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Preface

This is the first paper of a series about algorithmic trading, which provides a forum to openly discuss
research results from the field of algorithmic trading theory. The author works in the field of signal
processing and has avoided trading jargon. So, reading is not restricted to trading experts and
economists. In order to develop a theory and confirm it by experimental findings, he developed a
software research platform. A considerable amount of results have been produced with the help of this
platform so far. An overview is given in the outlook. Due to the amount of data, the presentation of
the results will be distributed over several papers. For the future, further research using the research
platform is intended by the author and his partners.

To relate the results to existing literature turned out to be difficult, because the topic of trading
is spread over a huge amount of scientific journals about econometrics and other specialist fields.
Furthermore, the author was confronted with fee–based full access to articles, which sometimes appear
secretive and incomprehensible. Publication in a journal proved to be not convenient, because a
publication series was not provided. Huge waiting times till publishing, submission fees — combined
with the possibility of a desk rejection — , strict demands with respect to size and styles of a paper,
were other reasons to opt for a publication as an open access research report. The series does not
focus on the software research platform, but on scientific results. What is intended by this series is to
provide a theory about trading, which will be taken seriously by professionals in Trading.

The author thanks his staff member Patrick Blättermann for many helpful discussions and his
comprehensive research findings in the existing literature universe. Thanks also to Mrs. Aust and
Mrs. Regulski from the library of the University of Applied Sciences, Düsseldorf for their important
support over the years, and Mrs. Söhnitz and Mrs. Geick for their assistance.
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Abstract

We introduce an investment algorithm for a market of individual securities. The investment algorithm
is derived from constraints depending on investment parameters in order to limit the risk and to take
into account an individual investor. One constraint is devoted to trading costs. Purchased securities
are selected randomly among securities that meet the buy condition, making trading a random trial.
Simulations with historical price data are demonstrated for a simple example: The buy condition is
evaluated on the basis of the price relationship for two subsequent trading days and the sales condition
is defined by holding securities only for one day. A trading expert evaluates the expected return for the
investment algorithm with respect to the random selection. Thus, the expert informs precisely on how
many market players perform using the same investment algorithm. Its findings are for a parametrized
set of buy conditions simultaneously, which makes a trading expert a valuable tool for theorists as
well as for practitioners. In our example, the trading expert demonstrated clearly a significant mean
reversion effect for a horizon of one day.

Keywords: Investment constraints, investment algorithm, investing as random trial, trading expert,
mean reversion
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1 Introduction

1.1 Methods of commercial practice

Methods of commercial practice have previously been scientifically tested for example in [1] (moving
average, relative strength index, stochastic oscillator), [2] (moving average for comparison), [3] (moving
average), [4] (formations like head– and shoulder), [5] (moving average and trading range break), [6]
(bull and bear flag stock chart), [7] (universe of nearly 8000 trading rules). For example, a moving
average averages the prices of the last 200 trading days. A purchase will be performed, if the actual
price of the security exceeds the moving average by a certain amount (buy condition) and will be sold,
if the actual price fall below another threshold (sales condition). With except of [1], the investigated
methods have been shown to be effective and thus provide a scientific justification for algorithmic
trading. They demonstrate that prices do not follow random walks [8], but have significant influence
on future returns. This is not surprising under the premise that market players rely on the methods
and thus follow them. A return of a security can be measured by the price relationship or momentum
s(t2)/s(t1) according to R = s(t2)/s(t1) − 1 , where s denotes the prices of the security, which are
sampled at time t1 and t2 [8]. A momentum greater 1 yields a positive return and reflects raising prices
while a momentum less than 1 yields a negative return, signaling falling prices within the period from
t1 to t2.

Return continuation and mean reversion: In the moving average example, we trust in return
continuation, which means that rising prices in the past follow rising prices in the future. In [9], it
is shown that it is profitable, to buy shares with high returns in the past J months and hold them
for a certain period. The best return continuation is obtained from J = 12 months and a holding
period of 3 months. In contrast to return continuation, it has been recognized that prices quickly
return to normality after rising or falling periods. This effect has been recognized in [10] for longer
horizons of several years and was called mean reversion. In [11], mean reversion is pointed out for
shorter horizons of one to three months, and is utilized for successful trading. Horizons of one week
or lower are investigated for example in [12] and [13]. Since the autocorrelation of portfolio returns
is positive in this case, mean reversion is not verified for short horizons by autocorrelation. In [14],
positive autocorrelation is demonstrated for weekly returns as well, but autocorrelations of individual
securities are generally negative.

Return continuation as well as mean reversion are parts of a professional trading system sketched
in [15]. Return continuation and mean reversion are located in the Alpha model, belonging to the
pre–trade analysis component of the trading system. The pre–trade analysis also includes the risk
model and the transaction cost model. The pre–trade analysis offers recommendations for securities to
buy or sell. This means that a buy condition and sales condition are evaluated by pre–trade analysis.
It encompasses any system that uses financial data or news to analyze certain properties of an asset.

Statistical evaluations: The statistical evaluations of the return differ, depending on whether an
arithmetic mean return is computed for an index or future as in [2], [5], [6], [7], or a mean return is
determined for single shares first and averaged over the shares afterwards [1], [9]. In [3], a cumulative
return is evaluated. In [4], conditional return pdfs are computed for single shares. In [10], [11], [12],
[13] and [14], correlation coefficients are computed between past and future returns.

Markets: Algorithmic trading will be applied to a market, defining the securities to be traded.
It may contain a single security, like an index, a future or share, or the market contains several
individual securities. A real market consists of historical or real–time prices, as depicted in [15]. Using
real markets comes along two difficulties. First, one is faced with the fact that historical prices are
more or less incomplete and erroneous. This is an important subject of data analysis and data mining,
e.g. [16]. Secondly, a market should be not too small in order to obtain statistically reliable results. On
the other hand, markets should exclude securities with low-level data quality. For research purposes,
securities and markets may be designed artificially, for example by a random process, e.g. a random
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walk, as used in [2], [4]. In [5], the AR and GARCH models are used to explain empirical findings.
An overview over random processes used in financial statistics can be found for example in [8].

Risk:
Besides a market, it has to be decided, which securities should be selected for investments and

in what quantities. According to [15], this is decided in the Portfolio Construction Model of an
algorithmic trading system. It needs the pre–trade analysis component, which provides information
about the return and the risk of investments to be expected. Thus, a risk model is included in pre–
trade analysis as well [15], [17]. According to [17], risk management might recommend simple stop–loss
values, or using a fixed amount of the capital on every trade. The risk model attempts to quantify
both the risk associated with an individual security and with the portfolio, using the Sharp Ratio
for example or a Standard value at Risk calculation (VAR) per security or for the portfolio [15]. Of
course, all measures for risk are evaluated by past data and thus, only reflect historical risks.

Following the mean variance portfolio theory, expected return and risk of a portfolio are optimized
together in order to determine weighting factors for the securities in the portfolio. The risk is defined by
the variance of the portfolio return. Minimizing risk at a specified expected return (or maximizing the
expected return at a specified risk) requires the covariance matrix of the returns for all securities in the
portfolio [8]. The covariances must be determined by analyzing historical returns and the matrix must
be inverted. No wonder, important objections against mean variance portfolio optimization can be
found in the literature, e.g. [18]: Experienced investment professionals have noted that these methods
often were unintuitive and without obvious investment value. Furthermore, optimized portfolios were
generally found to be unmarketable and equal weighting is often significantly superior.

1.2 Our concepts

In [19], the conclusion about trading strategies ends with a citation of Roll (1994): ”Many of these
effects are surprisingly strong in reported empirical work, but I have never yet found one that worked
in practice”. We hope that our concepts, we start to explain, are simple enough to disprove this belief.

Market of individual securities:
For theory and simulations we assume a market of individual securities, represented by a number

of N time series
s(n, t) , 1 ≤ n ≤ N , t1(n) ≤ t ≤ T . (1)

Here, n denotes the number of the security, t is a whole number representing a trading day and s(n, t)
is the price of security n at trading day t. t1(n) denotes the beginning of a security, which can vary
over the securities. By (1), securities do not end before day T . We assume that trading ends at this
day. By this assumption, we avoid that investments cannot be finished due to missing prices. For
simplicity, we assume that trading starts at t = 1, i.e. t = 1 is the first trading day.

Trading formulas:
The conditions for purchases and sales are defined by trading formulas: A buy formula defining

the buy condition and a sales formula for the sales condition. Both trading formulas use only past
but no future prices (principle of causality). The trading formulas depend on properties c1 , c2 . . .,
given by real numbers, evaluating past data. One of the properties is the holding period, which only
appears in the sales formula. Thus, a trading state is used, which stores past purchases in order to
define the holding period, given by τhold = t − purchase date. In this case, the sales formula may be
composed of a holding period condition, e.g. τhold ≥ 30, and an additional condition depending on
past prices of the security. If a security has been bought several times, only those investments will be
finished, which have been started until t − τhold. Thus, the security may not be completely sold. In
contrast, without holding period condition, securities will be always sold completely. Properties are
not restricted to prices of a security and the holding period, but can be related to arbitrary past data,
quantifiable by real numbers.
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Statistics:
Our statistics include different quantities like chance and risk and measures for volatility. In this

paper, only the expected return is considered. For statistical evaluations, the buy formulas for trading
can be used (and even sales formulas, which do not contain the holding period). They are evaluated for
a certain horizon of one or several trading days and a certain trading period. The horizon corresponds
to the holding period used for trading. Besides certain buy formulas, statistical evaluations are carried
out by so–called trading experts. A trading expert computes statistical quantities for a parametrized
set of buy conditions simultaneously. This means that the properties c1 , c2 . . . used in a buy formula
build up a property space, which is clustered by the trading expert. This paper provides a simple
example with one property. As with buy formulas, statistical evaluations of a trading expert are
performed for a certain horizon and a certain trading period.

