic. [Online] October 12, 2012. [Cited: March 15, 2017.]

https://www.theatlantic.com/technology/archive/2012/10/dark-social-we-have-

the-whole-history-of-the-web-wrong/263523/.

25. Google Inc. Flipkart triples time-on-site with Progressive Web App. Google

Developers. [Online] February 9, 2017. [Cited: March 15, 2017.]

https://developers.google.com/web/showcase/2016/flipkart.

26. Nagaram, Amar. Progressive Web App: A New Way to Experience Mobile.

On The Flip Side. [Online] November 9, 2015. [Cited: March 15, 2017.]

http://tech-blog.flipkart.net/2015/11/progressive-web-app/.

27. Ross, David, Shepherd, Eric and Mills, Chris. Responsive design - App

Center. Mozilla Developer Network. [Online] August 9, 2016. [Cited: March 17,

2017.] https://developer.mozilla.org/en-US/Apps/Progressive/Responsive.

28. Archibald, Jake. Is ServiceWorker ready? [Online] February 6, 2017.

[Cited: March 17, 2017.] https://jakearchibald.github.io/isserviceworkerready/.

29. IDC Research Inc. IDC: Smartphone OS Market Share 2016, 2015.

International Data Corporation. [Online] 2016. [Cited: March 29, 2017.]

http://www.idc.com/prodserv/smartphone-os-market-share.jsp.

30. Branstein, Mike and Branstein, Nick. NativeScript in Action. Manning

Early Access Program Version 10. s.l. : Manning Publications Co., 2017. ISBN

978-1-617-29391-7.

31. Progress Software Corporation. Application Workflow. NativeScript.

[Online] May 13, 2016. [Cited: March 30, 2017.]

http://docs.nativescript.org/runtimes/android/advanced-topics/execution-flow.

32. —. What is Android Runtime for NativeScript? NativeScript. [Online] [Cited:

November 25, 2016.] http://docs.nativescript.org/runtimes/android/overview.

Mobile Cross-Platform Development from a Progressive Perspective | 47

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

33. VanToll, TJ. How NativeScript Works. Telerik Developer Network. [Online]

February 16, 2015. [Cited: March 30, 2017.]

http://developer.telerik.com/featured/nativescript-works.

34. Walker, Nathan and Green, Brad. Code Reuse in Angular 2 Native Mobile

Apps with NativeScript. Angular Blog. [Online] March 30, 2016. [Cited: March

30, 2017.] http://angularjs.blogspot.de/2016/03/code-reuse-in-angular-2-native-

mobile.html.

35. Progress Software Corporation. Publishing for Android. NativeScript.

[Online] December 9, 2016. [Cited: April 4, 2017.]

https://docs.nativescript.org/publishing/publishing-android-apps.

36. —. Multithreading Model. NativeScript. [Online] November 7, 2016. [Cited:

April 4, 2017.] https://docs.nativescript.org/core-concepts/multithreading-

model.

37. Google Inc. Preparing for Release. Android Studio. [Online] [Cited: April 4,

2017.] https://developer.android.com/studio/publish/preparing.html.

38. —. Launch screens. Material design guidelines. [Online] [Cited: April 4,

2017.] https://material.io/guidelines/patterns/launch-screens.html.

39. —. Enabling Deep Links for App Content. Android Developers. [Online]

[Cited: April 5, 2017.] https://developer.android.com/training/app-

indexing/deep-linking.html.

40. —. Making Your App Content Searchable by Google. Android Developers.

[Online] [Cited: April 5, 2017.] https://developer.android.com/training/app-

indexing/index.html.

41. —. Firebase Cloud Messaging. Firebase. [Online] April 3, 2017. [Cited: April

6, 2017.] https://firebase.google.com/docs/cloud-messaging/.

42. —. Notifications. Android Developers. [Online] [Cited: April 6, 2017.]

https://developer.android.com/guide/topics/ui/notifiers/notifications.html.

43. Stoychev, Valio. Supporting Multiple Screen Resolutions in Your

NativeScript App. NativeScript. [Online] May 4, 2015. [Cited: April 10, 2017.]

https://www.nativescript.org/blog/supporting-multiple-screen-resolutions-in-

your-nativescript-app.

48 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

44. Google Inc. Support Library Features Guide. Android Developers. [Online]

[Cited: 4 25, 2017.] https://developer.android.com/topic/libraries/support-

library/features.html.

45. Anderson, David J. Kanban: Evolutionäres Change Management für IT-

Organisationen. [trans.] Arne Roock and Henning Wolf. 1. Heidelberg :

dpunkt.verlag, 2011. ISBN 978-3-86491-027-2.

