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Abstract
Test drives for the development of camera-based automotive

algorithms like object detection or instance segmentation are very
expensive and time-consuming. Therefore, the re-use of existing
databases like COCO or Berkeley Deep Drive by intentionally
varying the image quality in a post-processing step promises to
save time and money, while giving access to novel image quality
properties. One possible variation we investigate is the sharpness
of the camera system, by applying spatially varying optical blur
models as low-pass filters on the image data. Any such opera-
tion significantly changes the amount and distribution of noise, a
central property of image quality, which in this context is an un-
desired side-effect. In this article, a novel method is presented
to reconstruct the original camera sensor noise for the filtered
image. This is different from denoising. The method estimates
the original camera sensor noise using the combination of princi-
pal component analysis (PCA) and a variance-stabilizing trans-
formation. The noise is then reconstructed for the filtered image
with the PCA applied locally on small image sections, and an in-
verse variance-stabilizing transformation. Although the resulting
noise distribution can slightly deviate from the original, this novel
method does not introduce any image artifacts as denoising would
do. We present the method as applied to synthetic and real driv-
ing scenes at different noise levels and discuss the accuracy of the
reconstruction visually and with statistical parameters.

Introduction
Noise is an important characteristic of image quality in gen-

eral, and for camera-based advanced driver assistance systems
(ADAS) and autonomous driving (AD) in particular. Noise has
many established metrics associated with it, like signal-to-noise-
ratio (SNR) and Peak-SNR (PSNR) or dark-signal non-uniformity
(DSNU), and current novel proposals like Contrast Detection
Probability (CDP)[4, 2] or Sensitivity (SNRi)[10]. The EMVA
1288 standard[24] is a well-known and well-used process to char-
acterize image sensor noise properties, and the IEEE P2020 work-
ing group on automotive image quality is extending this founda-
tion for the special needs of the automotive industry[7].

Noise has a distinct influence on the downstream evaluation
algorithms working on images. In the context of ADAS/AD these
algorithms for detection and planning are predominantly based
on machine learning (ML) and artificial neural networks (ANN),
and as such sensitive in general to this influence[21, 3]. In real
camera systems there is an important distinction between the two
use-cases of human perception and computer vision, and this di-
rectly relates to the influence the noise has. Humans prefer im-
ages free of noise and with sharp edges, whereas computer vision
algorithms prefer the opposite, i.e. a normal texture appearance

including noise and edges that are left untreated. This use-case
dependency is reflected in the configuration of the image signal
processor (ISP), a central preprocessing component used in every
current ADAS system. A typical ISP performs amongst others
gain and color correction, and of course denoising and sharpen-
ing, before handing this processed image data to the actual evalu-
ation algorithm.

Our research focuses on the influence optical and imaging
properties have on typical ML-based computer vision tasks, like
object detection or recognition, or semantic and instance segmen-
tation. We have developed novel degradation models that trans-
form a given image as if recorded by a different lens with different
optical properties.[15, 14, 17, 13] This lens is applied like a fil-
tering process on a given image database, and thus allows for the
parameterized simulation of different optical properties.

This work examines the influence of our optical models on
the noise present in prerecorded scenes. As a filtering operation
the optical model will always be a low-pass filter, decreasing and
correlating the noise present in the images. Therefore, we present
a novel method to reconstruct the original noise. First, we quan-
titatively determine the amount of noise present, then compare
the noise before and after the optical filtering, in order to de-
termine the difference between the two. Finally, the amount of
missing noise can be added back to the filtered image, giving a
blurred image with the correct amount of noise, as a real camera
would. This process then allows for the re-use of existing drive
scene databases, by first applying the optical model and then re-
constructing the noise, such that the robustness of the evaluation
algorithm with regard to the optical changes can be quantified.

One aspect of this work is particularly worth highlighting:
all operations are spatially variable. I.e. both the optical blurring
varies over field, and the noise is scene dependent as well, and
thus varies over field. We take both variations into account, and
this – beside the actual use-case – is the main novelty presented
in this paper.

