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A B S T R A C T   

Assessing the effects of the energy transition and liberalization of energy markets on resource adequacy is an 
increasingly important and demanding task. The rising complexity of energy systems requires adequate methods 
for energy system modeling leading to increased computational requirements. Furthermore, with complexity, 
uncertainty increases likewise calling for probabilistic assessments and scenario analyses. To adequately and 
efficiently address these various requirements, new methods from the field of data science are needed to 
accelerate current modeling approaches. With our systematic literature review, we want to close the gap between 
the three disciplines (1) resource adequacy assessments, (2) artificial intelligence (AI), and (3) design of ex-
periments. For this, we conduct a large-scale systematic review of selected fields of application and methods and 
make a synthesis that relates the different disciplines to each other. Among other findings, we identify meta-
modeling of complex probabilistic resource adequacy assessment models using AI methods and applications of 
AI-based methods for forecasts of storage dispatch and (non-)availabilities as promising fields of application that 
have not yet been sufficiently covered. Eventually, we define a new methodological pipeline for adequately and 
efficiently addressing the present and upcoming challenges in the assessment of resource adequacy accounting 
for modeling the complexity and uncertainties of future developments.   

1. Introduction 

Assessing the security of electricity supply is an increasingly 
important and demanding task. In particular, depicting the effects of the 
energy transition and liberalization of energy markets on resource ad-
equacy accompanied by required long-term planning horizons is 
becoming more relevant and challenging. The rising complexity in en-
ergy systems [1] calls for efficient and adequate methods for energy 
system modeling (see e.g. Ref. [2] for the case of optimization models). 
This has been addressed by the European Agency for the Cooperation of 
Energy Regulators (ACER) with a comprehensive set of requirements that 
assessments of resource adequacy in the European context should fulfill: 
the so-called Methodology for the European resource adequacy assessment 
(ERAA methodology [3]). Following the ERAA methodology, we define 
resource adequacy in the context of this work as the overall adequacy of 
the electricity system to supply current and projected electricity demand 
levels. While the document formulates high standards for assessments of 

security of electricity supply, their implementation in practice comes 
with several challenges, especially in terms of input data, the method-
ology itself, and the computational complexity of the proposed modeling 
approaches. 

We identify requirements from different stakeholder perspectives 
such as regulators, practitioners, e.g. transmission system operators 
(TSOs), as well as the scientific community and derive four main chal-
lenges for assessing the security of electricity supply: (1) Improving the 
availability and the quality of input data, (2) improving forecasts for 
future scenarios based on the input data, (3) implementing a realistic 
representation of the interrelationships of the real energy system by 
fulfilling certain methodological requirements and (4) reducing the 
computational complexity of models to allow incorporating an adequate 
representation of additional uncertainties into the probabilistic assess-
ment models. To address the above challenges, we develop a method-
ological toolchain for resource adequacy assessments that incorporates 
machine learning-based methods applied, e.g., in the areas of data 
consolidation, data forecasting as well as metamodeling and design of 
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experiments (DOE) (Fig. 1). 
The improvement of data availability and quality is a critical aspect 

of energy system modeling and can be achieved through various 
methods, including data consolidation techniques [4]. Moreover, data 
reduction through aggregation is a valuable strategy in energy system 
modeling. This approach effectively reduces the volume of data input 
into the model, thereby enhancing its manageability and efficiency. 
Given that assessments of electricity supply security often inform stra-
tegic decision-making, the underlying models must be based on reliable 
forecasts. A range of forecasting methods can be applied to diverse types 
of input data [5,6]. This technique finds its application in various areas, 
notably in forecasting models for electricity load [7] and in models for 
predicting renewable energy feed-in time series [8]. 

Probabilistic models for the assessment of supply security that tackle 
the aforementioned challenges turn out to be computationally complex 
(i.e., requiring a high amount of computational resources such as core- 
hours or random access memory (RAM)). The detailed analysis of 
different future scenarios is therefore limited by the necessary hardware 

availability and computing time. Hence, only a few scenarios can be 
evaluated adequately. For reducing the model complexity, the reduction 
of input data [9], the reduction of depicted systemic complexity [10], 
and metamodeling approaches can be applied. For the case of meta-
modeling, Nolting et al. [11] showed that in particular approaches from 
the fields of AI and DOE seem to be promising for mapping the re-
lationships between model input variables and model results without 
encountering limitations in terms of available computing resources. 

Although the literature provides a variety of reviews on the appli-
cation of AI in the energy domain, there is a critical research gap in the 
field of security of electricity supply assessment. As a result, this review 
literature underrepresents or even neglects key assessment steps such as 
the forecasting of unavailabilities of energy infrastructure or adequately 
representing uncertainties in probabilistic assessments. 

First, there are several studies that provide a broad overview of the 
integration of AI into energy research. Early on, Schulte et al. [12] 
identified a variety of potential application areas for AI. Kalogirou [6] 
focuses on artificial neural networks and presents a large variety of 
application fields such as heating systems, forecasting of loads, and 
renewable feed-in followed by an extension to other methodological 
approaches [13]. The application of AI methods for different renewable 
energy sources from wind to bioenergy is presented by Jha et al. [14]. In 
Ref. [15], the authors unfold a comprehensive range of application areas 
for AI both for the energy industry and energy research. Nishant et al. 
[16] elaborate on the challenges posed by integrating AI into the energy 
domain and identify ways to address them and Ahmad et al. [17] 
analyze the relevance of AI for the current and future energy industry. 
Finally, Dellosa and Palconit [18] focus on the variety of specific AI 
techniques that are applied in different fields of application within the 
energy domain. 

Second, studies for individual research areas in the energy field 
provide deeper insights into the application of specific AI methods to 
particular research questions:  

- Forecasting renewable energy power feed-in [8,19,20].  
- Forecasting load and consumption data [21,22].  
- Flexible energy demand and demand side management [23].  
- Building energy management [4,24,25]. 

The overall potential of AI-based methods in the context of the 
assessment of security of electricity supply in systems with high shares of 
renewable energy sources (RES) has not yet been systematically evalu-
ated. Hence, the goals of this review are to (1) identify relevant methods 
and algorithms from the field of AI and DOE, (2) to associate potential 
fields of application, and (3) to synthesize the findings and provide a 

Nomenclature 

Abbreviations 
ACER Agency for the Cooperation of Energy Regulators 
AI Artificial intelligence 
ANN Artificial neural network 
API Application programming interface 
CNN Convolutional neural network 
DOE Design of experiments 
ERAA European resource adequacy assessment 
FFNN Feed-forward neural network 
LDA Linear Discriminant Analysis 
LSTM Long short-term memory network 
MARS Multivariate adaptive regression splines 
PCA Principal Component Analysis 
PLEF Pentalateral Energy Forum 
RAM Random access memory 
RES Renewable energy sources 
RNN Recurrent neural network 
SVM Support vector machine 
TSO Transmission system operator 
ENTSO-E European association for the cooperation of 

transmission system operators  

Fig. 1. Pipeline for the assessment of security of electricity supply incorporating metamodeling and design of experiment.  
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strategic outlook on how to beneficially embed AI-based methods within 
the assessment of security of electricity supply. By conducting a review 
of existing approaches and providing an outlook on their potential to 
enhance resource adequacy assessments, we substantially contribute to 
the existing body of literature. The procedure for carrying out the sys-
tematic review is based on [26–28]. Fig. 2 shows our process applied for 
conducting the systematic review. 

We start with the conceptualization of the review by defining and 
filling in the two dimensions (1) fields of application and (2) AI-based 
methods. These two dimensions are based on previous works such as 
[11,29]. We then conduct a first qualitative literature review to identify 
keywords and assign the keywords to the categories defined in the first 
step. The 88 keywords identified through this process are grouped into 
clusters for evaluation (see Tables 8–16 in the Appendix section). Using 
these keywords, we conduct a large-scale literature review for the period 
2010 to 2022 using the Scopus database, the provided application pro-
gramming interface (API), and the package pybliometrics [30]. After 
generating our article database, we conduct a second qualitative liter-
ature review and identify patterns in model specifications and trends in 
the use of AI-based methods. Finally, we summarize our findings across 
all application domains and AI-based methods and present their evolu-
tion over time following the literature review and presentation in 
Ref. [31]. 

With this paper, we want to give researchers and practitioners in the 
field of resource adequacy assessment a comprehensive overview and a 
guideline on how to integrate artificial intelligence (AI) into their 
methodological pipelines. We believe that the need for such a guide 
arises from the increasing complexity of investigations and the simul-
taneous increase in their relevance, both of which can be addressed to a 
certain degree by using machine learning-based methods. 

The manuscript is structured to methodically explore the domain of 
resource adequacy assessments and the integration of AI-based methods. 
Beginning with Section 2, we review recent studies and outline current 
methodological challenges, laying the groundwork for the subsequent 
sections. Section 3 introduces the concept of metamodeling and Design 
of Experiments (DOE), essential for comprehending the complexities in 
this field. Section 4 gives an overview of Artificial Intelligence (AI) in 
fields related to resource adequacy assessments. Section 5 builds on the 
previous chapters by identifying relevant application fields and pre-
senting results from a systematic literature review covering data pro-
cessing, forecasting, metamodeling, and DOE. The interconnection of 
these components is further examined in Section 6, which discusses the 
potential and challenges of AI-based methods in resource adequacy as-
sessments. The manuscript concludes in Section 7 by summarizing our 
key findings. 

2. Assessing the security of electricity supply 

While security of electricity supply covers multiple dimensions and 
there is a broad range of definitions (see Ref. [32]), we will focus on 
resource adequacy in the sense of the ex-ante evaluation of the ability of 
the electricity system’s resources to meet the demand for electricity at a 
point in time. The term resources comprises primary energy sources, 
electricity generation assets including energy storages, demand side 
flexibility potentials, as well as electrical grids. 

2.1. Review of resource adequacy assessment studies 

While in the past rather straightforward deterministic capacity bal-
ances between secured feed-in power and electricity load during the 
hour of peak load have been used to assess the security of electricity 
supply, today, mostly complex probabilistic simulations in hourly res-
olution are applied. With such simulations, key figures of supply security 
are determined considering stochastic influences on (1) the availability 
of fossil power plant blocks, (2) the fluctuating feed-in of renewables, 
and (3) electricity load. The two approaches – deterministic and 

probabilistic assessments – differ in terms of required input data, 
modeling approaches, and key figures calculated for the level of supply 
security. This will lead to different approaches from the field of AI being 
suitable for integration into the respective modeling pipeline. 

Before we compare different modeling approaches, we start by 
examining the fundamental process and analysis involved in mathe-
matical modeling for resource adequacy assessment. A mathematical 
model is a simplified representation of a real system (such as energy 
systems) that is used to avoid field or laboratory experiments that often 
cannot be applied. Modelers encounter an interplay between model 
complexity and practical utility. Following the adage of George Box and 
Norman Draper, ‘all models are wrong, but some are useful’ (cited by 
Ref. [33]), modelers must navigate the balance between model 
simplicity and the required accuracy of the analysis. The process begins 
with the formulation of a specific research question, guiding the selec-
tion of an appropriate conceptual model. This initial step is crucial as it 
sets the direction for the entire modeling process. Subsequently, the 
model’s components and level of detail are carefully chosen (such as the 
technological, temporal, or spatial resolutions). This systematic 
approach ensures that the resulting methodological approach while 
acknowledging its inherent limitations as a simplified representation of 
reality, remains sufficiently detailed and accurate to provide valuable 
insights for resource adequacy. 

Deterministic capacity balances represent rather straightforward, 
top-down models with low complexity to derive non-probabilistic key 
figures such as capacity margins. They are usually conducted for 1 h per 
year (i.e., the hour with the highest electricity load) and consider only 
one (often worst-case) weather situation. The key figure calculated is the 
remaining capacity (RC) which is the difference between the available 
capacity and the peak electricity load. The RC can then be considered as 
a buffer for covering unexpected loads or power plant outages that have 
not been accounted for. 