46. Henry, Alan. Productivity 101: How to Use Personal Kanban to Visualize

Your Work. Lifehacker. [Online] February 25, 2015. [Cited: April 26, 2017.]

http://lifehacker.com/productivity-101-how-to-use-personal-kanban-to-visuali-

1687948640.

47. Savkin, Victor. Angular: Why TypeScript? Angular. [Online] July 22, 2016.

[Cited: April 26, 2017.] https://vsavkin.com/writing-angular-2-in-typescript-

1fa77c78d8e8.

48. Progress Software Corporation. TypeScript for NativeScript Developers.

NativeScript. [Online] [Cited: April 26, 2017.]

https://www.nativescript.org/using-typescript-with-nativescript-when-

developing-mobile-apps.

49. Anderson, Nathanael J. Getting Started with NativeScript. Birmingham :

Packt Publishing Ltd., 2016. ISBN 978-1-78588-865-6.

50. Google Inc. Features. Firebase. [Online] [Cited: April 27, 2017.]

https://firebase.google.com/features/.

51. Narayanan, Anant. Where does Firebase fit in your app? The Firebase

Blog. [Online] March 25, 2013. [Cited: April 27, 2017.]

https://firebase.googleblog.com/2013/03/where-does-firebase-fit-in-your-

app.html.

52. Verbruggen, Eddy. EddyVerbruggen/nativescript-plugin-firebase:

NativeScript plugin for Firebase, the leading realtime JSON app platform .

GitHub. [Online] [Cited: April 28, 2017.]

https://github.com/EddyVerbruggen/nativescript-plugin-firebase.

53. Google Inc. Enabling Offline Capabilities on Android. Firebase. [Online]

April 13, 2017. [Cited: April 27, 2017.]

https://firebase.google.com/docs/database/android/offline-capabilities.

Mobile Cross-Platform Development from a Progressive Perspective | 49

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

54. VideoSpike LLC. VideoSpike/nativescript-web-image-cache: An image

caching library for both Android and iOS that wraps Facebook Fresco and

SDWebImageCache. GitHub. [Online] April 4, 2017. [Cited: May 2, 2017.]

https://github.com/VideoSpike/nativescript-web-image-cache.

55. Lee, Andrew. Firebase Will Require SSL Starting February 4th. The

Firebase Blog. [Online] January 21, 2013. [Cited: April 27, 2017.]

https://firebase.googleblog.com/2013/01/firebase-will-require-ssl-starting.html.

56. Google Inc. Firebase Hosting. Firebase. [Online] April 28, 2017. [Cited: May

3, 2017.] https://firebase.google.com/docs/hosting/.

57. Firbase Inc. Open Source. Firebase. [Online] [Cited: May 5, 2017.]

https://www.firebase.com/terms/oss.html.

58. getHuman LLC. gethuman/nativescript-https: Secure HTTP client with SSL

pinning for Nativescript - iOS/Android. GitHub. [Online] January 5, 2017. [Cited:

May 5, 2017.] https://github.com/gethuman/nativescript-https.

59. Progress Software Corporation. Infrastructure. NativeScript. [Online] July

27, 2016. [Cited: April 4, 2017.] https://docs.nativescript.org/plugins/plugins.

60. —. Publishing for Android. NativeScript. [Online] December 9, 2016. [Cited:

May 2, 2017.] https://docs.nativescript.org/publishing/publishing-android-apps.

61. —. Creating Launch Screen and App Icons for Android. NativeScript.

[Online] September 22, 2016. [Cited: May 5, 2017.]

https://docs.nativescript.org/publishing/creating-launch-screens-android.

62. —. Bundling Script Code with Webpack. NativeScript. [Online] April 11,

2017. [Cited: May 3, 2017.]

http://docs.nativescript.org/angular/tooling/bundling-with-webpack.html.

63. Google Inc. Routing & Navigation. Angular. [Online] [Cited: April 28, 2017.]

https://angular.io/docs/ts/latest/guide/router.html.

64. Progress Software Corporation. Extending Application and Activity.

NativeScript. [Online] February 2, 2017. [Cited: May 5, 2017.]

https://docs.nativescript.org/angular/runtimes/android/advanced-

topics/extend-application-activity.html.

50 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

65. Google Inc. Google Digital Asset Links. Google Developers. [Online] July 14,

2016. [Cited: April 28, 2017.] https://developers.google.com/digital-asset-

links/v1/getting-started.