Risk and random selection:
Our concept with respect to risk provides constraints for investments, which spread investments

over time and over several securities. One constraint limits the ratio of investments to the capital.
Concerning the risk associated with a single security, a measure for the historical risk of the security
can be limited by means of a certain property, used in the buy formula. The buy formula provides buy
recommendations and the purchased securities are selected randomly among them. By this concept,
minimization of the (historical) risk of a portfolio is not carried out and a covariance matrix of past
returns is not required. Furthermore, the random selection enables the computation of the expected
return, carried out in this paper for a holding period of one day. Perhaps, the possible danger of
algorithmic trading as reported in [17] can be reduced by random selection, which would be a further
important advantage. Due to the random selection of securities, trading becomes a random trial.
This means that each market player achieves a different return although using the same investment
algorithm, introduced in this paper.

1.3 Main Focus of this paper

In our works, investments are based on a time–independent buy condition and constraints, depending
on investment parameters, limiting risk and taken into account an individual investor. One constraint
avoids that the investment in a security is too small so that trading costs are no longer proportional to
the transaction volume and become more prevalent. The amount of new investment at a trading day
is defined by maximizing it under these constraints. The purchased securities are selected randomly
among the buy recommendations, making trading a random trial. The expectation value of the return
with respect to this random trial defines the expected return. Thus, the expected return states the
mean return, achieved by many market players, using all the same investment parameters. For a
holding period of one day, we find a simple expression for the expected return under a weak condition.
A trading expert evaluates this expression for a parametrized set of buy conditions simultaneously,
which makes an expert a valuable tool in trading research.

Organization of this paper:
The rest of this paper is organized as follows. In section 2, the concept for the investment algo-

rithm and the constraints for investing are introduced. A justification of the constraint concerning
the investment ratio is given in appendix A. In section 3, the investment algorithm is specified by
maximizing the amount of new investment under these constraints. Proofs are delegated to appendix
B. Section 4 gives insights into simulation results for special investment parameters and trading for-
mulas, in particular for a holding period of one day. In section 5, a formula for the expected return
is given for a holding period of one day. The evaluations are delegated to appendix C. Experts for
a holding periods of more than one day will be treated in a next paper. An overview about planned
publications is given in the outlook. Appendix D gives an overview about notations and terms.
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2 Investing under constraints

In section 2.1, we proceed to explain our trading concept sketched in the introduction. In section 2.2
and 2.3, the constraints for investing are introduced. In the last two sections, we discuss the problem
arising from two constraints.

2.1 Investment algorithm (overview)

We assume a market of individual securities, a buy and sales condition and a trading state, which has
to be initialized before the first trading day t = 1. For each trading day t ≥ 1, the following steps
have to be carried out:

Step 1: Perform all sales, using the sales condition and update the trading state.

Step 2: Evaluate all buy recommendations, defined by all securities of the market, which meet the
buy condition. The number of buy recommendations is denoted N(t).

Step 3: Determine the amount Inew(t) of new investment and the number Nbuy(t) of purchases.

Step 4: Select Nbuy(t) from the N(t) buy recommendations for purchase. For 0 < Nbuy(t) < N(t)
select them randomly.

Step 5: For each selected security, invest the same amount according to

Ibuy(t) = Inew(t)/Nbuy(t) (2)

and update the trading state.

Trading state:
The trading state includes past investments (purchases), which are not finished, defined by an

identifier for the security, the amount of investment in the security and the purchase date. Besides
past investments, the trading state includes the cash. Trading starts with an initial trading state,
which stores past investments and the cash, denoted by Ccash(0). The amount of investment at the
beginning of trading is denoted by Cinv(0). It is obtained by multiplying the quantity of a security with
its price, accumulated over all securities initially bought. When starting trading without investments,
Cinv(0) = 0 holds. For Cinv(0) > 0, not only purchases but sales are possible at the first day as well.
For each trading day, the trading state must be updated for each sale and purchase, to keep track on
trading (steps 1 and 5). By our concept of trading, it is possible, to interrupt trading at the end of a
certain trading day t0 and continue trading at the next day t0 + 1, using the trading state achieved at
the end of day t0.

Coincidence of sale and purchase:
According to steps 1 and 5, sales are carried out before the purchases. In particular, the same

security may be sold and purchased at the same trading day, if the sales and buy condition are satisfied
simultaneously. At first glance, the coincidence of sale and purchase seems to be senseless, producing
unnecessary trading costs. However, depending on the investments finished and started for a security,
the amount of investment for the security may be changed. Depending on the investment algorithm,
the amount of investments in other securities are affected as well. Thus, the coincidence of sale and
purchase may be reasonable. For the investment algorithm, the coincidence of sale and purchase is
even required in order to evaluate the expected return for a holding period of one day in section 5
precisely, i.e. trading and statistics are consistent. A better treatment of the situation, when sale
and buy condition coincide for a security, will reduce trading costs, but consistency of trading and
statistics is impaired and thus, is not considered in this paper.
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Capital:
Ccash−(t) and Cinv−(t) denote the amount of cash and investment achieved immediately after the

sales in step 1, while Ccash(t) and Cinv(t) denote cash and investment at the end of day t. The sum

Ctot(t) = Ccash(t) + Cinv(t) > 0 (3)

defines the (total) capital at the end of trading day t. For t = 0, we obtain Ctot(0) = Ccash(0)+Cinv(0),
which is the total capital at the beginning of trading.

The total capital plays an important role, because the amount Inew(t) of new investment at trading
day t will depend on the total capital at this day. Hence, the total capital will be required after sales
and before purchases, given by

Ctot−(t) = Ccash−(t) + Cinv−(t) . (4)

Since Ccash−(t) is decreased in step 5 by the amount of new investments Inew(t) and Cinv−(t) is
increased by the same amount,

Ccash(t) = Ccash−(t)− Inew(t) , (5)

Cinv(t) = Cinv−(t) + Inew(t) , (6)

we obtain

Ctot(t) = Ccash(t) + Cinv(t) = Ccash−(t) + Cinv−(t)

= Ctot−(t) , (7)

i.e. the total capital before purchases equals the total capital at the end of a trading day.

Pre–assumption:
A general pre–assumption consists in equal new investments for all purchases, denoted by Ibuy(t)

for trading day t, which results in (2). Since the quantity of purchased securities is an integer number,
the new investment Ibuy(t) in a security is an integer multiple of its price,

Ibuy(t) = quantity · price . (8)

This quantization effect is clearly noticeable, if the price is high, but we will ignore this effect in theory.
In simulations, the real–valued quantity Ibuy/price will be evaluated first and then rounded down to
obtain a whole–numbered quantitiy.

2.2 Constraints for investing

Investment diversification: The new investment in a security is limited to the proportion of
1/Umin of the total capital by the constraint

Ibuy(t)/Ctot(t) ≤ 1/Umin , (constraint A)

where Umin is assumed to be a positive integer. Hence, the total capital cannot be invested in less
then Umin securities, i.e. is spread over Umin securities at least.
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Temporal investment diversification: The new investment for all securities is limited to the
proportion of 1/τ of the total capital,

I(t) := Inew(t)/Ctot(t) ≤ 1/τ , (constraint B)

where τ is assumed to be a positive integer. Here, I(t) denotes the rate for new investments, which will
be called investment rate. By this constraint, new investments should be temporally spread, which is
called dollar cost averaging in [13]. The effect of constraint (B) will be demonstrated in the following
example. We use a holding period τhold and start trading without initial investments. Then, for the
first trading days t ≤ τhold, sales do not appear. Hence, cash is steadily decreasing and the investment
is steadily increasing by new investments, that is

Ccash(t) = Ccash(0)−
t∑

i=1

Inew(i) , (9)

Cinv(t) =
t∑

i=1

Inew(i) , t ≤ τhold . (10)

In contrast, the total capital remains constant,

Ctot(t) = Ccash(t) + Cinv(t) = Ccash(0) , t ≤ τhold . (11)

By constraint (B)
Inew(t) ≤ Ccash(0)/τ , t ≤ τhold

holds. From (9), we obtain

Ccash(t) ≥ Ccash(0)− Ccash(0) · t/τ = Ccash(0) · [1− t/τ ] , t ≤ τhold .

Thus, τ trading days must pass at least, until the initial cash is completely exhausted. Hence, τ serves
as investing period, preventing that investments take place only at the first trading day (for τ > 1),
but are temporally spread.

Lower limitation of new investments: In order to limit trading costs, the new investment in a
security is limited by a real number invmin > 0 according to the constraint

Ibuy(t) ≥ invmin for Nbuy(t) > 0 . (constraint C)

From (2) we obtain
Nbuy(t) = Inew(t)/Ibuy(t) ≤ Inew(t)/invmin . (12)

Thus, the number of purchases is limited upwards due to constraint (C). Since costs for buying a single
security in reality are not below a certain threshold, the lower bound invmin prevents high trading
costs.

Limitation of number of purchases: Besides (12), the number of purchases is limited by the
number of buy recommendations, denoted by N(t),

Nbuy(t) ≤ N(t) . (constraint D)

If the number of purchases is less than then the number of buy recommendations, suggested by the
buy formula,

0 < Nbuy(t) < N(t) ,

purchased securities have to be selected from the recommended ones. To perform the selection,
one could try to minimize the risk, as intended by the mean variance portfolio theory. Instead of
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this concept, the securities are simply selected randomly. As a consequence, different trading players,
although using the same investment algorithm with equal investment parameters and trading formulas,
attain different trading results, if trading days with 0 < Nbuy(t) < N(t) exist. On this way trading
becomes a random trial.