On the other hand, probabilistic simulation models represent rather 
complex, bottom-up models that are used to calculate stochastic key 
figures such as the loss of load probability (LOLP), the annual loss of load 
expectation (LOLE) for interruption hours or the annual expected energy 
not served (EENS, sometimes revered to as expected unserved energy – 
EUE). Such analyses are commonly performed in hourly resolution and 
reflect different weather situations (so-called historic weather years1) 
and other stochastic influences such as power plant outages. The 
generalized formulaic relations built on [3,34] are as follows: 
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h
a
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∑
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where w ∈ W is the number of different weather years, t ∈ T the number 
of hours per year, αw the weighing factor for weather year w (often, 
weather years are equally weighted), P(C< Lw,t) the probability of a loss 
of load during hour t in weather year w where capacity C is smaller than 
load Lw,t , and ENSw,t the energy not served due to insufficient capacity 
resources during hour t in weather year w. The calculation of P(C< Lw,t)

and ENSw,t depends on the applied probabilistic methodology, for which 
two common examples are (1) approximation of the uncertainty space 
by combining Monto Carlo simulations with economic dispatch (in some 
cases unit commitment) problems or (2) superposition of probability 

1 A weather year represents the meteorological conditions in an area and is 
used to calculate weather dependent electricity load and feed-in profiles. See e. 
g. Ref. [7]. 
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distributions using convolution algorithms. For case (1), a simplified 
objective function to be minimized can be formulated as: 

min
g,t

∑

g,t
xg,t ∗ Δt ∗

(
cfuel

g,t + eg ∗ cCO2
t

ηg
+ cother

g

)

+
∑

t
yimport

t − yexport
t + ENSt

∗ VOLLt.

(4) 

Here, g ∈ G represents the generation assets (including discharging 
storage and renewable energies) and t ∈ T the hours per year. The 
generation of assets g at hour t is the decision variable xg,t. Other decision 
variables are yimport

t for the electricity import costs, yexport
t for the elec-

tricity export revenues and ENSt for the unserved energy. The cost pa-
rameters for electricity generation are cfuel

g,t for the fuel cost, cCO2
t for the 

CO2 cost, and cother
g for other operating costs. The assets’ specific emission 

factors are resembled by eg and the efficiency factor by ηg (here assuming 
constant efficiencies). The unserved energy ENSt is multiplied by an 
estimation of its value, the so-called Value of Lost Load (VOLL), see [193, 
194]. By running optimizations for different weather years and outage 
scenarios using a Monto Carlo approach, the resulting ENS values form 
the basis for the subsequent calculation of resource adequacy metrics. 

Various approaches have been applied in studies by consulting 
companies, research institutions, and TSOs in different contexts. 
Currently, resource adequacy assessments are mainly done in Europe, 
North America, and Australia. However, other countries such as India 
are preparing for such assessments by setting up guidelines [35]. Table 1 
provides an overview of existing studies, methods used, and core results 
achieved. 

Recently, the methodological approaches have streamlined 
following national and international initiatives to make resource ade-
quacy assessments more comparable. This can be seen exemplarily in 
Europe with the unified methodological requirements given out by 
ACER. However, certain challenges to the current state-of-the-art 
methodological pipelines remain that either could not yet be solved or 
were caused by the new requirements in the first place. 

2.2. Challenges in the assessment of resource adequacy 

ACER introduced the ERAA methodology as a legal mandate for the 
European association for the cooperation of transmission system oper-
ators (ENTSO-E) to ensure a transparent and consistent pan-European 
assessment of security of electricity supply by providing a standard-
ized methodological basis for assessing resource adequacy. However, its 
implementation comes with major challenges, in particular regarding 
the input data, the methodology itself, and the computational 
complexity of the proposed modeling approaches. These challenges 
include among others the following (see Refs. [3,43–45]):  

• conducting prognoses of electricity demand for all countries that are 
part of the European interconnected grid in future scenarios, 

• simulating market mechanisms that cause incentives for (des-)in-
vestments in electricity assets (economic viability assessment),  

• depicting storage dispatch and demand side response potential,  
• forecasting unavailabilities of power plant units accounting for 

maintenance optimization, common-mode/common-cause events2, 
and temporal linkages,3  

• simulating international power flows based on Flow-Based market 
coupling,  

• modeling balancing reserves and real network development,  
• accounting for climate change in weather models,  
• identifying the reasons for potential adequacy concerns,  
• applying probabilistic analysis and accounting for extreme events, 

and  
• appropriately representing uncertainties in the aforementioned 

areas. 

To ensure reliable and realistic results, resource adequacy assess-
ments should incorporate the (des-)investment in and dispatch of all 
resources that potentially contribute to resource adequacy including 
future power system developments with regard to generation capacities, 

Fig. 2. Overview of systematic review design.  

2 These are events that cause the joint unavailability of various assets, like 
cold spells.  

3 These are events that are caused by preceding failures. 
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network infrastructure, energy storage, as well as demand patterns [3]. 
Thus, resource adequacy assessment models need to appropriately 
reflect the economic viability of electricity assets. This assessment of 
economic viability is highly complex and poses challenges, in particular 
regarding the maximum price cap, which affects the decisions of (dis-) 
investing in market capacity, and a specific representation of demand 
side response potential. While future maximum price caps determine the 
potential remuneration of dispatchable generation capacities during 
hours of scarcity, the cost of demand side response determines the 
provision of demand flexibility in those hours and also affects the 
magnitude and frequency of scarcity prices [46]. The modelling pa-
rameters of the respective sub-models in the ERAA framework, Economic 
Viability Assessment and Adequacy Assessment, ought to be consistent and 
coherent, to ensure reliable results [47,48]. In addition, the modeling of 
Flow-Based market coupling and the incorporation of future network 
developments enables an adequate estimation of cross-zonal capacities 
[44,47,49], while the modeling of balancing reserves enables an accu-
rate assessment of the interaction between short-term operating reserves 
and resource adequacy [46,50]. As many input parameters are 
weather-dependent, long-term resource adequacy assessments should 
reliably incorporate the effects of climate change [51,52]. Moreover, to 
address potential resource adequacy concerns and to ensure a secure 
power system, not only the adequacy concerns themselves, but also the 
causes for potential inadequacies and scarcity events should be identi-
fied [45,53]. To account for the highly stochastic nature of resource 
adequacy, the assessment should be based on state-of-the-art probabi-
listic analyses. Finally, methodologies for analyzing the resilience of the 
power system with regard to extreme events such as rare and extreme 
natural hazards as well as consequences of malicious attacks and fuel 
shortages should be incorporated [54,55]. 

The implementation of resource adequacy assessments that incor-
porate the aforementioned challenges requires the development of 
models with very high computational complexity. Further, the band of 
uncertainty of the results that comes with the different input data calls 

for assessing a larger variety of scenarios to depict possible future de-
velopments. We hence transfer methods from the fields of AI and DOE to 
contribute to more sound assessments of security of electricity supply 
reducing the computational complexity of models to allow incorporating 
the additional requirements listed above into the probabilistic assess-
ment models, while including an appropriate representation of future 
scenarios. 

3. Metamodeling and design of experiments 

Metamodeling and DOE are promising tools to address the afore-
mentioned challenges of the computational complexity of the assess-
ment models and associated limited coverage of uncertainty margins. To 
create a metamodel, information about the system behavior of the given 
simulation model is needed. In this section, metamodeling and a very 
effective method for minimizing the simulation effort to generate the 
required information about the system behavior, the so-called design of 
experiments (DOE), are presented in more detail. 

3.1. Metamodeling of simulation models 

The direct use of complex simulation models for in-depth analyses is 
only possible to a limited extent due to long simulation durations. 
Metamodels are capable of achieving predictions with high quality in a 
few milliseconds. The term metamodel and the concept goes back to the 
works of Blanning [56–58]. This method became more popular with the 
work of Kleijnen who extended it with some statistical tools [59]. These 
metamodels represent the system behavior of the simulation model by 
mapping a relationship between the input and output variables. This is 
realized by a mathematical approximation. Metamodels are also called 
approximation models, surrogate models, and response surface models 
[60]. Fig. 3 schematically shows the procedure of metamodeling for the 
case of security of electricity supply assessment. 

Metamodels are generated from real simulation data and are valid 

Table 1 
Selection of recent studies in the field of assessing the security of electricity supply.  

Reference Methodology Geographical scope Time 
horizon 

Reliability 
criteria 

Key findings 

Studies published by individual or groups of transmission system operators 
ENTSO-E, MAF 

2020 (2021) 
[36] 

Probabilistic simulation 
(Monte Carlo) 

European 
synchronous grid 
area 

2025, 
2030 

LOLP, LOLE, 
EENS, others 

In a baseline scenario, loss of load is only to be expected in Malta, 
Sardinia, Iceland, and Turkey. COVID-19 has only minor impact on 
resource adequacy. 

ENTSO-E, ERAA 
2022 (2022) 
[37] 

Probabilistic simulation 
(Monte Carlo) 

European 
synchronous grid 
area 

2025 to 
2030 

LOLP, LOLE, 
EENS, others 

Widespread adequacy risks identified, with Ireland and Malta facing 
the highest risks in 2025, and a shift of scarcity concerns towards 
central regions by 2030. 

AEMO EAAP 2022 
(2022) [38] 

Probabilistic simulation 
(Monte Carlo 

Australia 2023, 
2024 

EENS Security of supply is anticipated to remain within reliability 
standards, albeit with potential load-shedding risks, while resource 
limitations from fuel and energy sources are emerging as significant 
reliability concerns. 

NERC ProbA 2022 
(2023) [39] 

Probabilistic simulation 
(Monte Carlo and 
convolution) 

North America 2024, 
2026 

LOLP, LOLE, 
EENS 

Varying shifts across regions in reliability metrics, largely driven by 
factors like seasonal outages, hydroelectric unit shutdowns, 
transmission constraints, and load scenarios, prompting adaptations 
and mitigation strategies for reliable resource adequacy. 

National Grid ESO 
(2022) [40] 

Probabilistic simulation 
(Monte Carlo) 

United Kingdom 2025 to 
2040 

LOLP, LOLE, 
EENS 

A fully decarbonized power system can be achieved with substantial 
investments in reliable technologies like new nuclear, CCS, and 
hydrogen generation, although uncertainty in new tech adoption and 
potential for prolonged tight periods due to weather patterns pose 
challenges. 

Journal Publications 
Turner et al. 

(2019) [41] 
Probabilistic simulation 
(Monte Carlo) 

U.S. Pacific 
Northwest 

2035 LOLP, others Climate change alters power shortfall risks in the U.S. Northwest, 
intensifying summer shortages and reducing winter deficits, 
emphasizing compound events. 

Kockel et al. 
(2022) [192] 

Probabilistic simulation 
(Monte Carlo) 

Germany 2025 LOLE, EENS Reduction of natural gas consumption in the power sector of up to 
30% with only minor impacts on resource adequacy. 

Nolting & 
Praktiknjo 
(2020) [29] 

Probabilistic simulation 
(Convolution) 

Germany 2020, 
2022, 
2023 

LOLP, LOLE, 
EENS 

Security of supply may decrease, potential implications for 
identifying efficient security thresholds and increased reliance on 
energy imports. 

Yu et al. (2019) 
[42] 

Probabilistic simulation 
(Monte Carlo) 

Taiwan 2025 LOLE Level of security of supply depends on limitations put on coal power 
plants and increases in gas power plant capacities.  
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for a predefined design space. The design space represents a multidi-
mensional structure spanned by the input data of the simulation model 
and that comprises the complete range of all input data combinations. 
The boundaries of the design space are thus defined by the minima and 
maxima of the input data of the simulation model. A subset of this input 
data is selected as the feature set and the corresponding output data 
(that is calculated via the simulation model) serves as the label set. 
Together, these selected features and calculated labels constitute the 
sample to which metamodel is fitted. An illustration of a design space 
and selected features for a metamodel is given in Fig. 4. 