66. Progress Software Corporation. NativeScript/push-plugin: Contains the

source code for the Push Plugin. GitHub. [Online] February 3, 2017. [Cited: May

5, 2017.] https://github.com/NativeScript/push-plugin.

67. —. Layouts. NativeScript. [Online] March 17, 2017. [Cited: May 4, 2017.]

https://docs.nativescript.org/angular/ui/layouts.html.

68. —. Styling. NativeScript. [Online] May 2, 2017. [Cited: May 4, 2017.]

https://docs.nativescript.org/angular/ui/styling.html.

69. Tsonev, Nikolay and Vakrilov, Alexander. Screen Size Qualifiers not

work in tns Angular project, only work in js project. GitHub. [Online] April 20,

2017. [Cited: May 4, 2017.] https://github.com/NativeScript/nativescript-

angular/issues/404.

70. Progress Software Corporation. Android Runtime Requirements.

NativeScript. [Online] August 2, 2016. [Cited: May 4, 2017.]

https://docs.nativescript.org/runtimes/android/requirements.

71. —. NativeScript/android-runtime: Android runtime for NativeScript (based

on V8). GitHub. [Online] April 24, 2017. [Cited: May 4, 2017.]

https://github.com/NativeScript/android-runtime.

72. Atanasov, Georgi. Support lower Android API levels. GitHub. [Online]

September 8, 2015. [Cited: May 4, 2017.]

https://github.com/NativeScript/NativeScript/issues/694.

73. —. NativeScript 3.0 Available Today. NativeScript. [Online] May 3, 2017.

[Cited: May 8, 2017.] https://www.nativescript.org/blog/nativescript-3.0-

available-today.

Mobile Cross-Platform Development from a Progressive Perspective | 51

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Appendix

A. Breakdown of assessment results

The following table shows a breakdown of the results of the NativeScript

assessment grouped by criterion. Each criterion is associated with the

corresponding prototype implementations or concepts and technologies used of,

or in relation with, NativeScript. Lastly, the degree of fulfillment is illustratively

noted in an arguably non-uniform manner. These classifications are not

claiming general informative value but are rather meant to sum up the actual

informed discussion on a criterion.

CRITERION IMPLEMENTATIONS / CONCEPTS /
TECHNOLOGIES

FULFILLMENT

NETWORK

INDEPENDENCE

 Caching of read and write

operations via Firebase SDK

 Image caching via Facebook

Fresco wrapper plugin

fulfilled

SECURITY Encryption of all server

communication with HTTPS via

Firebase SDK or alternative

plugin

fulfilled

MARKETABILITY Modification and merge of

Android application manifest

 Provision of launch screen via

native asset handling

 Module bundling and AOT as a

startup optimization measure

fulfilled

LINKABILITY Digital Asset Links plus Angular

application routing and native

Android intent handling

fulfilled

RE-ENGAGEMENT Dispatch of push notifications via

Firebase SDK or alternative

plugin

fulfilled

52 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

CRITERION IMPLEMENTATIONS / CONCEPTS /
TECHNOLOGIES

FULFILLMENT

RESPONSIVENESS Layout via cross-platform layout

containers

 Styling via CSS and dp

 Native asset handling

 Provision of different views via

screen size qualifiers (though not

useable with Angular)

partially

fulfilled

PROGRESSIVENESS JavaScript transpilation or usage

of polyfills as shims

 Dynamic meta data generation

against almost any system API

version (though compatibility

issues within the framework

exist)

largely fulfilled

Mobile Cross-Platform Development from a Progressive Perspective | 53

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

B. Startup optimization data

The following table presents measured startup times for a normal build and one

which is optimized with Angular’s AOT capabilities through the use of the

Webpack module bundler. The provided data refers to the elapsed period

between clicking the application icon and the eventual display of the first view

after the launch screen. The actual measurements were performed on a

Motorola Moto G (2. Generation) running Android 6.0.

Unfortunately, as apparent from the data, the supposed optimization measure

seems to have almost no effect or even worsened the startup times. However,

these measurements are not claiming a representative nature and the results

may be skewed by application specific issues. Nevertheless, the APK size fairly

reduced from 24,5 MB down to 15,1 MB. Further optimization steps like lazy

loading may improve the startup time more effectively and multiply with the

AOT compilation in their effect.