Limitation of investment ratio:
By the next constraint, the investment ratio does not exceed a certain upper limit IRmax with

0 ≤ IRmax ≤ 1. As for cash and investment, the investment ratio is related to the end of a trading
day and thus is defined as

IR(t) := Cinv(t)/Ctot(t) . (13)

Hence, the constraint is

IR(t) = Cinv(t)/Ctot(t) ≤ IRmax . (constraint E)

Constraint (E) limits new investments as is the case with the constraints (A) and (B). In order to
quantify this limitation, (6) will be used. By this relation and (13) we obtain

IR(t) = Cinv(t)/Ctot(t)

= Cinv−(t)/Ctot(t) + Inew(t)/Ctot(t) .

Using the investment ratio after the sales and before the purchases at trading day t,

IR−(t) := Cinv−(t)/Ctot(t) , (14)

this relation rewrites
IR(t) = IR−(t) + I(t) . (15)

Thus, constraint (E) is equivalent to a limitation of new investments according to

I(t) ≤ IRmax − IR−(t) . (16)

2.3 The constraints at a glance

The constraints for determining new investments are

Ibuy(t)/Ctot(t) ≤ 1/Umin (17a)

I(t) = Inew(t)/Ctot(t) ≤ 1/τ (17b)

Ibuy(t) ≥ invmin for Nbuy(t) > 0 (17c)

Nbuy(t) ≤ N(t) (17d)

I(t) ≤ IRmax − IR−(t) . (17e)

They depend on the following investment parameters: Umin, defining the investment diversification
over securities, the investment period τ for temporal investment diversification, the lower bound invmin

for investments in securities and the maximum investment ratio IRmax.

2.4 The problem with constraint (A)

Constraint (A) avoids that the total capital cannot be invested in less than Umin securities with respect
to a certain trading day. However, it does not avoid that the same security may be bought on several
days. This seems to be reasonable, since the buy condition is satisfied several times in this case.
On the other hand, the amount of capital invested in a single security could exceed the threshold
Ctot(t)/Umin considerable, if investments are hold longer than one day. Only for selling after a holding
period of one day, this problem does not occur. The effect will be particularly noticeable, if only a few
securities are recommended by the buy condition. In this case, the investments become very risky. On
the other hand, buy conditions with a small number of buy recommendations prove to be interesting.
To limit the risk, the number of investments in each purchased security, which is stored in the trading
state of past purchases, could be limited. This or other additional constraints are not considered in
this paper, because the consistency of trading and statistics is impaired.
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2.5 The problem with constraint (E)

Constraint (E) gives rise to the following question: Since new investments are non–negative, the
investment rate I(t) must be non–negative as well. From (17e) we obtain the condition

IR−(t) ≤ IRmax . (18)

This means that the investment ratio after sales and before purchases may not exceed the maximum
investment ratio IRmax. Thus, the question rises, how to confirm this condition. A justification of the
condition is given in the following lemma. The proof is found in appendix A.

LEMMA 1 (Condition IR−(t) ≤ IRmax) We assume that for each trading day the total capital is
positive and the proceeds are non–negative. Furthermore, we assume that new investments carried out
before trading day t (t ≥ 1) are non–negative and

IR(t− 1) ≤ IRmax (19)

holds. Then, (18) is satisfied for trading day t.

Discussion: We assume a total capital

Ctot(t) > 0 (20)

for all trading days. Thus, the investment ratios IR(t) = Cinv(t)/Ctot(t) and IR−(t) = Cinv−(t)/Ctot(t)
are well–defined. Secondly, proceeds from the sales are assumed to be not negative. The proceeds
from the sales at trading day t are denoted by sale(t). Thus, we have for all trading days

sale(t) ≥ 0 . (21)

Consequently, sale(t) = 0 holds in the worst case, being a total loss.
For the first trading day t = 1, (19) represents the trading start condition

IR(0) = Cinv(0)/Ctot(0) ≤ IRmax . (trading start condition) (22)

It means that the investment ratio at the beginning of the first trading day t = 1 is upper bounded
by IRmax. From lemma 1 we obtain

IR−(1) ≤ IRmax ,

which is the statement for t = 1. This inequality ensures a non–negative investment rate I(1) according
to

0 ≤ I(1) ≤ IRmax − IR−(1) .

Thus, new investments before t = 2 are non–negative and lemma 1 yields

IR−(2) ≤ IRmax .

Continuing this process, we obtain the condition in (18) for all trading days. It requires investment
rates before trading day t lying within the range

0 ≤ I(t′) ≤ IRmax − IR−(t′) , 1 ≤ t′ < t . (23)
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3 Maximization of the investment rate

We first consider the case that investments are not carried out at any time. In particular, trading
starts with Cinv(0) = 0. In this case, we get

Nbuy(t) = 0 , Ibuy(t) = Inew(t) = I(t) = 0

and the constraints (A) – (D) are satisfied by triviality. Furthermore, since no investments are carried
out,

IR(t) = IR−(t) = 0

holds for all trading days t ≥ 1. Constraint (E) rewrites 0 ≤ IRmax and is satisfied as well.

3.1 Investment algorithm (step 3)

In contrast to the former case, we claim a maximum amount of new investment, which means a
maximum investment rate I(t) under the constraints (A) – (E). This optimization problem is studied
in detail in appendix B. The main results are summarized in the following theorem.

THEOREM 1 (Investment algorithm) Maximizing the investment rate under the constraints (A)
– (E) yields the investment rate I(t) or

y := I(t) ·Umin (24)

depending on the total capital Ctot(t) or

x := Ctot(t)/[invmin ·Umin] > 0 (25)

according to

x < 1 : y = 0 (no new investments) (26)

x ≥ 1 : y =

{
y1 : RBF(x, y1) ≥ 0

int[y1] : RBF(x, y1) < 0
(27)

with int(a) denoting rounding off a real number a. Here,

RBF(x, y) := int[x · y]− y (28)

denotes the range buy function, which has to be evaluated for x and

y1 := I1(t) ·Umin (29)

with
I(t) ≤ I1(t) := min{N(t)/Umin, 1/τ, IRmax − IR−(t)} . (30)

The minimum number of purchases is given by

Nbuymin(t) := int+(y) = int+(I(t) ·Umin) (31)

with int+(a) denoting rounding up a real number a, and the maximum number of purchases is

Nbuymax(t) := min{int[x · y], N(t)} (32)

= min{int[I(t) · Ctot(t)/invmin] , N(t)} .
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Non–negative new investments:
In order to ensure non–negative investment rates, the condition

IR−(t) ≤ IRmax

is required. Otherwise, (30) yields a negative investment rate I(t). The condition IR−(t) ≤ IRmax

has been confirmed for investment rates I(t′) lying within the range given by (23),

0 ≤ I(t′) ≤ IRmax − IR−(t′) , 1 ≤ t′ < t ,

assuming IR−(t′) ≤ IRmax. Confirmation of (23) under the assumption IR(t′) ≤ IRmax is simply
done: From (30) we obtain I(t′) ≤ IRmax − IR−(t′), which is the right side of (23). From (30) and
IR−(t′) ≤ IRmax we further obtain I1(t

′) ≥ 0. Evaluating (26) and (27) for I1(t
′) ≥ 0 results in

I(t′) ≥ 0, which is the left side of (23). We conclude that all investment rates are non–negative,

I(t) ≥ 0 , t ≥ 1 . (33)

The range buy function:
The range buy function defines the range of the number of purchases, because by (B5)

y ≤ Nbuy(t) ≤ min{y + RBF(x, y), N(t)}

holds. Thus, RBF(x, y) must be non–negative, to ensure a non–empty range. From the two inequalities
above, we obtain the limits for the number of purchases, given in (31) and (32): From the left
inequality we obtain the minimum number of purchases in (31), because the number of purchases is
whole numbered. By (28), we obtain from the right inequality

Nbuy(t) ≤ min{int[x · y], N(t)} ,

which confirms the maximum number of purchases in (32).
In order to achieve a maximum amount of new investment under the constraints (A) – (E), the

investment rate I(t) or y = I(t) ·Umin is maximized according to (B7),

y = ymax = max{y ≤ y1|RBF(x, y) ≥ 0} .

Here, y1 is a upper bound of y, defined by y1 = I1(t) ·Umin and (30). Obviously, we obtain y = y1 for
RBF(x, y1) ≥ 0, which confirms the upper part of (27). In this case, the investment rate I(t) coincides
with the upper bound I1(t). For RBF(x, y1) < 0, y1 is rounded down by the lower part of (27). For
RBF(x, y1) < 0, y must be smaller than y1, i.e. the upper bound I1(t) is not achieved. Hence, we
have the following coincidence criterion:

I(t) = I1(t)⇐⇒ RBF(x, y1) ≥ 0 , (34)

holding for any x > 0. In order to decide, whether RBF(x, y1) is negative or not, the criterion in (B8)
will be used. For y = y1, it rewrites

RBF(x, y1) < 0⇐⇒ y1 > 0 , x < int+[y1]/y1 . (35)

In particular,
x ≥ 1 , y1 ≥ 0 integer ⇒ RBF(x, y1) ≥ 0 (36)

holds according to (B9).

No new investments:
By (26), no investments take place for x < 1. This is possible for x ≥ 1 as well due to the criterion

in (B14),
I(t) = 0⇐⇒ x < 1 or y1 · x < 1 , (37)
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which can be explained as follows.

x < 1: By constraints (A) and (C), for Nbuy(t) > 0

invmin ≤ Ibuy(t) ≤ Ctot(t)/Umin

holds. Thus, x = Ctot(t)/[invmin · Umin] must be at least 1. By contrast, x < 1 prevents any new
investments.

y1 · x < 1: The condition y1 · x < 1 becomes clear by converting it as follows:

y1 · x < 1 ⇐⇒ [I1(t) ·Umin] · Ctot(t)/[invmin ·Umin] < 1

⇐⇒ I1(t) · Ctot(t) < invmin .

Due to I(t) ≤ I1(t), new investments Inew(t) = I(t) · Ctot(t) are lying below invmin, presenting the
minimum amount for a new investment. Thus, constraint (C) prevents any purchases, i.e no new
investments are made.