Once the metamodel has been created, the label (i.e., the output 
data) of any feature combination of the input data within the design 
space can be predicted. When selecting the feature sample from the 
input data, it should be ensured the amount of information gained is 
sufficient to represent the system behavior. At the same time, the effort 
to generate the information must be minimized. The most effective way 
to implement this is to use methods from DOE. 

For metamodels, a variety of methods from the portfolio of regres-
sion models can be applied which achieve varying degrees of accuracy 
depending on the problem at hand. Several classical statistical methods 
can be used. Among them are for example linear or polynomial regres-
sion. In many use cases, simulations have a more complex nature. This 

often leads to nonlinear relations between the input and output data 
which cannot be sufficiently approximated by classical statistical 
methods. For these cases, machine learning methods can be applied (see 
section 4.4 for details on a selection of methods). 

The choices of the approximation method and the design depend on 
the problem at hand and the optimal choice, in most cases, cannot be 
determined a priori (see section 5.6). For this reason, testing and vali-
dating different approaches is a very important part of metamodeling. 
Decisive for the testing of different metamodels is the quality of the 
validation data. These samples must be independent of the training data, 
which were used for the metamodeling itself. Furthermore, test data 
must be evenly distributed over the design space, so that the evaluation 
of the predictive quality is representative of the entire design space [61]. 

3.2. Design of experiments for effective scanning of the design space 

DOE is a method for efficient planning and designing experiments. 
Experiments can be costly and lengthy. Due to limited budget or time, it 
is rarely feasible and probably never reasonable to carry out a series of 
experiments in an unplanned manner. This is particularly the case for 
models that are intended to depict complex relationships in the energy 
system. To get the most information out of the system under different 
limiting circumstances, DOE can be applied. 

DOE was developed in the early 20th century and was originally 
developed for real-world experiments [62]. The methodology was then 
later adapted for the statistical DOE [63,64]. In the following, we will 
give a short overview of the concept of DOE for the case of metamod-
eling simulation models. For an extensive overview of the DOE meth-
odology and a variety of designs, see Montgomery [65] and Siebertz 
et al. [61]. 

3.2.1. Methods for setting up designs 
The most important part of the DOE is the selection of an appropriate 

design. In this subsection, a short overview of a selection of designs will 
be given. For reasons of brevity, we focus on describing the basic fea-
tures of the respective methodologies. In addition to these designs, there 
are several other important designs. Among them are screening designs, 
Box-Behnken designs, and the quasi-Monte Carlo method. 

3.2.1.1. Full-factorial and fractional factorial designs. According to the 
Yates standard [66], the most important designs for problems with 
linear relationships are full-factorial and fractional factorial designs. The 
term factor is used synonymously with the term feature in the context of 
DOE because of its original application to real experiments. 
Full-factorial and fractional factorial designs contain extreme value 
combinations on the vertices of the factor space (see Fig. 5). The number 
of factor combinations results from the number of variable factors k. A 
full-factorial design results in 2k combinations and 2k− p for fractional 
factorial designs where p is the number of commingling. In the case of 
fractional factorial designs, information is lost due to the commingling 
of (supposedly) negligible interactions. These designs are only used if it 
is evident that the commingling variables are negligible or if the number 
of experiments should be reduced for efficiency purposes. 

3.2.1.2. Central composite designs. If a nonlinear relationship is sus-
pected, the above designs are no longer sufficient. It becomes necessary 
to extend the ability of the metamodel to also consider the quadratic 
terms of the main effects. A design often successfully used is the so-called 
central composite design (CCD). The CCD can be thought of as an 
extension of the formerly described designs: A (fractional) factorial 
design is extended by so-called “star” points (see Fig. 6) as well as center 
points. The additional points added to the design allow for evaluating 
potential quadratic effects. The star points extend the (fractional) 
factorial design space in most cases and are then called circumscribed. 
Choosing the distance of the star points to the (fractional) factorial 

Fig. 3. Schematic representation of the basic principle of metamodeling for the 
case of security of electricity supply assessment. 

Fig. 4. Design space with selected input data combinations that serve as fea-
tures for a metamodel. 
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design space is given by choosing a desired statistical property the final 
design should have. 

There is also a subtype of this design, the so-called face-centered- 
central-composite design. In this design, the factor combinations of the 
“star-shaped” design lie on the plane spanned by the corner points of the 
full/partial factorial design. However, this worsens the representation of 
nonlinear behavior. Therefore, it is only used if a factor can only be 
varied as an integer. 

3.2.1.3. Latin-hypercube design. Another class of designs that are 
increasingly used in nonlinear contexts, especially when dealing with 
computer-aided experiments (CAE), are the space-filling designs. One 
example of those designs is the so-called Latin-hypercube design (LHD) 
[67,68]. 

For the LHD, the factor combinations are determined using some sort 
of stochastic procedure, for example by using a randomly permutated 
array to construct the full design by a given logic [69]. This method 
resembles the Monte Carlo method, where the factor combinations are 
also determined randomly. In contrast to this, the Latin Hypercube uses 
a methodology to ensure uniform coverage of the entire multidimen-
sional design space (see Fig. 7 for an exemplary LHD). If an LHD is well 
constructed, the variance of the global mean will be significantly lower 
than when using a random Monte Carlo field with the same number of 

test points. 
Basically, in an LHD the design space is first divided into zones. From 

this zoned design space, a random factor combination is then deter-
mined in each zone. A uniform and correlation-free coverage of the 
factor space is not automatically ensured. For this, further methods such 
as orthogonal designs or rather space-filling designs would have to be 
applied [69]. There are a variety of possible methods for constructing an 
LHD. The selection is strongly dependent on the problem at hand. 
Recommended approaches are described for example by Moon [70] and 
Dash et al. [71]. A good overview of space-filling methods and publi-
cations is provided by van Dam et al. [72]. 

3.2.2. Current developments in design of experiments 
A large potential for improvement and further development in the 

field of DOE lies in a subarea of machine learning, the so-called area of 
active learning also known as query learning [73,74]. In the statistical 
literature, this application area is also called optimal or adaptive DOE. 

Settles describes the basic idea of active learning as follows: “[…] 
that a machine learning algorithm can achieve greater accuracy with 
fewer training labels if it is allowed to choose the data from which it 
learns”. The goal is to minimize the number of factor combinations while 
achieving a certain forecast quality in combination with metamodeling. 
Settle defines the term active learning in his work as follows: “Active 
learning systems attempt to overcome the labeling bottleneck by asking 
queries in the form of unlabeled instances to be labeled by an oracle (e. 

Fig. 5. Full-factorial (left) and fractional factorial (right) design (k = 3).  

Fig. 6. Central composite design (CCD) (k = 3).  
Fig. 7. Latin-hypercube design (k = 3).  
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g., a human annotator). In this way, the active learner aims to achieve 
high accuracy using as few labeled instances as possible, thereby mini-
mizing the cost of obtaining labeled data”. For the case of the assessment 
of security of electricity supply, this oracle is the probabilistic simulation 
model. Settles divides active learning into three main scenarios mem-
bership query synthesis [75], stream-based selection sampling [76,77], 
and pool-based sampling [78]. Fig. 8 shows an illustration of these 
concepts. 

According to Settles [73], there are a variety of different approaches 
to active learning. For example, one approach to metamodeling a 
simulation model using active learning is to add iterative factor com-
binations to a baseline design. In each iteration, metamodeling and 
validation are repeated until the desired prediction quality is achieved. 
The difficulty is to scan the experimental space as effectively as possible 
and to select the factor combination that provides the greatest possible 
additional information benefit about the system behavior. For the se-
lection of these factor combinations, there are different basic strategies 
on which more current approaches are based. Among others are uncer-
tainty sampling [78], query by committee also known as ensemble-based 
strategy [79], and expected error reduction [80]. 

Current work is focused on the further development of approaches 
for different application areas and optimization for different meta-
modeling methods. For example, neural networks with active learning 
still have a lot of potential. In particular, with the increased use of deep 
learning methods in recent years, a large research field of deep active 
learning has emerged. The combination of active learning and deep 
learning poses some challenges. In contrast to statistical approximation 
methods, the strengths of deep learning methods do not lie in showing 
where the uncertainty in the prediction is large. Also, iterative ap-
proaches are very computationally intensive since the network must be 
retrained in each iteration. A very first general overview of this very 
broad field is given by Ren et al. [81] and Liu et al. [82]. 

3.3. Combine metamodeling with design of experiments 

A possible methodical approach to metamodeling simulation models 
is demonstrated in the work of Reich et al. [83]. This approach is done 
using a model for the simulation of an energy supply system but can also 
be applied to other simulation models. The authors conclude that using 
an LHD to sample the information to train an artificial neural network is 
the best approach for approximating the response of the analyzed energy 
supply system. Furthermore, LHDs and artificial neural networks can be 
used more flexibly and can thus be better adapted to the problem at 
hand. 

For the presented approach, six steps are defined by the authors: 
Problem definition, defining the design space, developing designs, 
developing approximation models, comparison and validation as well as 
system analysis (see Fig. 9). To illustrate the methodical approach, an 
exemplary application from Ref. [84] is presented along the individual 
steps. 

3.3.1. Problem definition 
Depending on the problem, factors are determined that could have a 

decisive influence on the system behavior of the simulation model. 
In the aforementioned example, the authors present a two-stage 

metamodeling of a computationally intensive partial calculation of a 
probabilistic simulation model of security of security of supply assess-
ments. In the first step, the probability distribution of the available ca-
pacities is approximated using a sigmoid function. In the second step, 
the regression coefficients of the sigmoid function are approximated. 
The probabilities for non-availability of power plant units are used as 
features and the target values of the metamodeling are the parameters of 
the sigmoid function. 

3.3.2. Defining design space 
In the second step, the design space is defined for which the later 

metamodel is valid. For this purpose, the boundaries of the features or 
independent factors, respectively, selected in step one are set depending 
on the problem. 

Metamodeling aims to reduce the computational effort so that the 
metamodel must be valid within the boundaries of the scenarios under 
observation. The boundaries of the design space are defined by the 
required minima and maxima of the features. In the example, these are 
the minima and maxima of the probabilities for the non-availability of 
power plant units extracted from available databases. 

3.3.3. Developing designs 
Since sampling the simulation and extracting information is often the 

most time-consuming step, the effort lies in sampling as little as possible 
while maintaining high informational value. 

In their work, the authors compare two regression methods and 
create a separate design for each to sample the input-output pairs. To 
represent linear relationships, only the extreme value combinations are 
required (the corners of the design space), resulting in the design space 
being sampled using a full factorial two-level design. For the ANN, the 
input-output pairs are sampled using an LHD. To create the final LHD 
that is used, 30,000 LHDs are constructed due to their stochastic nature 
and evaluated using a metric and a correlation criterion. 

3.3.4. Developing approximation models 
Once the simulation model has been used to generate the system 

information for the factor combinations of the design, approximation 
methods can be used to create a metamodel. 

In the example work, the authors build an ANN as well as a linear 
regression for comparative purposes. Both models are built using the 
non-availability of the power plant units as input data and the curve 
parameters of the sigmoid function as output data. While the linear 
regression is built using least square methods, the ANN needs more so-
phisticated methods. For their work, the authors implement the sto-
chastic nature of the ANN training process (minimizing an error function 
by finding optimal weight and bias values using a backpropagation al-
gorithm supervised by a validation process) in a meta-heuristic search of 
the optimal structure (=number of layers and neurons in each respective 
layer). 

3.3.5. Comparison and validation 
To evaluate how well the metamodel can approximate the response 

of the system, the prediction quality must be evaluated. The meaning-
fulness of the prediction quality depends decisively on the quality of the 
test points. High-quality test points have two characteristics. Firstly, the 
test points have uniform distribution in the design space and, secondly, 
they were not used to create the metamodel. 

3.3.6. System analysis 
With a metamodel capable of representing system behavior, a variety 

of possible analysis options are possible. These are among others, the 
evaluation of the effects of individual input variables on the output 
variables, sensitivity analysis, large-scale scenario analysis, and multi- 
criteria optimization. 

We will provide more examples of the application of metamodeling 
and DOE in the field of security of supply assessments in section 5.6. 

