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Abstract
Since it is essential for Computer Vision systems to reliably

perform in safety-critical applications such as autonomous vehi-
cles, there is a need to evaluate their robustness to naturally oc-
curring image perturbations. More specifically, the performance
of Computer Vision systems needs to be linked to the image qual-
ity, which hasn’t received much research attention so far. In fact,
aberrations of a camera system are always spatially variable over
the Field of View, which may influence the performance of Com-
puter Vision systems dependent on the degree of local aberrations.
Therefore, the goal is to evaluate the performance of Computer
Vision systems under effects of defocus by taking into account the
spatial domain. Large-scale Autonomous Driving datasets are
degraded by a parameterized optical model to simulate driving
scenes under physically realistic effects of defocus. Using stan-
dard evaluation metrics, the Spatial Recall Index (SRI) and the
new Spatial Precision Index (SPI), the performance of Computer
Visions systems on these degraded datasets are compared with the
optical performance of the applied optical model. A correlation
could be observed between the spatially varying optical perfor-
mance and the spatial performance of Instance Segmentation sys-
tems.

Introduction
The performance of Computer Vision (CV) algorithms is

quantified with many different metrics like precision vs. recall
and miss rate (MR) vs. false positives per image (FPPI) [2, 3]. In
these metrics, the outputs of CV algorithms are binary classified
into true positives (TPs) and false positives (FPs) by comparing
them with labeled ground truth data based on accuracy measures
with the intersection over union (IoU). For a certain score thresh-
old defining how high the confidence score of the CV system’s
output must be in order to count as prediction, the set of FPs and
TPs as well as actually positives (Ps) labeled in the dataset results
in relative values such as precision and recall. As an example,
recall is the ratio of correctly identified instances to the number
of actually positive instances labeled in the dataset. Computing
these relative values for all possible score thresholds results in the
aforementioned curves, which in turn can be summarized into the
average precision (AP) and log average miss rate (LAMR), re-
spectively. Consequently, one important aspect all these metrics
share is that they are all aggregate, meaning that each point in
the curves is averaged over the whole dataset. In this process the
information is lost where in the image the detection occurs, and
what exact performance value that individual output of the CV
algorithm contributes to the overall measure.

In our group we focus our research on the physical-realistic
simulation of images for the training of algorithms used in an au-

tomotive context, for advanced driver assistance systems (ADAS)
or autonomous driving (AD). Using realistic optical models such
as [7, 6] or [5] we degrade given images – both from simulation
and already recorded drive scenes – to investigate the effect that
the different optical properties have on CV algorithms [9, 5]. Re-
alistic optical properties vary over the field of view, they are not
translation-invariant. This varying optical quality certainly influ-
ences the performance of the ML-based CV algorithms, but this
influence is not visible in the established aggregate metrics.

We therefore introduced a novel metric Spatial Recall Index
in [9] that spatially resolves the performance of object detection,
i.e. it assigns a recall value to every pixel within the image size.
This spatial resolution allows for a detailed look at the influence
of the varying optical properties over the whole image size. Note
that SRI is also an aggregate metric in the sense that all detected
objects are compared to all ground truth (GT) objects, only with
a spatial resolution of this information.

In this article we extend our previous work in two aspects.
Firstly, we introduce the Spatial Precision Index analogous to the
SRI. Secondly, we extend both metrics to work on instance seg-
mentation algorithms with arbitrary form and shape of the ob-
jects, not only on object detection with rectangular object size.
While the former is a straight-forward adaption, the latter requires
a novel treatment of the intersection and union of the detected and
the GT instances, in order to take the right pixels into account in
this metric.

This work is structured as follows. After introducing the spa-
tial evaluation metrics for instance segmentation algorithm, we
describe our evaluation methods in detail. Here, we first present
the system under test (SUT) and dataset as well as our consider-
ations for their selection. Then, we briefly describe the spatially
variant image degradation introduced in [9] before explaining the
evaluation process both with standard metrics and the newly pro-
posed spatial metrics. Finally, we present the results and conclude
this work.

Spatial Precision and Recall Indices
In a dataset with K labeled ground truth instances of a certain

category from which N instances are correctly detected by the
instance segmentation system, the recall value is defined as

Recall =
∑N

n TPn∑N
n TPn+

∑M
m FNm

=

∑N
n TPn∑K
k Pk

, (1)

where TP and FN denote true positives and false negatives, re-
spectively, and P refers to labeled ground truth instances (i.e. pos-
itives) in the dataset. Moreover, with J wrong segmentation out-
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puts, the precision value is defined as

Precision =

∑N
n TPn∑N

n TPn+
∑J

j FPj

. (2)

where FP denotes false positives outputted by the system. Simply
put, the recall value penalizes FNs and thus ground truth instances
that aren’t detected by the instance segmentation system, whereas
the precision value penalizes FP instances that are incorrectly or
inaccurately outputted by the system.