Two limits for the total capital:
The condition x ≥ 1 for investments and the condition RBF(x, y1) ≥ 0 for coincidence of I(t) and

I1(t) imply two limits for the total capital.
The condition x ≥ 1 rewrites

Ctot(t) ≥ invmin ·Umin . (38)

If the total capital is below the limit invmin ·Umin, new investments are not possible.
By (35), the condition RBF(x, y1) ≥ 0 for y1 > 0 rewrites

x ≥ int+[y1]/y1 ,

which is equivalent to
y1 > 0 : Ctot(t) ≥ int+[y1]/y1 · [invmin ·Umin] . (39)

Since int+[y1]/y1 ≥ 1 holds, this limit is at least equal to the limit in (38).

3.2 Investing for a holding period of one day

In simulations shown in this paper, a holding period τhold = 1 is used. In this case, the investment rate
I1(t) can be substantially simplified, because all securities are sold, before new securities are bought.
This simplifies the trading process, since no investments are hold after sales and before purchases, i.e.

IR−(t) = 0 . (40)

Thus, the relation between IR(t) and I(t) in (15) simplifies as

IR(t) = I(t) , (41)

i.e. the investment ratio at the end of a trading day corresponds to the investment rate at this day.
The investment rate I1(t) in (30) becomes

I1(t) = min{N(t)/Umin, 1/τ, IRmax} ,

i.e. the time–varying expression IRmax − IR−(t) is to be replaced by the constant IRmax.
A further simplification consists in identifying the investment period τ with the holding period

τhold = 1,
τ = τhold = 1 . (42)
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This becomes clear, remembering the task of constraint (B) for temporal investment diversification,
as explained in section 2.2. For a holding period of one day, this task becomes superfluous. Thus, for
a holding period of one day, the investment period τ is set to one. Due to IRmax ≤ 1, I1(t) becomes

I1(t) = min{N(t)/Umin, IRmax} (43)

or
y1 = Umin · I1(t) = min{N(t) , Umin · IRmax} . (44)

This result will be applied to our criterion for a negative range buy function RBF(x, y1) < 0 in
(35) for x ≥ 1. In order to evaluate x < int+[y1]/y1, the following two cases have to be distinguished:

1. For
N(t) ≤ Umin · IRmax , (45)

y1 = N(t) holds and we obtain from (36) RBF(x, y1) ≥ 0.

2. For
N(t) > Umin · IRmax , (46)

y1 = Umin · IRmax > 0 holds and we obtain from (35) RBF(x, y1) < 0 for

x <
int+[Umin · IRmax]

Umin · IRmax
.

Due to x ≥ 1, this is only possible, if Umin · IRmax is not whole–numbered.

Our results for a holding period of one day can be summarized as follows.

COROLLARY 1 (Holding period one) If sales take place after a holding period of one day, no
investments are hold after sales and before purchases, i.e. IR−(t) = 0 holds. Consequently, the
investment ratio at the end of trading day t equals the investment rate I(t). Setting the investment
period τ = 1, constraint (B) is dropped and the investment rate I1(t) is given by (43). The criterion
for a negative range buy function for x ≥ 1 becomes

RBF(x, y1) < 0⇐⇒ N(t) > Umin · IRmax , x <
int+[Umin · IRmax]

Umin · IRmax
. (47)

3.3 Investing without constraint (C)

In our investment algorithm, the new investment Ibuy(t) in a single security is lower bounded by
invmin > 0 according to constraint (C) in order to take trading costs into account. When constraint
(C) is dropped, the trading process simplifies according to the following corollary, which is proven in
B.4.

COROLLARY 2 (Investing without constraint (C)) If constraint (C) is dropped, the invest-
ment rate is simply given by

I(t) = I1(t) , (48)

and the maximum number of purchases is

Nbuymax(t) = N(t) . (49)

By (48), I1(t) proves to be the investment rate, if constraint (C) is dropped. Dropping constraint
(C) can be expressed setting invmin = 0. In this case, constraint (C) rewrites Ibuy(t) ≥ 0, which is
automatically satisfied, because new investments are non–negative by (33).



4 Simulation results for a holding period of one day 16

4 Simulation results for a holding period of one day

Definition of the market: In the following, the investment algorithm developed so far will be
applied to a real market. The securities in (1) represent historical share prices in the national currency,
the EUR, provided by Lenz+Partner AG, Germany. The prices are opening prices from the Frankfurt
stock exchange, adjusted to the event of capital measures like share splits, but not to the event of
dividend distributions.

Among the large amount of shares, a selection is carried out, to improve data quality and trade-
ability. By this selection, we obtain 867 securities, which do not end before Dec 11, 2014, allowing
simulations up to this date at least. At first, we claim that the shares are included in one of the follow-
ing share indices: The German indices DAX, MDAX, TECDAX, SDAX, HDAX, CDAX, Technology
All Share, Prime All Share and GEX as well as the American indices S&P500 and Nasdaq. Secondly,
shares do not end before the Dec 30, 2013. Finally, the opening price at Dec 30, 2013 (not adjusted to
capital measurements) is 1 EUR at least. By this rule we want to exclude penny stocks. Because we
don’t know before the Dec 30, 2013, whether a share will be a penny stock at this date, buy formulas
use price relationships only.

Adjustments for simulations: Among the large variety of adjustments for the investment algo-
rithm, the following investment parameters are selected:

τ = τhold = 1 , Umin = 10 , (50)

IRmax = 0.35 , invmin = 7000 ,

Nbuy(t) = Nbuymax(t) .

In particular, the number of purchases Nbuy(t) is maximum as defined in (32). The buy conditions
depend on the price relationship between two subsequent trading days

c1 := s(t)/s(t− 1) (51)

according to the two buy formulas BF1 and BF2,

BF1 : 1.0625 ≤ c1 < 1.125 , (52)

BF2 : 0.875 ≤ c1 < 0.9375 . (53)

The two intervals are build up by interval division, starting with the interval 0 ≤ c1 < 2. According to
the definition of buy formula BF1, a security will be purchased at trading day t, if the (opening) price
compared to the previous day t − 1 has increased significantly, i.e. we rely on continuation of high
returns. In contrast, for buy formula BF2, we believe in price recovery after a slump. For simulations,
the first trading day t = 1 is Jan 2, 2002 (number 3764), and the last trading day is Jan 2, 2003
(number 4017), resulting in 254 trading days.

4.1 Results for buy formula BF1

The plots in Fig. 1 and 2 are showing the number of buy recommendations N(t) and the number of
purchases Nbuy(t) for the given trading period. Since 0 < Nbuy(t) < N(t) holds on many days, the
trading process is random. This means that the following plots vary from trial to trial. Only the first
plot is fixed, because the number of buy recommendations does only depend on the buy formula. Fig.
3 shows the capital flows for buy formula 1 and Fig. 4 shows the investment ratio IR(t). For a holding
period τhold = 1, the investment ratio equals the investment rate I(t), as justified in (41).
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Figure 1: Number of buy recommendations for buy formula BF1: 1.0625 ≤ c1 < 1.125 depending on
trading day t ranging from Jan. 2, 2002 – Jan. 2, 2003
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Figure 2: Number of purchases for a random trial. Buy formula is BF1: 1.0625 ≤ c1 < 1.125. Trading
period: Jan. 2, 2002 – Jan. 2, 2003

3,750 3,800 3,850 3,900 3,950 4,000

0

0.2

0.4

0.6

0.8

1

·105

day

ca
p

it
al

cash
invest
total

Figure 3: Cash, investment and total capital for a random trial. Buy formula is BF1: 1.0625 ≤ c1 <
1.125. Trading period: Jan. 2, 2002 – Jan. 2, 2003
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Figure 4: Investment ratio IR(t) and investment rate I(t) = IR(t) (in percents) for a random trial.
Buy formula is BF1: 1.0625 ≤ c1 < 1.125. Trading period: Jan. 2, 2002 – Jan. 2, 2003

Since the number of purchases is maximum, it is given by (32). Hence, the number of purchases
is given by the quantity

Nbuy(t) = int[I(t) · Ctot(t)/invmin] ,

whenever the number of buy recommendations N(t) is not below this quantity. In order to evaluate
this quantity, the investment rate I(t) is required. Due to I(t) = IR(t), the investment rate is limited
by IRmax = 0.35. Fig. 4 shows that this value is achieved at many trading days. Furthermore, the
total capital Ctot(t) exceeds 100,000 on several trading days at the beginning of trading, as Fig. 3
shows. Consequently, for these trading days, we get Nbuy(t) = 0.35 ·100, 000/7000 = 5, whenever N(t)
is not less than 5. Fig. 2 shows that Nbuy(t) = 5 is actually achieved several times.

Trading abort: In Fig. 2, purchases are not carried out from t2 = Oct. 9, 2002 (number 3961). At
this day, only sales take place. After this day, neither purchases nor sales occur, i.e. trading is aborted
at trading day t2 + 1. This trading abort is also obvious in Fig. 3 and 4, because capital courses keep
constant from t2 and in particular, investment and investment ratio are zero at the end of t2 and for
the following trading days. The trading abort is caused by x = Ctot(t)/[invmin ·Umin] < 1, preventing
new investments according to (26), which is equivalent to

Ctot(t) < invmin ·Umin . (54)

From invmin = 7000 and Umin = 10 we obtain Ctot(t) ≤ 70, 000. The total capital falls below this limit
at t2 the first time, justifying the trading abort.

Remark 1 (Trading abort) In the simulations with τhold = 1, the trading abort is caused by x < 1. By (37), a
trading abort is also possible for y1 · x < 1. Assuming the trading abort is not caused by x < 1 or by the absence of buy
recommendations, we have x ≥ 1 and N(t) > 0. For x ≥ 1 the condition y1 · x < 1 requires

y1 = min{N(t) , Umin · IRmax} < 1 .