4. Artificial intelligence for resource adequacy assessment 

The advances in the applicability of AI-based methods can be bene-
ficial to several of the aforementioned challenges for the assessment of 
resource adequacy. In the following, some approaches are presented. 

Although there is no commonly agreed-upon definition of the term 
“artificial intelligence”, it is typically used to describe behavior exhibi-
ted by computers that were initially thought to require (human) intel-
ligence [85]. There is, however, a consensus on the distinction between 
strong or general AI, which mirrors the capabilities of intelligence as a 
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whole on the one side and weak or narrow AI, which is developed to 
solve specific problems on the other side [86]. 

The methods explained in this paper are problem-specific ap-
proaches that fit under the term narrow AI. Moreover, they are also part 
of the realm of machine learning, a subfield of AI concerned with 
learning statistic relationships. Machine learning can thus also be 
regarded as a subfield of statistics. Contrary to other statistical measures, 
the exact nature of the statistic relationship (e.g., a functional rela-
tionship) between the input data and the output data is not explicitly 
defined but rather implicitly inferred by the machine learning model 
itself. 

Data is typically structured as multivariate samples or observations 
[87]. If the data is in table structure, the columns typically denote the 
features, while the rows are the observations. Often, the term “feature 
space” is used when talking about data in a machine-learning context. 
This stems from regarding N features as the axis of an N-dimensional 
space where every observation is one point in this feature space. Data 
can be structured as time series data, image data, text data, geodata, or 
others, leading to different machine learning approaches being suitable 
to identify patterns within them. 

In general, three forms of machine learning can be distinguished in 
terms of how the model receives feedback during its learning process: 
Supervised learning, unsupervised learning, and reinforcement learning 
[88]. In supervised learning, the training data itself contains a set of 
variables to be explained, the so-called labels, and data that is used as 
explanatory input, the so-called features. The input data and labels are 
fed into the model which then learns the relationship between the two 
[89]. Supervised learning can be used for regression and classification 
models. The most prominent examples are artificial neural networks 
(ANNs) (see exemplary Fig. 10). 

An ANN consists of several layers, each layer, in turn, comprising one 
or multiple neurons [90]. All ANNs have an input layer, which receives 
the inputs fed into the model, and an output layer, which contains the 
model’s output. In addition, more layers may be added between the 
input and the output layer. These layers are called hidden layers and a 
model including hidden layers is called a deep learning model [91]. In a 
so-called densely connected ANN, all neurons within one layer are 

connected to all neurons in the previous and the next layer. These net-
works constitute the basic form of neural networks and are called 
feed-forward neural networks (FFNNs) or multilayer perceptrons [92]. 

Other network architectures are convolutional neural networks 
(CNNs) that are particularly suited for dealing with data that is inher-
ently structured in a grid-like fashion [93] (most known for having been 
used with great success in image recognition and image classification 
[90]) and recurrent neural networks (RNNs) that are particularly suited 
for dealing with sequence-like data, such as time series and written or 
spoken language. Long short-term memory networks (LSTMs) are one of 
multiple subtypes of RNNs that are characterized by their ability to learn 
and store long dependencies and patterns in sequences using special 
circuit elements that regulate forgetting and long-term memory of in-
formation. There are many more learning models in the field of super-
vised learning such as gaussian process regression [94], decision trees 
[95], or hybrid ensemble methods [96]. 

In unsupervised learning, data is not labeled and, therefore, problem- 
specific measures are used to evaluate the model’s quality. For example, 
clustering is the unsupervised counterpart to classification: In clustering, 
no classes are known a priori and the model creates its own classes or 
clusters based on pre-defined distance metrics. Clustering unveils the 
structure inherent in the data by allocating the observations to distinct 
groups. Generally, the aim is to find clusters of observations that are as 
dissimilar to each other as possible while the objects (or observations) 
within the clusters are as similar to each other as possible [97]. Usually, 
these similarities are measured by a (dis)similarity or distance measure 
[98]. Two popular clustering approaches are k-means clustering and 
hierarchical clustering. There is a considerable body of literature on 
clustering (e.g. Refs. [97,98], or [99]), which the reader may consult for 
a more comprehensive overview. 

For data in high-dimensional spaces, clustering may lose meaning 
since the data becomes naturally sparse [100]. For such cases, dimen-
sionality reduction can be performed. The most well-known approach is 
principal Component Analysis (PCA) which forms linear combinations 
of existing features by maximizing the data’s variance [101]. Other 
approaches for dimensionality reduction are linear discriminant analysis 
(LDA) [102], t-Distributed Stochastic Neighbor Embedding (T-SNE) 

Fig. 8. Schematic representation of the three main scenarios of active learning in the context of the assessment of security of supply. Own representation based on 
Settles [73]. 

Fig. 9. Methodical approach to the metamodeling of a computer simulation based on Reich et al. [83].  

J. Priesmann et al.                                                                                                                                                                                                                              



Energy Strategy Reviews 53 (2024) 101368

10

[103], or autoencoders [104,105]. 
Finally, reinforcement learning applies a cost function that defines 

rewards and penalties during the training procedure. This approach is 
particularly useful when it is impossible to cover all possible system 
states during training, such as when teaching machines to play games or 
in autonomous driving [89]. 

With regard to the assessment of resource adequacy, AI methods can 
be used broadly in three fashions: Preprocessing of relevant input data, 
forecasting of input data, and metamodeling energy system models. In 
the first case, an AI method (or model) prepares data for other models 
while in the second case, an AI method is used to forecast relevant data 
that might be fed into further energy system models or directly analyzed. 
The third case refers to using a conventional energy system model in 
order to generate data for training the AI model. That is, the AI model is 
used to model the behavior of the conventional model and to explore a 
broader range of scenarios (see Ref. [11]). 

The following sections provide an overview of AI-based methods 
used for data processing (consolidation and aggregation), feature se-
lection, forecasting, and metamodeling. The subsections are to be un-
derstood as an overview of models and methods that are of particular 
interest in the context of resource adequacy assessments. In section 4.5, 
methods for evaluating the accuracy of AI-based models are presented. 

4.1. Data consolidation 

Data consolidation is the process of integrating and merging data 
from multiple sources into a unified data format while performing data 
cleaning procedures. In this context, statistical methods, especially those 
based on AI, are becoming increasingly important. By using machine 
learning-based algorithms such as clustering, regression, and dimen-
sionality reduction, AI is capable of analyzing both structured and un-
structured data, identifying patterns, and shaping them into a coherent 
whole. 

The input data for complex probabilistic models is high-dimensional 
spanning among others the dimensions of time, space, and technologies. 
Ready-made data bases do not exist, and data needs to be collected and 
consolidated from various sources, often with different data formats, 
resolutions, and underlying methodologies. An adequate data basis is 
the foundation of any solid resource adequacy assessment. Therefore, 
researchers and practitioners collect data from as many sources as 
possible and merge them in order to generate a sound foundation for the 
input data of their models. This merging process can be supported with 
AI-based methods such as clustering or dimensionality reduction, i.e. 
methods from the field of unsupervised learning (for an overview, see 

Ref. [106]). 
With data imputation methods, missing data in data sets can be filled 

based on patterns identified in the available data points. Jadvar et al. 
[107] give an overview of various machine learning models that can be 
applied to such problems. 

4.2. Data aggregation 

Data aggregation is useful in energy system modeling as a tool for 
reducing the amount of data fed into the energy system model. Data 
aggregation is often performed using clustering algorithms whereby 
cluster centers are typically expressed through the mean, centroid, or 
medoid of the observation’s features. In energy system analysis, it often 
finds use as a data reduction method for time series data. Clustering time 
series (i.e., time series or temporal aggregation) allows representing the 
data through a considerably lower number of data points, which can 
reduce model runtimes while also impacting model accuracy. Hoffmann 
et al. [9] present a comprehensive review of time-series aggregation 
methods and compare various approaches, including clustering. Other 
reviews include the ones conducted by Teichgraeber et al. [108] and 
Kotzur et al. [109]. 

Besides temporal aggregation, also other dimensions of the input 
data space can be aggregated such as the spatial or the technological 
dimension [110,111] as well as the demand side dimension in terms of 
energy consumers (e.g. Ref. [112]). 

4.3. Feature selection 

Energy system modeling usually involves handling time series data. 
Time series are in turn often the result of several effects superimposed 
over each other. Thus, decomposing a time series into its components (e. 
g. constant, cyclical, and trend components) can help interpret and 
model time series data [113]. Recently, there has been promising 
research on the combination of decomposition and feature selection as 
preparation for a forecasting model (see e.g. Refs. [114,115]). 

Fig. 11 shows an exemplary seasonal decomposition of an electricity 
load time series. The original time series (orange line) is decomposed 
into three components: a trend component, a seasonal component, and a 
residual. In this example, multiplicative decomposition is performed. 
The multiplication of all components results in the original time series. 

Feature selection refers to deciding on which features to feed into the 
model [116]. This is particularly potent in combination with time series 
decomposition methods, as it can allow keeping only those components 
of a time series that are both meaningful and predictable. This can 

Fig. 10. A basic feedforward neural network consisting of several layers of connected neurons. Here, connections between two neurons have a weight that is 
determined during training and neurons in the hidden and output layers are equipped with an activation function. 
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increase the quality of the prediction while avoiding adding unnecessary 
dimensions to the input data. Typically, feature selection approaches are 
classified as filters, wrappers, or embedded methods [116]. A filter is 
independent of the subsequent model, while a wrapper “wraps around” 
a predictive algorithm, thereby accounting for its design [117]. 
Embedded methods are predictive methods that inherently include some 
sort of learning that can be used for feature selection [87]. 

4.4. Forecasting and metamodeling 

Forecasting refers to extrapolating historical information (e.g. on 
electricity load or renewable feed-in) into the future or prediction an 
outcome of one feature based on the knowledge about other features. 
Therefore, forecasting methods can be applied to a multitude of data sets 
such as time-series data or input-output model relations as required for 
metamodeling. In terms of AI-based models, supervised learning is 
applied which requires labeled input data. A general distinction in the 
structure of forecasting models can be seen in Fig. 12. The information 
provided is a simplified representation of model structures and does not 
account for feedback or other more complex variants. 

A univariate forecasting model is based entirely on historic infor-
mation on the output feature. In contrast, multivariate models use 
additional information as input features that correlate with the output 
feature. Multivariate models can be further distinguished between using 
information predictions for the future values of input features or not. In 
addition, a hybrid model that uses both, historic information and future 
predictions of input features can be constructed. In this case, further 
prediction models are used for forecasting input feature values. 

In energy system modeling, AI-based forecasting models are applied 
for example as tools to forecast weather-dependent renewable feed-in (e. 
g. Refs. [118,119]), electricity loads (e.g. Refs. [120–123]), or detecting 
anomalies and malfunctioning (e.g. Refs. [124–126]). 

4.5. Selecting and evaluating machine learning methods 

Having introduced a variety of machine learning methods, the 
question that is yet to be answered remains which method to apply 
under which circumstances. This also includes evaluation of the model’s 
quality or “goodness of fit”. Unfortunately, there is no straightforward 
answer to these questions. Machine learning methods are highly 
problem-specific and as has been mentioned already, often deep 
knowledge of the data is necessary in order to decide which method to 
apply. Thus, there are guidelines for choosing models (such as in 
Ref. [127]), but these are to be understood as recommendations rather 
than objective rules. 

Similarly, evaluating the quality of a particular model being applied 
to data is also a problem-specific and even an algorithm-specific matter. 
For supervised learning methods, model quality is ensured by separating 
a part of the data from the rest of the dataset and not using it when 
training the model. After the model has been trained on the rest of the 
dataset (the training set), this so-called test set is used to compare the 
model’s prediction against the correct label [128]. Common metrics 
used to do this are, among others, the Mean Absolute Error (MAE), Mean 
Absolute Percentage Error (MAPE), and the Root Mean Square Error 
(RMSE) [129] (see Fig. 13 for the calculation of the different error 
measures). This allows for comparing the performance of different 
machine-learning approaches for the same task. 