Equation 1 and 2 are the basis for the spatial metrics to as-
sess the performance of instance segmentation systems proposed
in this paper. Given a dataset with equally sized images of height
h and width w, the h×w-sized spatial recall index (SRI) is de-
fined for object detection in [9], and accordingly works on rectan-
gular bounding boxes of the detected objects. It assesses the per-
formance spatially by assigning a local recall value to each pixel
(x,y) in h×w. We now adapt the SRI metric to instance seg-
mentation with arbitrary object forms by defining the h×w-sized
SRI as

SRI =

[
N∑

n=1

{
1 (x,y) ∈ [TPn∩Pn]

0 else

]

⊘
[

K∑

k=1

{
1 (x,y) ∈ Pk

0 else

]
,

(3)

where (x,y)∈ [TPn∩Pn] denotes all pixels that belong to the in-
tersection area of the n-th TP mask and its corresponding ground
truth mask, and (x,y) ∈ Pk indicate all pixels belonging to the k-
th ground truth mask. The sum over all N TPs and K Ps results in
the h×w-sized numerator and denominator, respectively, and the
element-wise division denoted by ⊘ yields the SRI (see figure 1,
upper row).

Moreover, in addition to extending the SRI to instance sege-
mentation, we take the logical next step to use precision as well,
and propose a h×w-sized spatial precision index (SPI) defined
as

SPI =

[
N∑

n=1

{
1 (x,y) ∈ [TPn∩Pn]

0 else

]

⊘
[

N∑

n=1

{
1 (x,y) ∈ TPn

0 else
+

J∑

j=1

{
1 (x,y) ∈ FPj

0 else

]
,

(4)

where the denominator represents all TP and FP instances, from
which the pixels (x,y) in h×w that belong to the respective in-
stance mask are incremented by 1. Just like the numerators of
the numerical precision and recall values, the numerators of the
SRI and SPI are equal. For the sake of clarity, figure 1 shows a
schematic formula of both spatial performance metrics.

In summary, with the local performance indices SRI and SPI,
each pixel (x,y) in h×w is assigned a recall and precision value,
respectively. In a spatial and pixel-wise manner, the former pe-
nalizes FNs, while the latter penalizes FPs. Since only the in-
tersection area of TP instances and corresponding ground truth
instances are incremented in the numerator, both metrics addi-
tionally penalize small inaccuracies in TP instances. This is visu-
alized in figure 1, where the red intersection area incremented by
1 in the numerator is smaller than the involved ground truth and
TP instances in the denominator of the SRI and SPI, respectively.

SRIh×w =

N∑

n=1

+1 +1 +1
+1 +1 +1 +1
+1 +1 +1

Union

Intersection

(P)n ∩ (TP)n
h×w

�
K∑

k=1

+1 +1 +1
+1 +1 +1 +1
+1 +1 +1

(P)k
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N∑
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+1 +1 +1
+1 +1 +1 +1
+1 +1 +1

Union

Intersection

(P)n ∩ (TP)n
h×w

�
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Figure 1: Schematic formula of the Spatial Recall Index and Spa-
tial Precision Index for Instance Segmentation.

Methods
Our general approach is to first take a large-scale instance

segmentation dataset with well distributed objects, then degrade
its images using an optical model that simulates a real lens with
spatially varying optical performance, and finally evaluate the per-
formance with the newly proposed SRI and SPI metrics on both
the original and the degraded datasets. By parameterizing the op-
tical model, we create several degraded datasets with different ef-
fects of defocus, which we refer to as test cases of a defocus study.
For each test case, we compute the difference between the spatial
performance on the original dataset and the spatial performance
on the degraded dataset by subtracting the baseline results from
the results under effects of defocus. Lastly, we compare the spa-
tial performance differences denoted by SPIdrop and SRIdrop,
respectively, with the optical performance of the parameterized
lens model.