For N(t) > 0, Umin · IRmax < 1 must be hold, which is not possible for Umin = 10 and IRmax = 0.35, but only for smaller
values Umin or IRmax. It is straight forward to show that the condition y1 · x < 1 for x ≥ 1 and N(t) > 0 rewrites

invmin ·Umin ≤ Ctot(t) < invmin/IRmax .

Investment rate and range buy function: In the following, we consider only the trading process
before the trading abort, i.e. for x ≥ 1. Fig. 4 reveals that the investment rate assumes one of the
following values I(t) = 0, 0.1, 0.2, 0.3 or 0.35 or comes out somewhat lower, caused by the whole–
numbered quantity of securities in (8). The piecewise constant course at 0.35 represents the trading
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days, on which the maximum investment ratio IRmax = 0.35 is (approximately) achieved. The values
for I(t), which actually occur, can be explained by (44). From Umin = 10 and IRmax = 0.35 we obtain

y1 = min{N(t) , Umin · IRmax} =

{
N(t) : N(t) ≤ 3

3.5 : N(t) ≥ 4
(55)

1. N(t) ≤ 3 :

This is the first case (45). Consequently, the range buy function RBF(x, y1) is non–negative for
x ≥ 1. By (27), y equals y1,

N(t) ≤ 3 : RBF(x, y1) ≥ 0 , y = y1 = N(t) . (56)

Hence, the investment rate becomes one of the following values: I(t) = I1(t) = 0 , 0.1 , 0.2 , 0.3.

2. N(t) ≥ 4 :

This is the second case (46). In this case, y depends on whether the range buy function
RBF(x, y1) is negative or not. For RBF(x, y1) ≥ 0, we obtain y = y1 = 3.5, i.e. I(t) = 0.35. For
RBF(x, y1) < 0, we get y = int[y1] = int[3.5] = 3 and I(t) = 0.3.

In order to identify the trading days with RBF(x, y1) < 0, we use the criterion in (47), according
to which

RBF(x, y1) < 0⇐⇒ N(t) ≥ 4 , x <
int+[Umin · IRmax]

Umin · IRmax

holds for x ≥ 1. From Umin·IRmax = 3.5, we obtain x < 4/3.5 = 8/7 and from x = Ctot(t)/[invmin·Umin]

Ctot(t) < 8/7 · [invmin ·Umin] . (57)

For invmin = 7000 and Umin = 10 we get Ctot(t) < 80, 000. Thus, the trading days with negative
range buy function RBF(x, y1) are identified as days with number of buy recommendations N(t) being
4 at least and a total capital falling below the limit 80,000. In the simulation for buy formula BF1,
this situation occurs at Jul. 24, 2002 the first time (day number 3906). On most days afterwards, the
condition is satisfied as well, resulting in a negative range buy function.

Remark 2 (Minimum number of purchases) From y, we obtain the minimum number of purchases by rounding up
y according to (31). Thus, the minimum number of purchases achieves one of the following values: Nbuymin(t) = 0, 1, 2, 3
or 4. In particular, the value Nbuy(t) = 5 as in Fig. 2 is not possible, if the number of purchases is chosen to be minimal.

4.2 Results for buy formula BF2

Fig. 5 shows the capital development for buy formula BF2. In contrast to buy formula BF1 in Fig. 3,
the total capital is increasing. This means that believing in price recovery after a slump is successful
for the given trading period. For buy formula BF2, neither trading is aborted nor the range buy
function RBF(x, y1) becomes negative, because the total capital does not fall below the limits in (54)
and (57).

In order to demonstrate the randomness of the trading process, the empirical distribution function
of the total capital at the end of the trading period is shown in Fig. 6. The empirical distribution
function F (c) is defined by dividing the number of trials with an outcome Ctot(T ) ≤ c through the
total number of random trials (1000), for the end T = Jan, 2, 2003 of the trading period. The total
capital Ctot(T ) is varying between 105,200 and 235,400, and is nearly normal distributed. The mean
value amounts 170,000 and the standard deviation is 20,400. These values characterize the investment
algorithm with investment parameters according to (50) and buy formula BF2, since they describe the
return of a large set of market players, trading all in compliance with the same investment algorithm.
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Figure 5: Cash, investment and total capital for a random trial. Buy formula is BF2: 0.875 ≤ c1 <
0.9375. Trading period: Jan. 2, 2002 – Jan. 2, 2003
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Figure 6: Empirical distribution function of the total capital Ctot(T ) for a thousand random trials with
invmin = 7000. Trading period: Jan. 2, 2002 – Jan. 2, 2003. Buy formula is BF2: 0.875 ≤ c1 < 0.9375.
The mean value is 170,000 and the standard deviation is 20,400.



5 Statistical evaluation for a holding period of one day 21

5 Statistical evaluation for a holding period of one day

5.1 Return and gain factor

So far, simulation results have been shown for two contrasting buy formulas. In order to decide,
whether they discover regularity of trading results depending on the buy formula, it would be evident,
to perform simulations for different buy formulas. Since the trading process is a random trial, many
trials would be required for each buy formula with subsequent averaging the total capital at the end
of the trading period. In contrast, the author suggests a statistical evaluation of historical prices,
providing the desired information. This evaluation is carried out by a trading expert.

In this paper, we only derive the expected return and no other statistical quantities. Furthermore,
we only consider a holding period of one day. For a holding period of one day, the return at the end
T of the trading period can be described analytically by (58). The proof is delegated to C.1. In order
to find the expected return, (58) will be specialized to deterministic trading afterwards.

LEMMA 2 (Return and gain factor) For a holding period of one day, the return at the end of
the last trading day T is G− 1 with the gain factor

G := Ctot(T )/Ctot(1) =
T−1∏
t=1

[1 + I(t) · (G(t)− 1)] . (58)

Here,

G(t) :=
1

Nbuy(t)

∑
n∈buy(t)

s(n, t+ 1)/s(n, t) , Nbuy(t) > 0 (59)

is the gain factor for trading day t and buy(t) denotes the set of securities purchased on trading day
t, identified by their number n. For a empty set buy(t), I(t) = 0 holds and G(t) is not defined.

Discussion:
By (58), the gain factor G is simply given by

G =
T−1∏
t=1

g(t) , g(t) := [1− I(t)] · 1 + I(t) ·G(t) . (60)

Here, the gain factor G(t) defined in (59) is the price relationship s(t + 1)/s(t), averaged over all
purchased securities. This is caused by our assumption in (2) that the amounts for new investments
are identical for all purchases. In contrast to the gain factor G(t) in (59), the gain factor g(t) considers
the investment rate I(t). The gain factor g(t) is the convex combination of 1 and G(t) with 1 − I(t)
as weighting factor for 1 and I(t) as weighting factor for G(t). The weighting factor 1 − I(t) can be
interpreted as the share of not invested capital at trading day t, remaining unchanged, and I(t) is the
share of invested capital, to be multiplied with G(t).

By (58), the total capital Ctot(T ) at the end of the last trading day depends on the total capital
Ctot(1) at the end of the first trading day. When we start trading without initial investments for
example, we obtain from (11)

Ctot(1) = Ccash(0) , (61)

i.e. the total capital at the first day equals the initial cash.

5.2 Deterministic trading

Starting point for deriving the expected return is the case when new investments are not lower bounded
by invmin. Then, the number of purchases is only limited by the number N(t) of buy recommendations
according to (49). Making use of the maximum number of purchases, we obtain

Nbuy(t) = N(t) (62)

and trading becomes deterministic, because a random selection of securities among the buy recom-
mendations does not take place.
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Remark 3 (Small invmin) The condition in (62) is possible even if invmin is not set to zero, but is sufficiently small. In
this case, (49) holds as well. For example, for the adjustments in (50), a deterministic trading process arrives, modifying
invmin according to invmin ≤ 180 for buy formula BF1 and invmin ≤ 525 for buy formula BF2.

The gain factor in (58) simplifies as follows: By (48), the investment rate I(t) equals I1(t). For a
holding period of one day, I1(t) is given by (43). Hence, we obtain

I(t) = I1(t) = min{N(t)/Umin, IRmax} . (63)

Furthermore, the gain factor G(t) becomes

M1(t) :=
1

N(t)

∑
n∈buy(t)

s(n, t+ 1)/s(n, t) , N(t) > 0 . (64)

For N(t) = 0, I(t) = I1(t) = 0 holds and M1(t) is not defined. In contrast to (59), the averaging process
extends over all N(t) buy recommendations and hence, the gain factors M1(t) are deterministic, given
by the first momentum of the price relationship s(n, t+ 1)/s(n, t).

The gain factor G for deterministic trading becomes

Ge :=

T−1∏
t=1

[1 + I1(t) · (M1(t)− 1)] . (65)

Since the investment rates I1(t) and the gain factors M1(t) are deterministic, Ge is deterministic as
well. It is computed by a trading expert for a holding period of one day.

5.3 Expected return

The gain factor in (65) can be interpreted in two different ways. By definition, it represents the gain
factor for invmin = 0 and Nbuy(t) = N(t). It depends on the investment parameters Umin and IRmax,
and the buy condition defining the set buy(t). In addition to this interpretation, Ge can be interpreted
as expected gain factor for greater values invmin due to the following theorem, which is proven in C.2.

THEOREM 2 (Expected return and gain factor) For a holding period of one day, the gain
factor Ge in (65) represents the expected gain factor,

E{G} = E{Ctot(T )/Ctot(1)} =

T−1∏
t=1

[1 + I1(t) · (M1(t)− 1)] , (66)

for any investment parameters Umin, IRmax and invmin under the assumption

I(t) = I1(t) . (67)

The expected return is given by E{G} − 1. The expectation relates to the random selection of Nbuy(t)
purchases from the N(t) buy recommendations in step 4 of the investment algorithm.