Ensuring the quality of an unsupervised learning approach, such as 
clustering or PCA, is less straightforward since these algorithms are 
designed for tasks where there is no correct label. For example, in 
clustering, a variety of generic (so-called external) evaluation metrics 
have been proposed, which allow the comparison of the results of 
different clustering algorithms. However, these metrics rely on external 
data (i.e. correct labels), which is often not available [131,132]. 
So-called internal metrics rely only on the information inherent in the 
input data and are often based on the metric the algorithm tries to 
optimize [131], making them algorithm-specific. This makes different 
clustering results difficult to compare. 

Both supervised and unsupervised machine learning methods, how-
ever, share the necessity to perform so-called hyperparameter tuning. The 
various methods introduced in this paper typically require the user to set 
several parameters such as the number of neurons and layers in an ANN, 
or the number of clusters in k-means clustering [133]. The optimal set of 
hyperparameters often depends not only on the task at hand but also on 
the concrete dataset and the choice of hyperparameters can influence 
the model performance to a great extent [134]. Thus, careful choice of 
hyperparameters is important in order to achieve satisfactory results. 
Typically, hyperparameter tuning is performed manually or through 
heuristics, although automated approaches for this procedure are being 
investigated [133]. 

5. Results of the quantitative literature review 

In this section, we present the development of the adoption of 
selected AI approaches related to resource adequacy assessment from 
2010 to 2022. We do not claim this selection to be exhaustive but rather 
want to give a broad overview of the latest developments in relevant 
fields. For each field of application, we conducted a separate systematic 
literature research. 

Fig. 11. Trend, seasonality (168 h), and residual series of a decomposition of a four-week electricity load time series (orange line). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version of this article.) 

J. Priesmann et al.                                                                                                                                                                                                                              



Energy Strategy Reviews 53 (2024) 101368

12

5.1. Data consolidation and aggregation 

Unsupervised learning in the form of clustering and dimensionality 
reduction algorithms are generally the tools of choice when it comes to 
data consolidation and aggregation. A general increase in the applica-
tion of methods from this field to energy data can be observed from our 
literature review. 

Fig. 14 shows the number of articles on some of the most popular 
clustering algorithms in the field of energy system modeling since2010.4 

A variety of clustering algorithms exists and choosing a well-suited al-
gorithm is a highly data- and problem-specific task. 

The k-means algorithm is the predominant clustering algorithm used 
in the energy-context. From the list of publications, it can be seen that 
clustering is usually one part of a processing pipeline that serves to 
structure data while at the same time reducing the amount of data points 
for subsequent analysis such as forecasting. 

Fig. 15 shows the number of articles on some of the most popular 
methods for dimensionality reduction in the field of energy system 
analysis since2010.5 Again, the selection of an appropriate algorithm to 
achieve a well-balanced reduction of dimensionality while maintaining 
or even increasing the informative value of the data depends on the 
underlying data and the modeler’s objective. 

While for most of the time since 2010, PCA approaches have been 
preferred by researchers to reduce dimensionality in energy data, 
autoencoders have become increasingly popular from 2018 onwards. 
This shift underscores the evolving nature of energy system analysis, 
where dimensionality reduction not only consolidates datasets but also 
serves as a preliminary step for downstream tasks such as forecasting. 
Crucially, these methods enhance the efficiency of subsequent models by 
reducing input data volume and eliminating correlations between fea-
tures, representing key innovative approaches in the field of energy data 
analysis. 

5.2. Forecasting electricity load profiles 

Forecasting electricity load profiles can be categorized into four 
different time horizons shown in Table 2: 

Electricity load forecasts are used in different fields of application 
[135]. For assessing the security of electricity supply, long-term fore-
casts are used to plan and build infrastructure for a secure provision of 
electricity. Electricity load profiles are affected by a multitude of factors, 
such as weather, economic factors, or the portfolio of end-user tech-
nologies [29]. 

5.2.1. Forecasting data 
Electricity load profiles are given as time series with varying tem-

poral resolutions. Electricity loads can be provided as aggregated in-
formation, usually from minute to hourly averages [136]. Average 

Fig. 12. Categorization of the general structure of forecasting models.  

Fig. 13. Exemplary illustration of the deviation between actual and predicted electricity loads based on Hoffmann et al. [130].  

4 For details on the search term specification, see Table 8 in the appendix.  
5 For details on the search term specification, see Table 9 in the appendix. 
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values have the advantage that, aggregated, they represent total annual 
consumption. However, due to the aggregation, peak loads are usually 
neglected that would be better represented by maximum instead of 
average values. In turn, using the maximum function for aggregating 
temporal data would overestimate the total annual consumption. Hybrid 
solutions using averaging as an aggregation method and adding peak 
load values are used to compensate for the individual disadvantages of 
the aggregation methods. Electricity loads can be subject to different 
aggregation levels [137]:  

• Sectoral aggregation: Total load profiles vs. sectoral load profiles  
• Regional aggregation: No regional differentiation vs. including 

regional identifiers  
• Temporal aggregation: Time series data in sub-hourly, hourly, daily, 

or weekly resolution 

In principle, the less aggregated the data, the more accurate the 
representation of the real system. However, this principle does not apply 
if the quality of the data sample is low. The level of aggregation of the 
data should, therefore, be chosen so that the accuracy of the data at the 
chosen resolution meets the requirements. This means that data may 
need to be aggregated. 

5.2.2. Feature selection 
The main features influencing electricity loads are calendrical in-

formation, meteorological (temperature and weather) data, and eco-
nomic factors (such as future prices or prices of other energy carriers) 
[138]. Features, as well as the forecasting data, can vary in terms of 
sectoral, regional, and temporal aggregation. Table 3 shows a selection 
of studies on medium- and long-term forecasting and the features used in 
the forecasting models. 

5.2.3. Prediction models 
Fig. 16 shows the results of the systematic literature review on the 

development of electricity load forecasting models within the Scopus 
database.6 

Neural Networks are the most widely used AI methodology for pre-
dicting electricity load time series. Studies using FFNN are published at 
numbers between ~80 and ~200 per year. Studies using CNNs and 
RNNs have become increasingly popular since 2018, with RNNs being 
used even more frequently than FFNNs from 2020 onwards. In the field 
of RNN, LSTM neural networks dominate and are used in the majority of 
studies. Support vector machines are constantly used in ~40–~100 
studies per year, making them a popular alternative to neural network 
approaches. Finally, the number of studies based on decision trees and 
ensemble methods has recently increased significantly since 2018. 

5.3. Forecasting renewable feed-in profiles 

In addition to the demand side, there is also uncertainty on the 
supply side, driven in particular by the expansion of renewable energies. 
This is the most critical scheduling input, as both situations of over-
supply and undersupply are possible. In the context of assessing the 
security of electricity supply, undersupply is of particular relevance 
[29]. However, the inclusion of situations of oversupply in the analysis 
becomes more important the more storage facilities in the system can 
absorb this energy and make it available again at times of undersupply 
[144]. Similar to forecasting electricity load profiles, the time horizon of 
the forecast can be used as an initial distinction of the fields of appli-
cation (see Table 4). 

For the field of application portrait in this paper, i.e., ex-ante as-
sessments of security of electricity supply, long-term forecasting is again 
the relevant time horizon. Renewable feed-in profiles combine the 
availability of the power plant with a capacity credit that is based on 
weather forecasts [144]. We will address the forecasting of 
non-availabilities in section 5.4 in more detail. Forecasts of renewable 
feed-in profiles can now focus on the solely weather-dependent aspects 
or a combination of the two. 

5.3.1. Forecasting data 
Renewable feed-in profiles are given as time series with varying 

temporal resolutions. Similar to electricity load profiles, they are given 
as aggregated information providing, e.g., minute or hourly averages 
[147]. In addition to average values and in contrast to electricity load 
profiles, it is not maximum but minimum values that are of interest for 

Fig. 14. Number of scientific articles found on the application of popular clustering algorithms in energy system analysis published in energy-related journals in the 
Scopus database from 2010 to 2022. 

Fig. 15. Number of scientific articles found on the application of popular dimensionality reduction methods in energy system analysis and published in energy- 
related journals in the Scopus database from 2010 to 2022. 

Table 2 
Definition of four different time horizons for load profile forecasting [7].  

Abbreviation Forecasting duration Time interval 

VSTLF Very short-term load forecast Less than 30 min. 
STLF Short-term load forecast 30 min to 1 day 
MTLF Medium-term load forecast 1 day to 1 year 
LTLF Long-term load forecast >1 year  

6 For details on the search term specification, see Table 10 in the appendix. 
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assessing the security of electricity supply in order to perform a robust 
analysis that can also map extreme events. Renewable feed-in profiles 
can be subject to different aggregation levels:  

• Technological aggregation: E.g., aggregating or disaggregating 
rooftop PV and ground-mounted PV  

• Regional aggregation: No regional differentiation, including regional 
identifiers, or per unit  

• Temporal aggregation: Time series data in sub-hourly, hourly, daily, 
or weekly resolution 

5.3.2. Feature selection 
The main features influencing (aggregated) renewable feed-in pro-

files are historical meteorological data, numerical weather predictions 

(NWP), and information about the surroundings to estimate the effects 
of shadows and wind shadows [148]. Table 5 shows a selection of 
studies on wind power feed-in forecasting and the features used in the 
forecasting models. 

5.3.3. Prediction models 
Fig. 17 shows the results of the systematic literature review on 

renewable feed-in forecasting.7 

Similar to studies on predicting electricity load profiles, FFNNs used 
to be the most widely used AI methodology for predicting renewable 
feed-in time series. Since 2021, studies based on RNNs have suddenly 
exceeded FFNNs. CNNs as well have drastically increased in popularity 
since 2018. While support vector machines have a constant number of 
publications of ~20, the number of publications with ensemble methods 
has exceeded 30 per year in 2021. Other methods such as decision trees, 
Bayesian models, or gaussian processes are not yet used as frequently for 
predicting renewable feed-in time series. 

5.4. Forecasting (non-)availabilities 

A major uncertainty in assessing security of electricity supply is the 
availability of generation capacities and network components. As our 
review concentrates on generation adequacy, network components are 
not the focus of this section. Generation capacities in the energy system 

Table 3 
Comparison of features used for predicting electricity loads based on selected studies.  

Study Melodi et al. [139] Sangrody et al. [140] Yasin et al. [141] Matsuo and Oyama [142] Behm et al. [7] Dai and Zhao [143] 

Feature 

Historic load X X X X   
Calendrical information  X  X X X 
Air temperature   X X X  
Wind speed   X  X  
Irradiation     X  
Relative humidity   X    
Weather classification    X   
Heating day information  X     
Cooling day information  X     
Price data      X 
Gross domestic product X      
Population X       

Fig. 16. Number of scientific articles found on load forecasting in energy-related journals in the Scopus database from 2010 to 2022, categorized by AI-based 
methodology. 

Table 4 
Generation forecast methods and applications [145,146].  

Time horizon Methods Key applications 

5–60 min 
ahead 

Very short-term 
forecast 

Regulation, real-time dispatch, trading, market- 
clearing 

1–6 h ahead Short-term 
forecast 

Scheduling, load following, congestion 
management 

Day(s) ahead Medium-term 
forecast 

Scheduling, reserve requirement, trading, 
congestion management 

Weeks or 
more ahead 

Long-term 
forecast 

Resource investment planning (generation, 
network), contingency analysis, maintenance 
planning, operation management  

7 For details on the search term specification, see Table 11 in the appendix. 

J. Priesmann et al.                                                                                                                                                                                                                              



Energy Strategy Reviews 53 (2024) 101368

15

can be non-available due to planned and unplanned outages [29]. 
Planned non-availabilities are known in advance and are usually due to 
scheduled (e.g., annual) maintenance. Unplanned non-availabilities are 
not known in advance, are subject to a much more random distribution 
than planned non-availabilities, and can be due to malfunctioning or 
uncontrollable external factors such as extreme weather conditions. 
Both types of events have a major impact on supply security [155]. Due 
to the differences in their distribution and influencing factors, they are 
usually modeled and predicted separately [156]. 