Selection of dataset and Computer Vision system
Considering that spatially well distributed instances are the

most important aspect for a statistically reliable SRI and SPI com-
putation, we base our evaluation on the Berkeley Deep Drive
(BDD100K) dataset [13]. Its distinct feature is the diversity of
scenes ranging from city streets over tunnels, residential areas and
parking lots to gas stations in different times of day and various
cities throughout the US [13]. It contains 8k labeled images with
instance segmentation annotations, on which we evaluate the per-
formance for the category ”car”. The aforementioned scene diver-
sity contributes to the desired distribution of car instances. Figure
2 shows the distribution for all instances as well as different in-
stance area ranges.
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(c) Medium-sized instances
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Figure 2: Ground truth distribution of car instances for (a) all
instances and (b-d) different instance area ranges defined as small
= [0,322]px, medium = [322,962]px and large = [962,∞]px.
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For the performance evaluation to be representative of the
performance on unseen data, the SUT must have been trained on
a dataset other than BDD100K. Moreover, achieving a good base-
line performance on the challenging BDD100K dataset requires
the SUT to generalize well, which requires a high-quality dataset
for training. We choose the Cascade Mask R-CNN [1] from Meta
AI’s Detectron2 repository trained on the COCO [8] training and
validation set, which achieves a solid baseline performance on the
COCO 2017 test set [12].

Image degradation
To show the dependence of the instance segmentation per-

formance on the spatially variant image quality we use the opti-
cal model from [9]. The parameterizable model includes effects
such as chromatic aberration, astigmatism and space-variant blur
as present in real lens objectives. The model is available for dif-
ferent defocus parameters Z∆ ∈ {−1.25, . . . ,0, . . . ,+1.25}. Figure
3 demonstrates the effect of the spatially variant model for differ-
ent defocus parameters on a scene from [13]. The upper row (b-e)
displays the edge location and the lower row (f-i) the central lo-
cation as drawn in figure 3 a. The nominal position (d,h) adds the
least amount of blur, but still shows a difference compared to the
original scene (b,f). This difference is most visible in (b) as for the
nominal position the amount of blur increases gradually towards
the edges of images. The remaining image sections exhibit greater
blurring caused by the larger defocus parameters. However, ac-
cording to the respective local point spread functions (PSFs), ei-
ther the edges of the image (c) are significantly blurrier or the
middle areas (i). Note that this is a main characteristic of space-
variant PSF models. Therefore, it is expected that, besides scene
related difficulties in instance segmentation, according to the op-
tics model, either objects located at the edges or objects at middle
areas are harder to precisely segment.

(a) ROIs

(b) Original (c) Z∆ =−1.25 (d) Z∆ = 0 (e) Z∆ =+1.25

(f) Original (g) Z∆ =−1.25 (h) Z∆ = 0 (i) Z∆ =+1.25

Figure 3: RoIs in image (a) at edge (b-e) and central (f-i) locations
before and after degradation with Z∆ ∈ {−1.25,0,+1.25}. Note
that for the sake of clarity we trimmed from the original 1280×
720-sized BDD100k image in (a) portions of 50px at the edges as
well as 350px and 100px at the top and the bottom, respectively.

Standard performance evaluation
We first evaluate the overall performance using standard met-

rics. This involves measuring the accuracy of each instance seg-
mentation output based on the IoU. Following usual benchmarks,
an IoU threshold of 0.5 is used to assign TP and FP labels to
each instance segmentation output [4]. Simply put, an output is
assigned a TP label if it matches a GT instance with respect to
the IoU threshold, whereas all outputs that don’t match any GT
instance are assigned FP labels. If one instance segmentation out-
put matches multiple GTs, only the match with the highest IoU
counts. Conversely, if one GT matches multiple instance segmen-
tation outputs, only the match with highest scored segmentation
output counts (i.e. outputs are matched in descending order by
scores) [3]. Finally, by varying the score threshold from high to
low, the number of TPs, FPs and Ps are used to compute the preci-
sion and recall (see equation 2 and 1) or MR (= 1−precision) and
FPPI for each score threshold by suppressing all outputs that fall
below it. Figure 4 shows exemplary two GT instances at central
and edge locations, respectively, where the IoUs with correspond-
ing outputs of the CV algorithm drop after image degradation.
The IoUs of all instances exceed the IoU threshold of 0.5. Con-
sequently, apart from the fact that the outputs show also a drop
in the score through degradation, all standard metrics treat these
instances as TPs, at least for positions in the curves that represent
score thresholds below the outputted confidence scores.