Random trading process:
In (66), we assume a deterministic total capital Ctot(1) at the beginning of trading. The expectation

relates to the randomness of the trading process. It is not associated with the securities, which
are considered to be deterministic. The randomness of the trading process arises from the random
selection of purchased securities, which meet the buy condition, during the trading days 1 ≤ t < T .
Consequently, the randomly varying total capital Ctot(T ), caused by these random selections, averaged
over a large number of random trials (simulations), is correctly reproduced by (66). Each random
trial or simulation must use the same investment parameters Umin, IRmax and invmin and the same
buy condition.
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The assumption I(t) = I1(t):
By the coincidence criterion in (34), the assumption I(t) = I1(t) is equivalent to RBF(x, y1) ≥ 0.

For the adjustments Umin = 10 and IRmax = 0.35 in (50), we obtain from (57) for x ≥ 1 a negative
range buy function RBF(x, y1) < 0 only if the total capital falls below the limit 8/7 · [invmin · Umin].
Consequently, RBF(x, y1) ≥ 0 holds for

Ctot(t) ≥ 8/7 · [invmin ·Umin] . (68)

Under this condition, x = Ctot(t)/[invmin · Umin] ≥ 1 is satisfied automatically. We conclude that the
assumption I(t) = I1(t) is true, if the total capital does not fall below the limit in (68).

For invmin = 7000, (68) becomes Ctot(t) ≥ 80, 000, which holds for buy formula BF2, but not
for BF1 on several trading days. In order to cover BF1 as well, invmin will be adjusted somewhat
lower. For invmin = 3500 for example, (68) becomes Ctot(t) ≥ 40, 000 and is satisfied for BF1 as well.
This means that the total capital remains above this limit for all trading days and all random trials
inspected so far. Moreover, (68) holds for all buy formulas used by the trading expert, presented in
Fig. 7. Thus, this trading expert evaluates the expected gain factor for all buy formulas correctly,
assuming invmin = 3500 for example.

Trading expert:
The trading expert has expertise on future prices for a horizon of one trading day, interpreting

past prices for a certain trading period, using the property c1 = s(t)/s(t− 1) in (51). Other experts,
using longer horizons and several properties simultaneously, are not considered in this paper. Thus,
the expert used in this paper is very elementary. For a single property, the expert evaluates (65)
for all buy formulas, given by intervals cmin ≤ c1 < cmax, which are obtained by successive interval
bisections, starting with the base interval 0 ≤ c1 < 2. In this way, one get for example the two intervals
1.0625 ≤ c1 < 1.125 for buy formula BF1 in (52) and 0.875 ≤ c1 < 0.9375 for BF2 in (53) (see Fig. 7).
Since the two intervals have the length 0.0625 = 2/32, they belong to level 5, containing all intervals
with 5 bisections.

In order to limit the number of intervals, only significant intervals are considered. They are defined
by a minimum number of buy recommendations within the trading period. In Fig. 7, only intervals
with level ≥ 4 are plotted, having similar investment ratios for the whole trading period. These
investment ratios are measured by averaging the investment rates I1(t) = min{N(t)/Umin, IRmax}
over the trading period according to

I1 :=
1

T − 1

T−1∑
t=1

I1(t) .

For I1 ≥ 0.3, this results in mean investment rates in the range of 0.3 ≤ I1 ≤ IRmax = 0.35. Since the
mean investment rates are similar for all 125 intervals shown in Fig. 7, the gain factors for different
intervals are fairly compared with one another.

In Fig. 7, intervals have different length. Short intervals only occur nearby the center point c1 = 1.
The reason is that the values of c1 are concentrated at the center. Thus, values c1 more distanced
from the center occur less frequent. Consequently, intervals in the outer area must be longer in order
to achieve a minimum number of buy recommendations or a minimum mean investment ratio I1 for
the trading period. On the other hand, values c1 lying far away from the center are of interest for
trading, because the gain factors differ significantly from 1. In particular, the gain factor is high for
intervals with small values c1 and conversely, the gain factor is low for intervals with high values c1.
The buy formulas BF1 and BF2, marked in Fig. 7, perfectly illustrate this.
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Figure 7: Expected gain factor E{G} = E{Ctot(T )/Ctot(1) } evaluated by a trading expert. Trading
period: Jan. 2, 2002 – Jan. 2, 2003. Investment parameters: Umin = 10 , IRmax = 0.35 , τ = τhold =
1. In simulations, invmin must be sufficiently small to ensure I(t) = I1(t), which is satisfied for all buy
formulas setting invmin = 3500 for example. The buy formulas are given by intervals cmin ≤ c1 < cmax

with length cmax − cmin ≤ 0.125. Only buy formulas with mean investment rate I1 lying within
0.3 ≤ I1 ≤ 0.35 = IRmax are plotted.

We obtain for buy formula BF1 E{G} = 0.619 and for BF2 E{G} = 1.707, which coincides with
our simulation results with invmin = 0 (BF1; 0.620, BF2: 1.705) and with invmin = 3500 for the mean
values of a thousand random trials (BF1: 0.622, BF2: 1.71). The coincidence is not perfect due to the
quantities in (8), which are rounded down in simulations. The standard deviation is 5300 for BF1 and
9500 for BF2. Concerning BF2, the standard deviation is significantly below the standard deviation
20,400 for our simulation results with invmin = 7000, shown in Fig. 6. This arrises from the fact that
more buy recommendations are bought for invmin = 3500 and thus, the randomness of selecting buy
recommendations is less prevalent.
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5.4 Mean reversion for one day

Fig. 7 shows high returns, e.g. for buy formula BF2. The high returns simply consists in price recovery
after a slump at a horizon of one trading day, revealing a strong mean reversion effect for a very short
horizons of one day. Fig. 5 shows that the total capital increases considerable steady in 2002, although
stock markets heavily decreased in this year. This result is confirmed for other trading periods as well.
That is interesting, since the mean reversion effect depends on time only on a small extend and thus
is valid in each phase of the stock market (bull and bear market, sideways market). So–called swing
trading benefits from this, where only short–termed investments are entered. In Fig. 5, trading starts
with 100,000 for cash and ends with a total capital of 167,600, representing a return of about 70
percents, which is caused by a price recovery after a slump in the range of 0.875 ≤ c1 < 0.9375. This
effect is significantly increased by a slump, which is greater, e.g. for c1 ≤ 0.9. On the other hand,
several objections against these results can be argued:

1. Trading costs:

First, trading costs and taxes are not evaluated. Trading costs can be estimated using the
simple trading cost model, assuming 0.1 percent of turnover for all purchases and sales. For our
simulations shown in Fig. 5 for example, we obtain trading costs of 21,700, which is about a
third of our earnings 167, 600 − 100, 000 = 67, 600. For the buy formula c1 ≤ 0.9, the share of
trading costs on earnings is decreased significantly.

2. Noisy prices:

Secondly, high returns could be caused by noisy prices, pretending slumps at isolated trad-
ing days. Some comparisons for stock prices between different data sources were carried out.
However, because this was done on a random basis, this effect was not completely ruled out.

3. Trading in reality:

Third, trading in reality might differ from our findings substantially. In our simulations of the
trading process and statistical evaluations, the price relationship c1 = s(t)/s(t− 1) is evaluated,
where s(t) and s(t− 1) are historical opening prices. In reality, a purchase at the opening price
s(t) after evaluating c1 cannot be realized in general. Furthermore, the execution price of an
order must be considered, which is influenced by the bid-ask spread. The order even may not
be executed, or is only executed with unexpected high trading costs. Besides order execution, a
wrong decision is possible, caused by wrong price data due to a split at day t. If the price s(t−1)
is not well adjusted, c1 pretends a slump. Thus, trading in reality might differ significantly from
simulation results, presented in this paper. These problems seem to be complex and cannot be
tested by the current version of our software for historical prices.

The problems of a very short horizon are well–known. For example, in [14] we find ”daily sampling
yields many observations, the biases associated with nontrading, the bid–ask spread, asynchronous
prices, etc. are troublesome” and in [20] ”daily data have potential biases associated with infrequent
trading, the bid–ask effect etc.” This is the reason that in both investigations a horizon of one week is
used. According to [14], these effects cause wrong correlation, in particular for small stocks. On the
other hand, the correlation strongly depends on the method used to evaluate correlation [12].

Despite all objections, statistical dependencies between past and future are expected to be maxi-
mum using the price relationship c1 = s(t)/s(t−1) for evaluating the past and the return s(t+1)/s(t)
for the future. Thus, the strong mean reversion effect for one day is not that surprising anymore. Fur-
thermore, this effect is plausible as well: A price slump of a security makes the shareholder unhappy.
It inflames his fear of a further decrease of prices and he will sell. On the other side, a clever market
player will buy, making him often happy at the following trading day and at the end of the trading
period. Thus, one man’s joy is another man’s sorrow.
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6 Summary and outlook

In this paper, daily new investments are axiomatically determined by constraints, depending on several
investment parameters. Simulation results with historical prices are shown for a well–defined set of
shares, traded on the Frankfurt stock exchange. The buy condition is defined by two buy formulas
and the sales condition is defined by a holding period of one trading day. The first buy formula relies
on continuation of returns and fails. The second buy formula trusts in price recovery after a slump,
yielding a high return. For the failing buy formula, the falling total capital even causes a trading
abort, if the constraints cannot be satisfied any longer. The trading process is a random trial, because
purchased securities are selected randomly among the buy recommendations, i.e. the securities, for
which the buy condition is satisfied. In contrast, if all buy recommendations are purchased, the
trading process becomes deterministic, which is possible for a minimum new investment (invmin)
being sufficiently small. In this case, an expert provides the return at the end of the trading period for
a parametrized set of buy formulas simultaneously. For a random trading process, the expert reflects
the expected return at the end of the trading period with respect to the random trial and in this
sense is consistent with trading. Thus, the expert informs on how many market players perform, using
the same formulas for purchases and sales and the same investment parameters. The expert confirms
that the simulation results for the two buy formulas are no coincidence, but clearly reflect the effect
of mean reversion. The expert described in this paper has expertise on future prices for a horizon
of one trading day, interpreting past prices by a single property, which is the price relationship for
two subsequent days. Extensions towards longer horizons, using several properties simultaneously and
other statistical quantities besides the expected return, are addressed in the outlook.