The application field of the availability of power plants for machine 
learning-based methods is therefore twofold. For planned unavailability, 
scheduled maintenance cycles need to be predicted [29]. Insights from 
predictive maintenance can be transferred to improve predictions on 
maintenance schedules [157]. In contrast, in the case of unplanned 
unavailability, factors such as complex thermodynamics and the secu-
rity of supply of fuels need to be modeled [158]. This imposes funda-
mentally different requirements on predictive models. 

Another challenge stemming from the systemic perspective in the 
assessment of security of electricity supply is that no further operational 
data from specific sites are available. This is because the entirety of 
power plants must be depicted, with various operators and at various 
locations. Forecasting models, therefore, have to rely solely on external 
factors such as weather conditions that can be monitored and predicted. 

Finally, a distinction needs to be made between modeling the non- 
availability of components independently or (1) considering common- 
mode (or common-cause) situations and (2) considering time- 
dependence [159–161]. 

5.4.1. Forecasting data 
Component unavailability can be available as binary information, 

multiple discrete states, or continuous availability levels [156,159]. 
Binary data indicates whether the component is available or not while 
discrete and continuous data additionally show the share of 
non-available capacity. Data on non-availability are subject to different 
aggregation levels:  

• Technological aggregation: Total capacity, capacity per generation 
technology, or capacity per generation unit  

• Regional aggregation: No regional differentiation or including 
regional identifiers  

• Temporal aggregation: Annual data (availability factor), data for 
certain points in time (e.g. during annual peak load), or time series 
data (e.g., hourly resolved) 

5.4.2. Feature selection 
We assume the main features influencing the availability of gener-

ation capacities to be calendrical information, technology-specific data, 
weather and further environmental data, price data, and load data. 
Table 6 shows a selection of studies on (non-)availability forecasting for 
thermal power plants and the features used in the forecasting models. 
The studies listed do not exclusively apply machine learning-based 
methods as the number of such studies found in the literature research 
was too low at the time the search was conducted. We assume that in-
dependent of the methodological approach, the listed features can serve 
as a good starting point for constructing machine learning-based models. 

Table 5 
Comparison of features used for predicting wind power feed-in based on selected studies.  

Study Chen and Folly [149] Xiaoyun et al. [150] Pelletier et al. [151] Bilal et al. [152] Shahid et al. [153] Nazaré et al. [154] 

Feature 

Wind speed (at different hub heights) X X X X X X 
Wind direction X X X X X  
Air temperature X X  X  X 
Zonal and meridional flows     X  
Air density  X X    
Air pressure X X    X 
Relative humidity X   X  X 
Turbulence intensity   X    
Wind shear   X    
Yaw error   X    
Solar irradiation    X    

Fig. 17. Scientific journal articles on renewable feed-in forecasting in energy-related journals in the Scopus database from 2010 to 2022, categorized by AI-based 
methodology. 
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Interestingly, price data (forward or spot prices) are not found as 
explanatory variables in the literature. 

5.4.3. Prediction models 
Fig. 18 shows the results of the systematic literature review on the 

non-availability of generation capacities.8 

The field of prediction models for the (non-)availability of power 
plants using machine learning is not yet established on a large scale. 
Neural networks with a focus on RNNs are the most relevant method 
applied and numbers have been rising over the last years. Support vector 
machines and Bayesian models are used in a few works. Looking into the 
few available studies, the most cited works rely on sensor data 
[164–166]. As sensor data is usually used for forecasting individual 
plant outages, we conclude that on a system level, the application of 
machine learning-based methods for forecasting the (non-)availability 
of power plants is a major research gap. 

5.5. Forecasting storage operation 

In traditional energy systems, storage systems were mainly large- 
scale central units such as pumped hydro storage power plants. Decen-
tralization of the energy supply increases the number and variety of 
storage facilities considerably [167]. Also, new central storage tech-
nologies may be deployed in the future such as compressed air electric 
storage (CAES) [168]. Small and large storage units will operate 
differently in energy markets as large units may have an impact on the 
market price (price makers) while small ones do not (price takers) [169]. 
The increasing number and capacity of energy storage systems together 
with their different operating strategies, the decline in controllable 
power plants, and the expansion of volatile renewables increase the 
importance of storage systems for security of electricity supply [170]. As 
a result, forecasting the operation of storage is becoming increasingly 
important. 

Unlike thermal and renewable power plants, storage systems do not 

necessarily operate in line with overall system goals such as security of 
supply. Storage operators may withhold stored energy or create addi-
tional electricity demand for self-interested reasons. Rationales for this 
include arbitrage opportunities, extending the life of their assets, or 
maximizing self-consumption [171]. Large energy system models that 
incorporate storage alongside power plants and minimize total system 
costs have difficulty representing these behaviors endogenously [172]. 
To overcome this problem, model coupling approaches can be applied. 
Submodels that take the perspective of the storage operators can then 
represent the storage operation, which is, for example, iteratively fed 
into a larger system model. Such submodels could again apply 
cost-minimization methods or depict storage operation by applying 
machine learning-based methods that learn such behavior from histor-
ical data. 

5.5.1. Forecasting data 
Storage operation will ultimately be needed in the same temporal 

resolution as other temporal input data that is used for the assessment of 
the security of electricity supply. Data on storage operation is subject to 
different aggregation levels:  

• Technological aggregation: Total storage dispatch and state of 
charge (SoC), per storage technology, or per storage unit  

• Storage-specific information: Storage dispatch and/or SoC  
• Regional aggregation: No regional differentiation or including 

regional identifiers  
• Temporal aggregation: Time series data in sub-hourly, hourly, daily, 

or weekly resolution 

Information on storage operation can be based on historical data or 
simulations. Scapino et al. [173] use a physics-based model to simulate a 
storage system and generate the forecasting data for the prediction 
model (this approach belongs to the field of metamodeling, see sections 
4 and 6). 

5.5.2. Feature selection 
The main features influencing storage operation besides technical 

Table 6 
Comparison of features used for predicting (non-)availabilities of thermal power plants based on selected studies. Additional information on the methodological 
approach and the dependencies mapped in the model is provided.  

Study Koch and 
Vögele [162] 

Gils et al. [156] Yuyama et al. 
[163] 

Murphy et al. [160] Nolting et al. 
[29] 

Hundi and 
Shahsavari [158] 

Malladi et al. [159] 

Feature 

Method applied Analytical 
model 

Mean-reversion 
Jump-diffusion 
model 

Lognormal and 
Weibull hazard 
models 

Non-homogeneous 
Markov and Logistic 
regression model 

Sliding 
window 
technique 

Linear regression, 
SVM, random 
forests, 
ANN 

Continuous-time 
Markov chain with 
dependence sets 

Non-availability 
category 

Un-planned Planned, 
unplanned 

Unplanned Unplanned Planned Unplanned Unplanned 

Number of plants 
modeled 

Single Multiple Multiple Multiple Multiple Single Multiple 

Time dependence    X X  X 
Common-mode 

failures    
X   X 

Asset type X X X X X X X 
Asset age   X X    
Asset size X  X X X   
Calendrical 

information  
X X     

Air temperature X   X  X  
Air pressure      X  
Relative humidity X     X  
Stream 

temperatures or 
levels 

X       

Environmental 
regulations 

X       

System load    X    
Other X     X X  

8 For details on the search term specification, see Table 12 in the appendix. 
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characteristics price and other market information are weather data, and 
load and generation data (see Table 7). The studies listed do not 
exclusively apply machine learning-based methods as the number of 
such studies found in the literature research was too low at the time the 
search was conducted. We assume that independent of the methodo-
logical approach, the listed features can serve as a good starting point for 
constructing machine learning-based models. 

5.5.3. Prediction models 
Fig. 19 shows the results of the systematic literature review on pre-

dicting storage operation.9 

The field of prediction models for storage operation using machine 
learning is not yet established on a large scale though has made a sig-
nificant jump in recent years. Neural networks are the most frequently 
applied method but also support vector machines, Gaussian process 
regression, and decision trees are used. In the field of neural networks, a 
trend toward RNNs is emerging. Wang et al. [178] developed a pre-
diction model for distributed electric heating storage systems. They find 
that their correlation-based LSTM model outperforms support vector 
machines and regular RNN models. Xiao et al. [179] come to a similar 
conclusion when comparing multiple methods for behavior learning in 
microgrids. They find LSTM models most suitable for microgrids that 
include storage systems. 

5.6. Metamodeling and design of experiments for boosting the scenario 
scope 

The basic design method has been successfully used in combination 
with metamodeling in many publications. In the following, a possible 
approach is presented, as well as the benefits of metamodeling based on 
exemplary publications. Further, modeling recommendations for the 
combination of metamodeling and DOE are provided. 

Unlike in real-world experiments, the input variables in computer- 
based experiments can be varied continuously with less effort. This al-
lows the design space to be sampled at a higher resolution. However, in 
many use cases, simulations have a rather complex nature with 
nonlinear behavior. Metamodeling using a full factorial design (full-FD) 
and linear or polynomial regression is not possible in these cases. In 
these cases, more complex designs and more complex methods for 
metamodeling, e.g., from the field of machine learning must be used. 

Fig. 20 shows the results of the systematic literature review on the 

application of AI-based methods for metamodeling in energy-related 
publications.10 

Since 2010, primarily models based on FFNN and GPR have been 
used for metamodeling in publications in energy-related journals. Other 
methods of deep learning such as CNNs and RNNs have only been used 
from 2017 onwards. In addition to these methods, the number of pub-
lications per year applying SVMs and Bayesian models for metamodeling 
is relatively constant. A trend can be seen in the application of decision 
trees and ensemble methods that have become more popular since 2017. 

Fig. 21 shows the results of the systematic literature review on 
metamodeling applications in combination with DOE in energy-related 
publications.11 

Metamodeling and DOE have been combined since 2010 with 
numbers between ~35 and ~60 publications per year. AI-based 
methods only make up for a small share of these publications and the 
numbers are only slowly increasing. In 2022, ~20 % of all publications 
we found on metamodeling and DOE in energy-related journals included 
the application of AI-based methods. 

Nolting et al. [11] show that linear regression and full factorial de-
signs should not be excluded in advance from computer simulations. In 
this comparative study, the prediction performance of linear regression 
(with full-FD) and artificial neural networks (with LHD) for the 
approximation of a probabilistic simulation model for assessing the se-
curity of electricity supply in Germany were investigated. The investi-
gation showed that linear regression has better prediction quality for the 
present use case with fewer trial points and thus reduced associated 
simulation time. The results also show that analogous to the selection of 
a suitable approximation method, a suitable method must be selected 
from the DOE on an application-specific basis. 

Metamodeling can also be applied to the second most common 
method for resource adequacy assessments, i.e., optimization models. 
Hirvonen et al. [180] apply a metamodeling approach for the optimi-
zation of energy communities. To avoid a large number of optimization 
runs, the authors initialize a small training with the optimization model, 
train a neural network as a metamodel, and then iteratively add further 
training data as required to achieve sufficient accuracy of the meta-
model. This can only be implemented with metamodeling, otherwise, 
the results have to be generated with many time-consuming simulations. 

A comprehensive comparison of metamodeling methods is presented 

Fig. 18. Scientific journal articles on predicting (non)-availability of power plants in energy-related journals in the Scopus database from 2010 to 2022, categorized 
by AI-based methodology. 

9 For details on the search term specification, see Table 13 in the appendix. 

10 For details on the search term specification, see Table 14 in the appendix.  
11 For details on the search term specification, see Table 15 and Table 16 in 

the appendix. 
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by Østergård et al. [181]. In this study, the six most used methods for 
metamodeling are applied to 13 application cases in building perfor-
mance simulations with different dimensionality and complexity. The 
authors conclude that the choice of method depends largely on the 

problem and that the literature cannot provide a general preference for 
the method. From their results, the authors draw the following general 
conclusions, among others: 

Table 7 
Comparison of features used in studies for predicting storage operation.  