For safety-critical applications such as automotive systems,
a reasonable choice of a score threshold or sensitivity for deploy-
ment is often based on an upper limit of acceptable FPPI inde-
pendent of the instance density in the dataset [3]. Therefore, we
base our overall evaluation on the standard MR vs. FPPI metric,
from which we extract operating points for the subsequent spatial
analyses. Analogous to [11], we standardize all operating points
based on the baseline curve rather than adjusting the correspond-
ing score thresholds to FP rates on degraded data. This process
mimics a realistic scenario where the system is deployed with a
specific choice of a score threshold based on the evaluation on a
test set and confronted with different defocus conditions through
lens aberrations afterwards. Pezzementi et al. [10] refer to operat-
ing points up to an average of 10−1 FPs per image as reasonable
or realistic for deployment of automotive applications. For the
spatial evaluation, we use FPPI = 0.1 and further shift the operat-
ing point for test purposes to rather unrealistic scenarios with an

(a) GT (edge location) (b) baseline (c) Z∆ =−1.25

(d) GT (central location) (e) baseline (f) Z∆ =+1.25

Figure 4: Ground truth instances on edge (a) and central (d) loca-
tions as well as examples of instance segmentation outputs where
the IoU drops after image degradation. The IoU for (a) drops from
0.94 in (b) to 0.62 in (c) and the IoU for (d) drops from 0.7 in (e)
to 0.65 in (f).
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average of 1 and 10 FPs per image to cover more positions of the
MR vs. FPPI curve.

Spatial performance evaluation
Given an operating point extracted from the MR vs. FPPI

curve, we have a set of matches between TPs and Ps, as well as
FPs and FNs to compute the SRI and SPI for each test case. For a
statistically reliable spatial evaluation, however, it is important to
take the ground truth distribution into consideration. Figure 2 in-
dicates that the distribution of cars throughout the dataset changes
for different instance sizes. To prevent the spatial evaluation re-
sults from being dependent on instance sizes, it is therefore crucial
to restrict the analyses to a sufficiently small instance area range.
We partitioned the instances into three area ranges as shown in
2 b-d, from which we consider the distribution of medium-sized
instances to be best suited for the spatial evaluation. Based on
the COCO API, all ground truth and FP instances beyond the area
range are ignored [8].

For each test case of the aforementioned defocus study, we
compute the SRI and SPI with the set of instances extracted
for specific operating points within the applied area range of
[322,962]px. Then, we compute the spatial performance drop
through the image degradation for each test case by

SRIdrop = SRIbase−SRIZ∆
, (5)

SPIdrop = SPIbase−SPIZ∆
, (6)

where the minuend refers to the baseline result and the subtrahend
indicates the results for the test case under effects of defocus sim-
ulated by the optical model with the respective defocus offset Z∆.
Finally, in the result section, we compare both the SRIdrop and
SPIdrop with the optical performance of the optical model.

Results
The overall instance segmentation performance is evaluated

for the baseline and all test cases of the defocus study by taking
into account all car instances in the dataset. Figure 5 shows the
resulting MR vs. FPPI curve. Similar to [11], we mark three
score thresholds that lead to an FPPI value of 0.1 (rectangle), 1
(triangle), and 10 (circle) in the baseline curve, representing the
operating points for subsequent analyses. As expected, the per-
formance drops only slightly through moderate defocus condi-
tions simulated by the optical model in nominal position, while
a larger performance drop is observed after parameterization with
Z∆ = ±1.25. The marker indicate that a reduced image quality
doesn’t necessarily lead to an overall increase in the average num-
ber of FPs per image. Instead of generating more FPs, the system
produces fewer outputs and misses more ground truth instances
when the image quality worsens. The latter is reflected by an in-
creased MR at the operating points, especially for Z∆ =±1.25.

Before evaluating the performance spatially with the SRI and
SPI, we show the precision vs. recall curve for medium-sized car
instances in figure 6. We place the marker based on the score
thresholds that lead to FPPI = {0.1,1.0,10.0} in the overall eval-
uation shown in figure 5. In fact, the marker in figure 6 represent
exactly the overall precision and recall values that result from the
set of instances that are considered in the SRI and SPI computa-
tion with equation 3 and 4, respectively.