Outlook:
The following topics are subject to future research concerning the extension of the algorithmic

trading theory.

Extension towards greater horizons: The product formula describing the expected return
is extended to τhold > 1. For this purpose, the trading period is divided into so–called segments,
each comprising τhold subsequent trading days, and the total capital at the end of each segment is
described analytically. In order to keep a simple product formula as in this paper, without simulating
the trading process, ideal trading is introduced, consisting of three idealizations. One idealization
uses deterministic trading as in this paper. By another idealization, the amount of new investment
is adjusted depending on the total capital at the end of a segment, yielding a non–causal trading
process. Finally, the maximum investment ratio is incorporated differently into the trading process.
For τhold > 1, the trading expert does only reproduce the expected return approximately. This is
analyzed by simulations with real stocks as in this paper and more abstractly, by recursive equations
stimulated by two random processes, the first one for the gain factors M1(t) and the second one for
the number of buy recommendations N(t).

Complete definition of the statistics: Besides the expected return, other statistical quantities
are introduced like the arithmetic mean return, chance and risk and volatility measures, all depending
on the investment parameters. The statistical quantities also depend on one or more real–valued
properties c1 , c2 . . . for parametrizing the buy condition. We investigate the influence of the maximum
investment ratio IRmax and the number of buy recommendations N(t) on the statistics. By this
analysis, we obtain a type of liquidity condition for the statistics. Empirical results are shown for
a horizon of one day. In this case, chance and risk clearly confirm the strong mean reversion effect
demonstrated in this paper. Empirical results are also shown for a horizon of 30 days, demonstrating
clearly a return continuation effect. In this case, the trading expert uses two parameters, defined by
two moving averages for 30 days.
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Maximum return hypothesis: A trading expert reveals buy conditions with maximum expected
return within the parametrized set of buy conditions, for certain investment parameters and a holding
period τhold, and a certain trading period. Simulations with this buy condition indicate that it is
difficult to further improve the return, using sales conditions different from the simple holding period
rule. This gives rise to the following hypothesis:
For a buy condition, which is optimized for a certain holding period, the expected return cannot be
significantly increased, if selling is not after expiration of the holding period. As a strange consequence,
price data for trading days following the purchase date contain no valuable information for selling.

Modified investment algorithm: For τhold > 1, constraint (A) does not avoid that the capital
invested in a single security can exceed the threshold Ctot(t)/Umin considerable, resulting in higher risk
than intended by constraint (A). This effect will be evident, if the number of buy recommendations is
small. On the other hand, rare buy conditions prove to be valuable, as the example of buy formula BF2
has been shown. Thus, the investment algorithm proposed in this paper has to be modified, limiting
the amount of investment in a single security by Ctot/Umin. For this modification, a replenishment
algorithm is required in order to distribute the invested capital over securities uniformly. However,
consistency of trading and statistics is impaired by the modified investment algorithm.

Model generation: We have established that a market of real securities can be statistically evalu-
ated by a trading expert. The inverse problem starts with an expert and generates a random process,
having similar statistics as the expert provides. Thus, the random process serves as a statistical model
for the real market. The model can be confirmed experimentally, generating a market of artificial
securities from the random process, and then evaluating this market statistically by the expert: Its
statistics coincide with the statistics of the real market. The inverse problem is solved for a holding
period of one day. A nonlinear feedback of order one, described by a difference equation, is stimulated
randomly and controlled by an expert.
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7 Appendix A. Proof of Lemma 1

In the following, the investment finished at day t due to the sales at this day is required, which will be
denoted by Iend(t). For example, for selling after expiration of a holding period τhold, Iend(t) is given
by Inew(t− τhold). By means of Iend(t), the following two recursions can be formulated:

Cinv−(t) = Cinv(t− 1)− Iend(t) , (A1)

Ctot(t) = Ctot(t− 1) + sale(t)− Iend(t) . (A2)

According to (A1), the investment at the end of day t− 1 is decreased by the investments finished at
day t, yielding the investment at day t after the sales, Cinv−(t). According to (A2), the total capital at
day t− 1 is increased by the proceeds at day t, denoted by sale(t), and decreased by the investments
finished at this day, yielding the total capital at day t.

From (A1), we get for t ≥ 1

IR−(t) =
Cinv−(t)

Ctot(t)
=
Cinv(t− 1)− Iend(t)

Ctot(t)

and for the difference

IRmax − IR−(t) = IRmax −
Cinv(t− 1)− Iend(t)

Ctot(t)

= IRmax −
IR(t− 1) · Ctot(t− 1)− Iend(t)

Ctot(t)
.

According to our premises, Ctot(t− 1) and Ctot(t) are positive and IR(t− 1) ≤ IRmax holds. Hence,

IRmax − IR− ≥ IRmax −
IRmax · Ctot(t− 1)− Iend(t)

Ctot(t)

=
IRmax · [Ctot(t)− Ctot(t− 1)] + Iend(t)

Ctot(t)

and by (A2)

IRmax − IR−(t) ≥ IRmax · [sale(t)− Iend(t)] + Iend(t)

Ctot(t)

=
IRmax · sale(t) + [1− IRmax] · Iend(t)

Ctot(t)
. (A3)

The expression in (A3) is non-negative, since all of the quantities sale(t), Iend(t), Ctot(t) and IRmax

as well as 1− IRmax are non–negative:

1. By our assumptions, sale(t) and Ctot(t) are non–negative.

2. The investment finished at day t only consists of new investments before t, which by our as-
sumptions are non–negative. Thus, Iend(t) is not negative as well.

3. For the maximum investment ratio, 0 ≤ IRmax ≤ 1 holds due to our premises.

q.e.d.

Remark 4 (The case IR−(t) = IRmax) By the estimation carried out in the proof, the case

IRmax − IR−(t) = 0

is possible for
IR(t− 1) = IRmax , sale(t) = Iend(t) = 0 .

In this case, the maximum investment ratio IRmax is achieved on trading day t − 1. Furthermore, on trading day t no
investments will be finished and consequently, no proceeds occur at this day. Thus, the investment ratio immediately
before purchases at day t equals the investment ratio at the beginning of day t and thus equals the investment ratio at the
end of day t− 1, which is IRmax.
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8 Appendix B. Solution of the optimization problem

B.1 Conversion of the constraints

In the following, the investment rate I(t) is introduced to the constraints (A) and (C). The total
capital Ctot(t) is assumed to by greater than 0.

Constraint (A): Constraint (A) is equivalent to

I(t) · Ctot(t) = Inew(t) = Nbuy(t) · Ibuy(t)

≤ Nbuy(t) · Ctot(t)/Umin .

Thus, we get
I(t) ≤ Nbuy(t)/Umin . (B1)

If the condition is satisfied with equality, then constraint (A) is satisfied with equality too.

Constraint (C): For Nbuy(t) > 0, constraint (C) is equivalent to

I(t) · Ctot(t) = Inew(t) = Nbuy(t) · Ibuy(t)

≥ Nbuy(t) · invmin

or
Nbuy(t) ≤ I(t) · Ctot(t)/invmin . (B2)

The inequality is also true for Nbuy(t) = 0 with I(t) = 0.

Constraints (A), (C) and (D) : Combining the constraint (A), (C) and (D), we obtain

I(t) ·Umin ≤ Nbuy(t)

≤ min{I(t) · Ctot(t)/invmin, N(t)} . (B3)

With x = Ctot(t)/[invmin ·Umin] and y = I(t) ·Umin we get

y ≤ Nbuy(t) ≤ min{x · y,N(t)} .

Since the number of purchases is whole–numbered, this condition is equivalent to

y ≤ Nbuy(t) ≤ min{int[x · y], N(t)} (B4)

with int[a] denoting rounding off a real number a. It defines the range for the number of purchases.
With the range buy function RBF(x, y) = int[x · y]− y, we obtain

y ≤ Nbuy(t) ≤ min{y + RBF(x, y), N(t)} . (B5)

Thus, the range buy function must be non–negative, to obtain a non–empty range for the number of
purchases.

B.2 Definition of the investment rate

Concerning the constraints (B) and (E), we have

I(t) ≤ 1/τ , I(t) ≤ IRmax − IR−(t) .

By (B3) we obtain the additional limitation

I(t) ≤ N(t)/Umin .

Thus, the investment rate is upper bounded by I1(t) according to (30). Consequently, y = I(t) ·Umin

is upper bounded by
y ≤ y1 = I1(t) ·Umin . (B6)

Since the range buy function must be non–negative, a maximum amount of new investment is achieved
by the definition

y = ymax := max{y ≤ y1|RBF(x, y) ≥ 0} . (B7)
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B.3 Evaluation of the investment rate (proof of theorem 1)

In the following, (B7) will be evaluated, to determine the maximum investment rate. For this purpose,
three different cases are distinguished: x < 1 (case 1) and x ≥ 1 with range buy function RBF(x, y1)
being non–negative (case 2) or negative (case 3). To decide, whether the range buy function is negative
or not, we use the following criterion:

RBF(x, y) = int[x · y]− y < 0

⇔ int[x · y] < y

⇔ x · y < int+[y]

with int+[a] denoting rounding up a real number a. Since y = 0 is excluded, we obtain

RBF(x, y) < 0⇐⇒ y > 0 , x < int+[y]/y . (B8)

Thus, for a negative range buy function, the value of x is below the expression int+[y]/y depending
on y.

Case 1: x < 1
In this case, we obtain for y > 0 a negative range buy function, since the criterion in (B8) is

satisfied:
x · y < y ≤ int+[y] .