Study Nojavan et al. [174] Zhour et al. [175] Henri and Lu [176] Mousavi et al. [177] 

Feature 

Method applied Optimization Optimization Neural networks, random forest Optimization and neural network (metamodeling) 
Storage technology Compressed air storage Generic storage system Combined PV and battery storage system Pumped hydro storage (in an island system) 
Technical characteristics X X X X 
Calendrical information   X  
Precipitation    X 
Air temperature   X X 
Relative humidity    X 
Wind speed    X 
Radiation    X 
Electricity price X X X  
Gas price X    
Electricity load  X X  
Renewable feed-in  X X  
State of charge X X X X  

Fig. 19. Scientific journal articles on predicting storage behavior in energy-related journals in the Scopus database from 2010 to 2022, categorized by AI-based 
methodology. 

Fig. 20. Scientific journal articles on metamodeling in energy-related journals in the Scopus database from 2010 to 2022, categorized by metamodeling 
methodology. 
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• Standard settings generally provide poor or mediocre accuracies, so 
optimization of the hyperparameters is necessary,  

• hyperparameters must be adapted to the respective problem,  
• in general, the best results were achieved with GPR followed by 

ANNs, and multivariate adaptive regression splines (MARS),  
• linear regression models achieved the worst accuracy due to the 

nonlinearity of the problems considered,  
• for large datasets, ANNs performed most effectively, while GPR was 

slow and less robust, and  
• dimensionality has only a small influence on accuracy. 

The authors demonstrate the possible prediction quality of meta-
modeling methods. A coefficient of determination of up to R2 > 0.99 was 
obtained for the eight mathematical benchmarks. For the building per-
formance simulation problems, an R2 > 0.90 for CO2–emissions and R2 

> 0.99 for the remaining output parameters could be achieved. 

6. Discussion of the potential and limitations of AI to address 
current challenges in assessing resource adequacy 

Having motivated our review with increasingly complex energy 
systems and the need for adequate assessments of security of electricity 
supply, our extensive review demonstrated substantial potential for a 
large variety of AI-based methods to contribute to more effective and 
efficient assessments of resource adequacy. The fields of applications as 
shown in section 5 demonstrate the transferability to relevant use cases. 

Nolting and Praktiknjo [182] argue that in situations where 
increasingly sophisticated research questions lead to increasingly com-
plex and, therefore, computationally resource-intensive models, the 

accuracy of those models then becomes more and more dependent on 
the quality of the input data. At the same time, the more comprehensive 
these input data are and the further ahead into the future assumptions 
have to be made for them, the more they are subject to uncertainties 
[183]. The authors define this as a “complexity dilemma” where more 
complex models allow for more complex analyses but at the same time 
lead to increased data uncertainty. 

Besides data uncertainty, working with highly complex simulation 
models leads to another drawback: The limitation of scenario scope due 
to time and hardware restrictions. ACER formulates requirements for 
resource adequacy assessments to be a probabilistic analysis in terms of 
stochastic influences such as weather conditions [3]. Also, an 
optimization-based assessment is required, leading to very high 
computational requirements per analyzed scenario. Therefore, the re-
quirements by ACER to deal with further uncertainties such as the 
progress in capacity expansion of renewable energies need to be 
considered only to a very limited extent. 

AI-based methods can mitigate these dilemmas and provide solution 
strategies. In Fig. 22 we present a solution approach by integrating 
machine learning into the resource adequacy assessment toolchain. The 
identified application areas in the methodological pipeline that address 
the challenges derived in Section 2.2 for assessing resource adequacy in 
terms of input data, the methodology itself, and the computational 
complexity are:  

• Processing various types of input data in terms of data consolidation, 
data imputation, and data aggregation as well as feature selection to 
handle uncertainty in input data and to reduce model complexity; 

Fig. 21. Scientific journal articles on metamodeling in combination with design of experiment in energy-related journals in the Scopus database from 2010 to 2022, 
categorized by metamodeling methodology. 

Fig. 22. Link of the different fields of application of machine learning and design of experiment methods in the context of the assessment of security of supply.  
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• Forecasting of (1) electricity demand, (2) RES feed-in, (3) un-
availabilities of power plant units, (4) balancing reserve re-
quirements, (5) import potentials, (6) electricity prices, and (7) 
storage operation (accounting for uncertainties and stochastic in-
fluence by using such variables as input features);  

• Metamodeling (preferably in combination with DOE) for the 
approximation of complex economic viability assessment models 
while depicting storage dispatch and demand side response 
potentials;  

• Metamodeling (preferably in combination with DOE) for the 
approximation of complex power system adequacy models applying 
probabilistic analyses and accounting for extreme events as well as 
climate change in weather models while appropriately representing 
uncertainties in the aforementioned areas. 

Starting with raw data from multiple sources, the data needs to be 
consolidated, and missing and incorrect data needs to be imputed and 
corrected. Such tasks can be performed with the help of machine 
learning [106,107]. Based on a single input data set of historical, ideally 
measured or reported data, data forecasting may be required when 
analyzing a future scenario. For this, machine learning-based models 
can outperform traditional statistical modeling approaches, especially if 
a large set of explanatory variables are being processed (see for example 
[184] for load forecasting [185], for renewable feed-in forecasting 
[158], for power plant availability forecasting, or [173] for a forecast of 
storage operation). Lastly, DOE can be combined with metamodeling to 
efficiently increase the scope of energy system analyses (as done by e.g. 
Ref. [186]). Thus, metamodeling has the potential to address many of 
the current challenges in assessing resource adequacy by accelerating 
computations to adequately incorporate uncertainties in scenarios and 
sensitivity analyses. 

However, there are limitations in using machine learning-based 
methods for metamodeling resource adequacy assessment models 
regarding the transparency of the analyses, especially regarding ANNs. 
Since ANNs are so-called implicit metamodels or black-box models, the 
potential for identifying the reasons for adequacy concerns is limited. 
The investigation of the extent to which explicit metamodels (cf. 
Explainable AI) can be used to assess the relevance of individual model 
input variables for possible tipping points in supply security is still a 
research gap. Increasing the transparency of the analysis could become a 
crucial factor for the future dissemination of metamodeling in combi-
nation with DOE to approximate energy system models. Further po-
tentials for the application of metamodeling may lie in forecasting Flow- 
Based market coupling parameters such as power transfer distribution 
factors, the remaining available margins, or critical branches. 

While according to our literature study methods for metamodeling 
complex nonlinear simulations and time series forecasting models have 
been increasingly applied in scientific publications over the last twelve 
years, it is difficult to assess the current level of dissemination outside 
academia. In addition to the fact that metamodeling is still a rather new 
topic in research, another reason for a potentially low degree of 
dissemination may be its interdisciplinary nature. Expertise in the 
respective engineering domain as well as in mathematics and computer 
science are required for implementation. Furthermore, there is no gen-
eral approach for metamodeling problems and the selection of an 
adequate model and sampling method for the design space are elaborate 
problem-specific tasks. Active learning offers the possibility of auto-
mation but comes with additional challenges in terms of 
implementation. 

Despite the great potential of AI methods, there is a possibility that 
future research, development, and applicability of AI methods will be 
affected by legal regulation. Regarding the EU, ‘The briefing Artificial 
Intelligence Act’ (see Ref. [187]) provides information on a proposal by 
the European Commission dated April 21, 2021 for an EU-wide legal 
framework on AI. While it is considered to be a positive initial step to 
regulate AI, it is also criticized for its lack of specific guidelines for 

limiting automation and enhancing security [188]. The regulation re-
quires a risk-based approach with an application-specific risk classifi-
cation. This classification is carried out in the following categories: 
unacceptable risk, high risk, limited risk, and low and minimal risk. 
While it can be assumed that a large proportion of applications that use 
AI will be assessed as low risk and will, therefore, be subject to little or 
no legal regulation, resource adequacy may fall under the high-risk 
assessment as it concerns critical infrastructure. AI applications 
assessed as high risk will be allowed but will be subject to regulations 
that involve EU database registration, risk management requirements, 
testing, technical robustness, data training, transparency, human over-
sight, and cybersecurity. 

Further, there are potential risks associated with differing interna-
tional regulations, particularly in terms of international cooperation and 
investment [189] as the EU, the US, and China currently vary in their 
stringency in regulating AI [190]. 

Additionally, the significant computational demands of AI, particu-
larly in tasks such as data consolidation and aggregation, as well as in 
the training and validation of metamodels and machine learning-based 
forecasting models, can result in substantial energy consumption. 
Conversely, when AI is applied to approximate highly complex simula-
tion models in the context of resource adequacy assessments, it has the 
potential to decrease the overall computational resource needs [191]. 
This duality highlights the importance of carefully considering the 
environmental impact of AI applications in energy systems, while also 
recognizing its efficiency-enhancing capabilities. 

7. Conclusion: strategic benefits of AI and DoE for the 
assessment of resource adequacy 

Our review enables researchers and experts from the energy industry 
to a comprehensive overview of the application of AI-based methods in 
resource adequacy assessments. To further support the dissemination of 
methods by researchers and practitioners, we developed a comprehen-
sive modeling chain bringing together the worlds of AI, design of ex-
periments, and security of supply assessment. 

Having demonstrated a broad variety of methods from the field of 
artificial intelligence that can be applied to energy system modeling in 
general and assessing security of electricity supply in particular, our key 
findings are as follows:  

• AI-based metamodeling in resource adequacy assessments: We 
discovered that AI-based metamodeling could significantly supple-
ment the prevailing resource adequacy assessment requirements, 
such as those defined by ACER for EU member states. This approach 
effectively addresses uncertainties in the future development of 
necessary input data while maintaining a high level of detail in the 
model. These methods are applicable to both resource adequacy 
assessment models and upstream models, like storage dispatch.  

• Combining metamodeling with design of experiments: As the 
need and complexity of resource adequacy assessments increase, 
integrating metamodeling with design of experiments emerges as a 
promising strategy. This enables efficient metamodeling of complex 
energy system models, facilitating the investigation of a broad va-
riety of scenarios while efficiently circumventing runtime and 
hardware limitations and maintaining high accuracy levels.  

• Trade-offs in metamodeling: The advantages of metamodeling 
must be balanced against the efforts and potential accuracy losses 
involved. It is particularly suitable for scenarios where simulation 
times are extensive and numerous parameter variations are required, 
such as in multi-criteria optimization.  

• Prevalent metamodeling methods: Feed-forward neural networks 
(FFNNs), Gaussian process regression, and ensemble methods are the 
most widely applied methods for metamodeling in energy-related 
publications. However, when combined with design of experi-
ments, AI-based applications currently represent only a small 
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fraction (1:5) of the publications compared to non-AI-based statis-
tical methods.  

• Potential applications of AI in the energy modeling toolchain: 
We identified several potential application areas for AI-based 
methods within different steps of the model toolchain, including 
data preprocessing, data consolidation, and forecasting of relevant 
input data such as electricity loads, renewable energy feed-ins, 
electricity prices, power plant availabilities, import potentials, and 
storage operations.  

• Gaps in the literature on forecasting in energy systems: There is a 
substantial body of literature on forecasting electricity loads and 
renewable energy feed-ins. However, studies focusing on forecasting 
storage operation and the (non-)availability of individual power 
plants are scarce.  

• Predominance of RNNs in forecasting: Recurrent neural networks 
(RNNs) have become the predominant AI models for forecasting 
applications in energy systems.  

• Data consolidation and aggregation tools: In the realm of data 
consolidation and aggregation, k-means clustering, principal 
component analysis, and autoencoders are the most commonly used 
tools. 

Overall, our conclusion emphasizes the need for future research in 
two key areas: (1) efficient metamodeling of complex models to assess 
security of electricity supply using AI-based methods and (2) 

applications of AI-based methods for forecasting storage dispatch and 
(non-)availabilities, as these are promising yet underexplored fields of 
application. 