The precision vs. recall curve for medium-sized instances
confirms the aforementioned observation that the image quality
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Figure 5: Miss Rate vs. FPPI evaluated on all car instances of
the dataset. The marker indicate different operating points (i.e.
score thresholds) at FPPI = {0.1,1.0,10.0} standardized based on
the baseline performance.

doesn’t negatively influence the number of FPs generated by the
system, especially for FPPI = 0.1 where the precision value is al-
most equal among all test cases. Only the test case with positive
defocus offset shows a considerable drop in the precision value
when shifting the score threshold towards unrealistic operating
points. The recall is simply the complement of the MR, so the
marker in figure 6 suggest analogous to the MR vs. FPPI curve
in figure 5 that a worse image quality correlates with the num-
ber of ground truth instances missed by the system. Figure 6 also
highlights the operating points where the largest performance dif-
ferences between the baseline and the performance under effects
of defocus with respect to the precision and recall values occur.
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Figure 6: Precision vs. Recall evaluated on medium-sized in-
stances of the dataset. Marker are set based on the operating
points extracted from the Miss Rate vs. FPPI metric in figure 5.

How the performance drop is constructed is visualized in fig-
ure 7, where the baseline SRI is contrasted with the SRI under
effects of defocus. Subtracting the latter from the former results
in the SRIdrop shown in figure 8 a. We show the spatial per-
formance drop for these examples in comparison with the optical
performance of the underlying lens model. Figure 8 a shows the
SRIdrop for Z∆ = −1.25 at FPPI = 0.1 and figure 8 c presents
the SPIdrop for Z∆ = +1.25 at FPPI = 10. The optical perfor-
mance is shown alongside in figure 8 b and d, respectively.

Note that for statistical purposes we compute the local per-
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(a) SRI: Baseline
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(b) SRI: Z∆ =−1.25

Figure 7: Comparison of the baseline SRI and the SRI on the
degraded dataset with defocus offset Z∆ = −1.25 for medium-
sized car instances with an operating point standardized based on
FPPI = 0.1 analogous to [9]. See resulting SRIdrop in figure 8 a.

formance indices only for pixels that belong to at least 20 in-
stances throughout the dataset. This results in the blue regions
in the upper and lower parts of the heatmaps, where the number
of medium-sized car instances is particularly low based on the
ground truth distribution in figure 2 c.
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(a) SRI drop: Z∆ =−1.25
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(b) FWHM map: Z∆ =−1.25
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(c) SPI drop: Z∆ =+1.25
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(d) FWHM map: Z∆ =+1.25

Figure 8: Comparison of the SRI drop for FPPI = 0.1 and SPI
drop for FPPI = 10.0 with the optical performance of the under-
lying lens model for defocus offsets Z∆ =±1.25 as in [9].

The Full Width at Half Maximum (FWHM) maps visualize
optical performance of the filtering, with higher values indicat-
ing a stronger blurring effect [9]. When comparing the FWHM
maps with the spatial performance drop of the instance segmenta-
tion system, it can be seen that the axially symmetric behavior of
the simulated lens with the respective defocus offsets is reflected
both on the SRIdrop and SPIdrop. The former is shown for the
test case with defocus offset Z∆ = −1.25 where the drop in per-
formance increases gradually towards the edges, similar to the
optical performance of the images. The SPIdrop, on the other
hand, is shown for the test case with defocus offset Z∆ = +1.25,
where the largest performance drop occurs around the center of
the images where the parameterized lens exhibits the worst opti-
cal performance.

Conclusion
In this work, we introduce with the SRI and SPI two metrics

for the spatial performance assessment of instance segmentation
systems. The former, SRI, was already introduced for object de-
tection in [9] and is now adapted to instance segmentation. It
assigns a recall value to each pixel of h×w-sized images in the
dataset. The latter, SPI, complements the SRI by assigning a local
precision value to each pixel in h×w.

Using the optical model from [9] with different parameter-

izations, we produce several datasets by degrading all labeled
images of the BDD100K for instance segmentation. We evalu-
ate the performance on these degraded datasets and contrast them
with the baseline performance on the respective set of images in
the original BDD100K dataset. The standard metrics show the
expected effects on the overall performance through the image
degradation with an increase in the LAMR and a decrease in the
AP.

With the newly proposed spatial evaluation metrics, a cor-
relation is observed between the spatial performance drop of an
instance segmentation system and the spatially variant quality of
images in the degraded datasets. The axially symmetric optical
performances of the underlying, physically realistic, lens model
with different defocus parameterizations (shown with FWHM
maps) are comparable with the spatial performance drops evalu-
ated with the SRI and SPI. The SRI shows a drop in performance
caused by the degraded image quality even at a realistic operating
point for deployment. This highlights the need for robustness tests
of CV algorithms to naturally occurring lens aberrations by taking
into account the spatial domain. For the SPI (and the numerical
precision value), on the other hand, a drop in performance is only
observed after lowering the score threshold to rather unrealistic
operating points.