From (B7) we get ymax = 0, i.e. no investments are made, which confirms (26).

Case 2: x ≥ 1 and RBF(x, y1) ≥ 0
In this case, the solution of (B7) is ymax = y1 by triviality, which confirms the upper part of (27).

Case 3: x ≥ 1 and RBF(x, y1) < 0
In the following, we discuss the criterion in (B8) for a negative range buy function RBF(x, y) < 0.

For an integer value y > 0, we obtain x < int+[y]/y = 1, which contradicts x ≥ 1. Thus, for an integer
y > 0, RBF(x, y) ≥ 0 holds. For y = 0, we have RBF(x, y) = 0. Thus, we obtain

x ≥ 1 , y ≥ 0 integer ⇒ RBF(x, y) ≥ 0 . (B9)

This means that RBF(x, y) < 0 is only possible for a non–integer y > 0 with

y < int+[y]/x (B10)

and thus holds in the following situations only:

1.) 0 < y < 1 : y < 1/x (B11)

2.) 1 < y < 2 : y < 2/x

3.) 2 < y < 3 : y < 3/x . . .

Hence, y lies in intervals of the form n < y < (n+ 1)/x with n denoting an integer value:

n < y < (n+ 1)/x , n = 0, 1, . . .⇐⇒ RBF(x, y) < 0 . (B12)

In Fig. 8, these intervals are marked for the example x = 5/4. From (B9) and (B12) we conclude that
the maximum value y ≤ y1 with RBF(x, y) ≥ 0 is attained by rounding down y1,

ymax = int[y1] , (B13)

which confirms the lower part of (27). Fig. 8 shows that for this value the range buy function has a
zero.
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Figure 8: Range buy function RBF(x, y) for x = 5/4

No investments:
According to (26), new investments don’t take place in the first case x < 1. This is not the only

case where no investments take place, as discussed in the following.

Case 2: x ≥ 1 and RBF(x, y1) ≥ 0
By (27), y = y1 holds in this case. Hence, no investments take place for y1 = 0. According to

(30), either no buy recommendations exist (N(t) = 0), or new investments are not possible, because
the maximum investment ratio has been already achieved (IR−(t) = IRmax).

Case 3: x ≥ 1 and RBF(x, y1) < 0
By (B12), y1 is lying in one of the intervals n < y1 < (n + 1)/x , n = 0, 1 . . .. Only for the first

interval 0 < y1 < 1/x, rounding down y1 yields y = 0. For the example in Fig. 8, the first interval is
given by 0 < y1 < 4/5.

Remark 5 (The case x ≥ 2) For x ≥ 2 and RBF(x, y1) < 0, y1 is lying in the first interval, because only this interval
is not empty. Consequently, for x ≥ 2 new investments are not possible in case 3.

To summarize, we obtain the following criterion for no investments:

I(t) = 0⇐⇒ x < 1 or y1 · x < 1 . (B14)

B.4 Investing without constraint (C) (proof of corollary 2)

Without constraint (C), the inequalities in (B4) are to be replaced by

y ≤ Nbuy(t) ≤ N(t) = Nbuymax(t) . (B15)

This means that the maximum number of purchases is simply given by N(t), which confirms (49).
The equation in (31) for the minimum number of purchases remains valid.

As another consequence, (B7) is simplified according to

ymax = max{y ≤ y1|y ≤ N(t)} .

By definition of I1(t) in (30),
y1 = I1(t) ·Umin ≤ N(t)

holds. Thus, for y ≤ y1, the condition y ≤ N(t) is satisfied automatically. We obtain ymax = y1 and
the identity in (48).
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C.1 Proof of lemma 2

The course of the total capital Ctot(t) depends on the securities s(n, t) purchased on each trading day
t. These securities are identified by the set buy(t). Then, the proceeds from sales at day t + 1 are
given by

sale(t+ 1) =
∑

n∈buy(t)

Ibuy(t) · s(n, t+ 1)/s(n, t) .

Ibuy(t) is the amount of investment in each security n ∈ buy(t), given by (2) according to Ibuy(t) =
Inew(t)/Nbuy(t). For Nbuy(t) = 0, the set buy(t) is empty and new investments are not carried out,
i.e. Inew(t) = sale(t+ 1) = 0 holds in this case. We obtain

sale(t+ 1) = Inew(t) ·G(t) (C1)

with the gain factor

G(t) =
1

Nbuy(t)

∑
n∈buy(t)

s(n, t+ 1)/s(n, t) , (C2)

defined for Nbuy(t) > 0.
By the recursion for the total capital in (A2),

Ctot(t+ 1) = Ctot(t) + sale(t+ 1)− Iend(t+ 1) (C3)

holds. For a holding period of one day, we have for each trading day t ≥ 1

Iend(t+ 1) = Inew(t) = I(t) · Ctot(t) .

Furthermore, from (C1) we get

sale(t+ 1) = I(t) · Ctot(t) ·G(t) .

Thus, we obtain the recursive relationship

Ctot(t+ 1) = Ctot(t) · [1 + I(t) ·G(t)− I(t)] .

This leads to the total capital at the end of the last trading day t = T ,

Ctot(T ) = Ctot(1) ·
T−1∏
t=1

[1 + I(t) · (G(t)− 1)] , (C4)

from which we obtain (58).

C.2 Proof of theorem 2

The total capital in (C4) is a random variable, caused by trading days t with 0 < Nbuy(t) < N(t). On
those days t, the securities to be purchased are selected randomly among the buy recommendations.
This situation corresponds to a random draw, where m = Nbuy(t) securities are drawn from N(t)
securities (the buy recommendations) without returns. Introducing the random variable Gi , i =
1, . . .m, representing the gain factor s(n, t+1)/s(n, t) for draw number i, the gain factor G(t) becomes

G(t) =
G1 +G2 + · · ·+Gm

m
.

For the expectation of G(t) we obtain

E{G(t)} =
E{G1}+ E{G2}+ · · ·+ E{Gm}

m
.
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The expected values of all Gi , i = 1, . . .m are given by M1(t), as defined in (64),

E{G(t)} = M1(t) . (C5)

This holds for all m, i.e. the number of purchases has no effect on the expectation of G(t). In contrast,
m effects the variance of the random variable G(t), which decreases with m, vanishing for m = N(t),
but the variance will be not considered in this paper.

Inserting the assumption I(t) = I1(t) into (C4) leads to

Ctot(T ) = Ctot(1) ·
T−1∏
t=1

[1 + I1(t) · (G(t)− 1)] .

Since the draws take place independent from each other on different days, the gain factors G(t) are
statistical independent random variables. Since the quantities I1(t) are deterministic, the expectation
of Ctot(T ) is

E{Ctot(T )} = Ctot(1) ·
T−1∏
t=1

[1 + I1(t) · (E{G(t)} − 1)] .

Using the identity (C5) we obtain (66).
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10 Appendix D. Notations and terms

Notations:

Capital

Ccash(t) Amount of cash at the end of trading day t (1 ≤ t ≤ T )

Ccash(0) Amount of cash at the beginning of trading

Cinv(t) Amount of investment at the end of trading day t

Cinv(0) Amount of investment at the beginning of trading

Cinv−(t) Amount of investment after the sales and before the purchases at trading
day t

Ctot(t) Amount of cash and investment at the end of trading day t

Ctot(0) Amount of cash and investment at the beginning of trading

Investments

I(t) Investment rate at trading day t, given by I(t) = Inew(t)/Ctot(t)

Ibuy(t) Amount of new investment in a single security at trading day t

Inew(t) Amount of new investment (in all securities) at trading day t

IR(t) Investment ratio at the end of trading day t, given by Cinv(t)/Ctot(t)

IR−(t) Investment ratio after the sales and before the purchases at trading day
t, given by Cinv−(t)/Ctot(t)

Iend(t) Amount of investment finished at trading day t

sale(t) The proceeds from the sales at trading day t

Investment parameters

invmin Lower bound for Ibuy(t)

IRmax Maximum investment ratio

τ Temporal investment diversification

Umin Investment diversification over securities

τhold Holding period for purchase

Securities

s(t) Price of a security at trading day t

s(n, t) Price of security number n at trading day t

T Securities do not end before the last trading day T

N(t) Number of buy recommendations at trading day t

Nbuy(t) Number of purchased securities at trading day t

buy(t) Set of all securities, satisfying the buy condition at trading day t



10 Appendix D. Notations and terms 35

Investment algorithm

x Input quantity, given by x = Ctot(t)/[invmin ·Umin]

I1(t) Upper bound for I(t) with I1(t) = min{N(t)/Umin , 1/τ , IRmax −
IR−(t)}

y , y1 Investment rates multiplied with Umin, i.e. y = I(t) · Umin and y1 =
I1(t) ·Umin

RBF(x, y1) Range buy function, given by RBF(x, y) = int[x · y]− y

Gain factor and return

G(t) Gain factor for trading day t and a holding period of one day, given by
(59)

M1(t) Gain factor for deterministic trading for trading day t and a holding
period of one day, given by (64)

G Gain factor for the whole trading period and a holding period of one
day, given by (58)

Ge Gain factor for a trading expert, given by (65)

G− 1 Return for the trading period

Terms:

Buy condition Must be satisfied to start a new investment in a security

Buy formula Implements a buy condition

Gain factor Ratio of total capital for two different trading days

Investment ratio Ratio of invested capital to total capital

Investment rate Ratio of new invested capital to total capital for a trading day

Range buy function Defines the range of the number of purchases according to the investment
algorithm

Return Gain factor minus 1

Sales condition Under the sales condition, an investment in a security is finished

Sales formula Implements a sales condition

Total capital Sum of cash capital and invested capital

Trading expert Evaluates statistical quantities for a market, depending on investment
parameters and a parametrized set of buy conditions

Trading state Stores past investments (purchases), which are not finished, the amount
of cash and investment
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