The methods summarized in this review will gain further relevance 
when analyzing energy systems with growing shares of renewables: As 
the complex interplay of renewable sources, energy consumers, and 
networks drives complexity, the pipeline that we have carved out in our 
review might support researchers to tackle important questions 
regarding the future security of electricity supply. 
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Appendix  

Table 8 
Search term specification for the application of clustering in energy research (column entries can be arbitrarily combined)  

TITLE-ABS-KEY SUBJAREA PUBYEAR 

Application field (1) Application field (2) Method 

energy – k-means Ener 2010   
k-medoids  2011   
hierarchical clustering  2012     

2013     
2014     
2015     
2016     
2017     
2018     
2019     
2020     
2021     
2022   

Table 9 
Search term specification for the application of dimensionality reduction in energy research (column entries can be arbitrarily combined)  

TITLE-ABS-KEY SUBJAREA PUBYEAR 

Application field (1) Application field (2) Method (Cluster) 

energy – principle component analysis (PCA) Ener 2010   
principal component regression (PCA)  2011   
partial least squares regression (PCA)  2012   
PCA (PCA)  2013   
discriminant analysis (discriminant analysis)  2014   
autoencoder (autoencoder)  2015   
t-distributed stochastic neighbor embedding (t-SNE)  2016   
t-SNE (t-SNE)  2017     

2018     
2019     
2020     
2021     
2022   
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Table 10 
Search term specification for use case “Forecasting electricity load profiles” (column entries can be arbitrarily combined)  

TITLE-ABS-KEY SUBJAREA PUBYEAR 

Application field (1) Application field (2) Method (Cluster) 

load forecasting – artificial neural network (Feed-forward neural network) Ener 2010 
load prediction  feed-forward neural network (Feed-forward neural network)  2011   

back propagation neural network (Feed-forward neural network)  2012   
multilayer perceptron (Feed-forward neural network)  2013   
ANN (Feed-forward neural network)  2014   
convolutional neural network (Convolutional neural network)  2015   
CNN (Convolutional neural network)  2016   
recurrent neural network (Recurrent neural network)  2017   
RNN (Recurrent neural network)  2018   
long short term memory (Recurrent neural network)  2019   
LSTM (Recurrent neural network)  2020   
gated recurrent unit (Recurrent neural network)  2021   
GRU (Recurrent neural network)  2022   
support vector machine (Support vector machine)     
gaussian process (Gaussian process)     
decision tree (Decision tree)     
classification tree (Decision tree)     
regression tree (Decision tree)     
bayesian network (Bayesian model)     
bayesian net (Bayesian model)     
naive bayes (Bayesian model)     
bayesian classification (Bayesian model)     
bayesian regression (Bayesian model)     
bayesian belief network (Bayesian model)     
Bagging (Ensemble method)     
decision tree (Ensemble method)     
random forest (Ensemble method)     
boosting (Ensemble method)     
xgboost (Ensemble method)     
catboost (Ensemble method)     
LightGBM (Ensemble method)     

Table 11 
Search term specification for use case “Forecasting renewable feed-in profiles” (column entries can be arbitrarily combined)  

TITLE-ABS-KEY SUBJAREA PUBYEAR 

Application field (1) Application field (2) Method (Cluster) 

renewable feed-in – artificial neural network (Feed-forward neural network) Ener 2010 
wind feed-in  feed-forward neural network (Feed-forward neural network)  2011 
solar feed-in  back propagation neural network (Feed-forward neural network)  2012 
pv feed-in  multilayer perceptron (Feed-forward neural network)  2013 
hydro feed-in  ANN (Feed-forward neural network)  2014 
wind power forecast  convolutional neural network (Convolutional neural network)  2015 
solar power forecast  CNN (Convolutional neural network)  2016 
pv power forecast  recurrent neural network (Recurrent neural network)  2017 
hydro power forecast  RNN (Recurrent neural network)  2018 
wind power prediction  long short term memory (Recurrent neural network)  2019 
solar power prediction  LSTM (Recurrent neural network)  2020 
pv power prediction  gated recurrent unit (Recurrent neural network)  2021 
hydro power prediction  GRU (Recurrent neural network)  2022   

support vector machine (Support vector machine)     
gaussian process (Gaussian process)     
decision tree (Decision tree)     
classification tree (Decision tree)     
regression tree (Decision tree)     
bayesian network (Bayesian model)     
bayesian net (Bayesian model)     
naive bayes (Bayesian model)     
bayesian classification (Bayesian model)     
bayesian regression (Bayesian model)     
bayesian belief network (Bayesian model)     
Bagging (Ensemble method)     
decision tree (Ensemble method)     
random forest (Ensemble method)     
boosting (Ensemble method)     
xgboost (Ensemble method)     
catboost (Ensemble method)     
LightGBM (Ensemble method)     

J. Priesmann et al.                                                                                                                                                                                                                              



Energy Strategy Reviews 53 (2024) 101368

23

Table 12 
Search term specification for use case “(non-)availabilities” (column entries can be arbitrarily combined)  

TITLE-ABS-KEY SUBJAREA PUBYEAR 

Application field (1) Application field (2) Method (Cluster) 

power plant"W/2″reliability – artificial neural network (Feed-forward neural network) Ener 2010 
power plant"W/2″outage  feed-forward neural network (Feed-forward neural network)  2011 
power plant"W/2″maintenance  back propagation neural network (Feed-forward neural network)  2012 
power plant"W/2″availability  multilayer perceptron (Feed-forward neural network)  2013 
power plant"W/2″ unavailability  ANN (Feed-forward neural network)  2014 
power plant"W/2″ non-availability  convolutional neural network (Convolutional neural network)  2015   

CNN (Convolutional neural network)  2016   
recurrent neural network (Recurrent neural network)  2017   
RNN (Recurrent neural network)  2018   
long short term memory (Recurrent neural network)  2019   
LSTM (Recurrent neural network)  2020   
gated recurrent unit (Recurrent neural network)  2021   
GRU (Recurrent neural network)  2022   
support vector machine (Support vector machine)     
gaussian process (Gaussian process)     
decision tree (Decision tree)     
classification tree (Decision tree)     
regression tree (Decision tree)     
bayesian network (Bayesian model)     
bayesian net (Bayesian model)     
naive bayes (Bayesian model)     
bayesian classification (Bayesian model)     
bayesian regression (Bayesian model)     
bayesian belief network (Bayesian model)     
Bagging (Ensemble method)     
decision tree (Ensemble method)     
random forest (Ensemble method)     
boosting (Ensemble method)     
xgboost (Ensemble method)     
catboost (Ensemble method)     
LightGBM (Ensemble method)     

Table 13 
Search term specification for use case “Forecasting storage operation” (column entries can be arbitrarily combined)  

TITLE-ABS-KEY SUBJAREA PUBYEAR 

Application field (1) Application field (2) Method (Cluster) 

storage"W/3″operation Pumped artificial neural network (Feed-forward neural network) Ener 2010 
storage"W/3″dispatch compressed air feed-forward neural network (Feed-forward neural network)  2011 
storage"W/3″behavior CAES back propagation neural network (Feed-forward neural network)  2012 
storage"W/3″heuristic Battery multilayer perceptron (Feed-forward neural network)  2013 
storage"W/3″schedule BES ANN (Feed-forward neural network)  2014  

BESS convolutional neural network (Convolutional neural network)  2015  
flywheel CNN (Convolutional neural network)  2016  
Heat recurrent neural network (Recurrent neural network)  2017  
Thermal RNN (Recurrent neural network)  2018  
electricity long short term memory (Recurrent neural network)  2019  
Energy LSTM (Recurrent neural network)  2020  
power plant gated recurrent unit (Recurrent neural network)  2021   

GRU (Recurrent neural network)  2022   
support vector machine (Support vector machine)     
gaussian process (Gaussian process)     
decision tree (Decision tree)     
classification tree (Decision tree)     
regression tree (Decision tree)     
bayesian network (Bayesian model)     
bayesian net (Bayesian model)     
naive bayes (Bayesian model)     
bayesian classification (Bayesian model)     
bayesian regression (Bayesian model)     
bayesian belief network (Bayesian model)     
Bagging (Ensemble method)     
decision tree (Ensemble method)     
random forest (Ensemble method)     
boosting (Ensemble method)     
xgboost (Ensemble method)     
catboost (Ensemble method)     
LightGBM (Ensemble method)     
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Table 14 
Search term specification for the application of metamodeling in energy research (column entries can be arbitrarily combined)  

TITLE-ABS-KEY SUBJAREA PUBYEAR 

Application field (1) Application field (2) Method (Cluster) 

meta model – artificial neural network (Feed-forward neural network) Ener 2010 
metamodel  feed-forward neural network (Feed-forward neural network)  2011 
metamodeling  back propagation neural network (Feed-forward neural network)  2012 
metamodelling  multilayer perceptron (Feed-forward neural network)  2013 
meta modeling  ANN (Feed-forward neural network)  2014 
metamodelling  convolutional neural network (Convolutional neural network)  2015   

CNN (Convolutional neural network)  2016   
recurrent neural network (Recurrent neural network)  2017   
RNN (Recurrent neural network)  2018   
long short term memory (Recurrent neural network)  2019   
LSTM (Recurrent neural network)  2020   
gated recurrent unit (Recurrent neural network)  2021   
GRU (Recurrent neural network)  2022   
support vector machine (Support vector machine)     
gaussian process (Gaussian process)     
decision tree (Decision tree)     
classification tree (Decision tree)     
regression tree (Decision tree)     
bayesian network (Bayesian model)     
bayesian net (Bayesian model)     
naive bayes (Bayesian model)     
bayesian classification (Bayesian model)     
bayesian regression (Bayesian model)     
bayesian belief network (Bayesian model)     
Bagging (Ensemble method)     
decision tree (Ensemble method)     
random forest (Ensemble method)     
boosting (Ensemble method)     
xgboost (Ensemble method)     
catboost (Ensemble method)     
LightGBM (Ensemble method)     

Table 15 
Search term specification for the application of any type of metamodel in combination with design of experiments in energy research (column entries 
can be arbitrarily combined)  

TITLE-ABS-KEY SUBJAREA PUBYEAR 

Application field (1) Application field (2) Method (Cluster) 

meta model design of experiment – Ener 2010 
Metamodel    2011 
Metamodeling    2012 
Metamodelling    2013 
meta modeling    2014 
Metamodelling    2015     

2016     
2017     
2018     
2019     
2020     
2021     
2022   

Table 16 
Search term specification for the application of AI-based metamodels in combination with design of experiments in energy research (column entries can be arbitrarily 
combined)  

TITLE-ABS-KEY SUBJAREA PUBYEAR 

Application field (1) Application field (2) Method (Cluster) 

meta model design of experiment artificial neural network (Feed-forward neural network) Ener 2010 
metamodel  feed-forward neural network (Feed-forward neural network)  2011 
metamodeling  back propagation neural network (Feed-forward neural network)  2012 
metamodelling  multilayer perceptron (Feed-forward neural network)  2013 
meta modeling  ANN (Feed-forward neural network)  2014 
metamodelling  convolutional neural network (Convolutional neural network)  2015 

(continued on next page) 
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Table 16 (continued ) 

TITLE-ABS-KEY SUBJAREA PUBYEAR 

Application field (1) Application field (2) Method (Cluster)   

CNN (Convolutional neural network)  2016   
recurrent neural network (Recurrent neural network)  2017   
RNN (Recurrent neural network)  2018   
long short term memory (Recurrent neural network)  2019   
LSTM (Recurrent neural network)  2020   
gated recurrent unit (Recurrent neural network)  2021   
GRU (Recurrent neural network)  2022   
support vector machine (Support vector machine)     
gaussian process (Gaussian process)     
decision tree (Decision tree)     
classification tree (Decision tree)     
regression tree (Decision tree)     
bayesian network (Bayesian model)     
bayesian net (Bayesian model)     
naive bayes (Bayesian model)     
bayesian classification (Bayesian model)     
bayesian regression (Bayesian model)     
bayesian belief network (Bayesian model)     
Bagging (Ensemble method)     
decision tree (Ensemble method)     
random forest (Ensemble method)     
boosting (Ensemble method)     
xgboost (Ensemble method)     
catboost (Ensemble method)     
LightGBM (Ensemble method)    
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