LAUNCH
NUMBER

LAUNCH
TYPE

STARTUP TIME [s]

Normal build AOT build

1. cold 8,881 8,850

2. lukewarm 0,515 1,838

3. lukewarm 2,334 1,680

4. cold 9,515 9,139

5. lukewarm 1,704 2,562

6. cold 8,534 8,553

7. lukewarm 0,688 0,528

8. cold 8,390 8,355

9. lukewarm 1,446 2,386

10. lukewarm 0,642 0,810

Avg. cold 8,830 8,724

Avg. lukewarm 1,222 1,634

54 | Mobile Cross-Platform Development from a Progressive Perspective

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

C. Exemplifying code listings for deep linking support

Route definitions

The excerpt below illustrates how routes are defined for the Angular application

by specifying valid paths and corresponding components for instantiation.

 app/app.routing.ts TypeScript

 import { Routes } from "@angular/router";

 const routes: Routes = [

 { path: "", redirectTo: "/boards", pathMatch: "full" },

 { path: "boards", component: BoardsComponent },

 { path: "boards/:key", component: BoardDetailComponent },

 { path: "boards/:boardKey/registers/:registerKey/cards/:cardKey",

 component: CardDetailComponent }

];

 ...

Activity extension and intent handling

The following listing shows how the main Android activity is extended. By this,

access to the native intent handling is gained and any incoming deep links can

be eventually exposed as an observable stream of application routes.

 app/activity.android.ts TypeScript

 import { ReplaySubject } from "rxjs/ReplaySubject";

 import { Observable } from "rxjs/Observable";

 const _intentSubject = new ReplaySubject<android.content.Intent>();

 const _routeIntentActions = [android.content.Intent.ACTION_VIEW,

 android.content.Intent.ACTION_MAIN];

 // expose routes by mapping intents appropriatly

 export const AndroidOnRouteToURL: Observable<string> = _intentSubject

 .filter(i => _routeIntentActions.indexOf(i.getAction()) != -1)

 .map(i => i.getDataString())

 .filter(dataStr => dataStr && dataStr !== "null");

 @JavaProxy("de.mehlhorn.Kard.MainActivity")

 export class Activity extends android.app.Activity {

 protected onNewIntent(intent: android.content.Intent): void {
 super.onNewIntent(intent);
 _intentSubject.next(intent);
 }

 ...

 }

Mobile Cross-Platform Development from a Progressive Perspective | 55

Bachelor Thesis , B.Sc. Media Informatics, Nils Mehlhorn, May 17, 2017

Hochschule Düsseldorf Universi ty of Applied Sciences, Faculty of Media

Route handling

The last listing illustrates how the deep link route triggers a navigation in the

Angular application. The main Angular component is eventually able to

subscribe to incoming routes in a platform-agnostic way. When a route is

emitted, the according subsequent navigation takes place.

 app/app.component.ts TypeScript

 import { Component, OnInit, NgZone } from "@angular/core";
 import { Observable } from "rxjs/Observable";
 import { RouterExtensions } from "nativescript-angular";
 import { isAndroid, isIOS } from "platform";

 // setup route source for both platforms

 let OnRouteToURL: Observable<string>;
 if (isAndroid) {
 OnRouteToURL = require("./activity").AndroidOnRouteToURL;
 } else if (isIOS) {...}

 @Component({selector: "kard-app", templateUrl: "app.component.html"})
 export class AppComponent implements OnInit {

 constructor(private _zone: NgZone,
 private _routerExt: RouterExtensions) {...}

 ngOnInit() {

 // subscribe to routing events from both platforms

 OnRouteToURL.subscribe((url) => this._handleRouting(url));
 }

 private _handleRouting(url: string) {
 // in production allowed routes might be limited

 const routePrefix = "://kard.de"
 // assume everything after "://kard.de" is an app route

 const route = url.substr(url.indexOf(routePrefix) +

 routePrefix.length);

 // do the routing in the Angular zone on next tick

 // to ensure execution in the right context and router is ready

 setTimeout(() => {
 this._zone.run(() => this._routerExt.navigateByUrl(route));
 });

 }

 ...

 }

	1 Introduction
	1.1 Structure
	1.2 Goals
	1.3 General approach
	1.4 Scope and delimitations
	1.5 Problem statement and motivation

	2 Background
	2.1 Progressive web applications
	2.1.1 Emergence and classification
	2.1.2 Characteristics
	2.1.3 Notable aspects of development

	2.2 Mobile cross-platform development with NativeScript

	3 Developing a progressive perspective
	3.1 Preliminary considerations
	3.2 Criteria derivation

	4 Assessing NativeScript
	4.1 Prototype
	4.2 Implementation of functional requirements

	5 Discussion
	6 Conclusion and outlook
	7 References
	Appendix
	A. Breakdown of assessment results
	B. Startup optimization data
	C. Exemplifying code listings for deep linking support