We restrict the spatial evaluation to instances of a certain
area range with relatively equally distributed instances in order
to reduce the dependency of the SRI and SPI on instance sizes.
However, apart from our general suggestion to including the spa-
tial domain into the performance assessment of CV algorithms,
removing the dependency of the SRI and SPI on instance sizes
entirely should be focus of future work.

References
[1] Zhaowei Cai and Nuno Vasconcelos. “Cascade R-CNN:

High Quality Object Detection and Instance Segmenta-
tion”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 43.5 (May 2021). Conference Name:
IEEE Transactions on Pattern Analysis and Machine In-
telligence, pp. 1483–1498.

[2] Jesse Davis and Mark Goadrich. “The Relationship Be-
tween Precision-Recall and ROC Curves”. In: vol. 06. June
2006.

[3] Piotr Dollar et al. “Pedestrian Detection: An Evaluation
of the State of the Art”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 34.4 (Apr. 2012). Con-
ference Name: IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 743–761.

[4] Mark Everingham et al. “The Pascal Visual Object Classes
(VOC) Challenge”. en. In: International Journal of Com-
puter Vision 88.2 (June 2010), pp. 303–338.

[5] Christian Krebs, Patrick Müller, and Alexander Braun.
“Impact of Windshield Optical Aberrations on Visual
Range Camera Based Classification Tasks Performed by
CNNs”. In: London Imaging Meeting 2021.1 (Sept. 20,
2021), pp. 83–87.

[6] Matthias Lehmann et al. “Modeling realistic optical aber-
rations to reuse existing drive scene recordings for au-

IS&T International Symposium on Electronic Imaging 2022
Autonomous Vehicles and Machines 2022 101-5



tonomous driving validation”. In: Journal of Electronic
Imaging 28.01 (2019), p. 1.

[7] Matthias Lehmann et al. “Resolution and accuracy of non-
linear regression of point spread function with artificial
neural networks”. In: Optical Engineering 58.04 (2019),
p. 1.

[8] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects
in Context”. en. In: Computer Vision – ECCV 2014. Ed.
by David Fleet et al. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2014, pp. 740–
755.

[9] Patrick Müller, Mattis Brummel, and Alexander Braun.
“Spatial recall index for machine learning algorithms”. In:
London Imaging Meeting 2021.1 (Sept. 2021), pp. 58–62.

[10] Zachary Pezzementi et al. “Comparing Apples and Or-
anges: Off-Road Pedestrian Detection on the NREC Agri-
cultural Person-Detection Dataset”. In: (July 2017).

[11] Zachary Pezzementi et al. “Putting Image Manipulations
in Context: Robustness Testing for Safe Perception”. en.
In: 2018 IEEE International Symposium on Safety, Secu-
rity, and Rescue Robotics (SSRR). Philadelphia, PA: IEEE,
Aug. 2018, pp. 1–8.

[12] Yuxin Wu et al. Detectron2. https : / / github . com /
facebookresearch/detectron2. 2019.

[13] Fisher Yu et al. “BDD100K: A Diverse Driving Dataset for
Heterogeneous Multitask Learning”. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR). ISSN: 2575-7075. June 2020, pp. 2633–2642.

Author Biography
Mattis Brummel is a Master student in Electrical Engineering

and Information Technology at the University of Applied Sciences in
Düsseldorf. He received his Bachelor’s degree from FH Bielefeld. His
research interests cover Deep Learning and Computer Vision.

Patrick Müller received his B.Eng. in 2016 and his M.Sc. in 2018.
His Master’s thesis examined the influence of a Point Spread Function
Model to Digital Image Processing algorithms. He is currently pursuing
his PhD with a focus on the application of optical models to digital im-
ages, their validation, performance and correlation with the performance
of Computer Vision algorithms.

Alexander Braun received his diploma in physics with a focus on
laser fluorescent spectroscopy from the University of Göttingen in 2001.
His PhD research in quantum optics was carried out at the University of
Hamburg, resulting in a Doctorate from the University of Siegen in 2007.
He started working as an optical designer for camera-based ADAS with
the company Kostal, and became a Professor of Physics at the Univer-
sity of Applied Sciences in Düsseldorf in 2013, where he now researches
optical metrology and optical models for simulation in the context of au-
tonomous driving. He’s member of DPG, SPIE and IS&T, participating in
norming efforts at IEEE (P2020) and VDI (FA 8.13), and currently serves
on the advisory board for the AutoSens conference.

101-6
IS&T International Symposium on Electronic Imaging 2022

Autonomous Vehicles and Machines 2022