The Noise Model
As the main topic of this work is the reconstruction of noise

parameters in filtered images, it is critical to define a noise model
that realistically represents image sensor noise. In the context of
automotive cameras, specifically CCD (charge-coupled devices)
and CMOS (complementary metal-oxide-semiconductor) sensors
are of interest. The signal-dependent noise model is introduced in
this section. As a means to transform signal-dependent noise into
signal-independent noise, a variance-stabilizing transformation is
introduced.
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The Signal-Dependent Linear Model
In this work, a signal-dependent noise model is assumed,

which is similar to the well-known EMVA 1288 standard for cam-
era characterisation [24]. The model is used in Pytaykh’s work
[23] as well as in [8]. The noise model is valid for both CCD
and CMOS sensors as the underlying physical pixel model of a
number of electrons being generated through absorption of pho-
tons and then converted into a digital gray value is the same re-
gardless of sensor technology [8, 24]. As the exact irradiation
conditions in the task at hand are unknown, the noise model con-
sidered here is the same for all pixels. Physical properties such
as the system gain or the quantum efficiency [24] are abstracted
into noise parameters a and b [23]. Two main noise sources are
considered: Noise stemming from temperature induced electrons,
readout noise and other hardware effects as ”dark noise” which
is present even without any irradiation as well as photon shot
noise. [9] The dark noise is assumed to be approximately nor-
mally distributed with mean zero. If ξ (p) is considered a random
variable ξ (p)∼N (0,1) with p ∈ Z2 being a pixel location, then
the dark signal can thus be expressed as

√
bξ (p)∼N (0,b) [23].

The dark noise is expressed as a function of the location, but the
variance of the dark signal itself does not depend on the pixel lo-
cation. The number of photons incident on the pixel surface how-
ever depends on the pixel location, as the accumulation of photons
during exposure is a counting process following a Poisson distri-
bution depending on a pixel’s irradiation [24]. Considering now
a Poisson-distributed random variable ω (p) ∼ P

(
µp (p)

)
[23],

where µp (p) is the mean number of photons incident on a pixel,
an image y = y(p) can be expressed as

y(p) = aω (p)+
√

bξ (p) (1)

[23], where a is a parameter depending on the sensor’s quantum
efficiency and system gain [9]. The image y = y(p) can be related
to the noise free image x(p). If further ω (p) is replaced with the
normal-distributed ωN (p), equation 1 can be expressed as

y(p) = aωN (p)+
√

bξ (p) = x(p)+
√

ax(p)+bξ (p) (2)

[23]. In this expression, the noise does not consist of a mix of
signal-dependent Poisson and signal-independent Gaussian noise
as in equation 1, but only of signal-dependent Gaussian noise.

Variance Stabilizing Transformation
In image processing, variance stabilizing transformation is

a non-linear gray value transformation that is applied in order to
equalize y(p) = x(p)+

√
ax(p)+bξ (p) has to be transformed

into

yS (p) = xS (p)+
√

σ2
S ξ (p) , (3)

where xS (p) is the transformed noise-free image and σ2
S is the sta-

bilized variance which is signal-independent. Variance stabilizing
transformation is a non-linear function of a random variable ob-
tained by approximating the variance using a first order Taylor
series around the mean vector.[8] Further, setting the variance to
a constant value and subsequently integrating yields the variance
stabilizing transformation of y(p) with parameters a and b:

yS (p) = f (y(p) ;a,b) =
2σ

a

√
ay(p)+b (4)

[23]. The noise in the resulting image yS (p) is now approximately
normally distributed with signal-independent variance σ .

As the approximation of a non-linear equation requires suf-
ficiently linear behaviour around the mean [8], the VST is less ac-
curate when the non-linear component of the approximated equa-
tion is large. Considering modern image sensors, we assume the
parameter a to be well within the range a≤ 20 for which Pyatykh
[23] has shown the variance stabilizing transformation in equation
4 to be accurate.

PCA for Noise Parameter Estimation
Principal component analysis (PCA) is a method for data

dimensionality reduction. It was first introduced by Karl Pear-
son [20] and later described and named by Harold Hotelling [6].
PCA and variants are used in a variety of applications, such as
image compression [1], or denoising and pattern recognition [12,
5]. For accurate estimation of image noise parameters of a signal
dependent noise model, PCA is combined with variance stabiliz-
ing transformation and “normality assessment” [23, 22]. In the
context of this work, it is used for noise parameter estimation and
the method to reconstruct the noise parameters in a filtered image
is also derived from Pyatykh’s method. PCA and its applications
are well described in literature such as in [6, 11, 22, 23].

The noise variance estimation method by application of PCA
as described by Pyatykh [22] can be summarized for images cor-
rupted with normally distributed signal-independent noise as fol-
lows: A noise-free image, represented as a signal x(p), where
p ∈ Z2 is the pixel location, is considered to be unknown and
corrupted with normally distributed noise, represented as a noise
signal n(p) whose elements are normally distributed random vari-
ables n(p) ∼ N(0,σ2) with mean 0 and variance σ2. The noisy
image is then given by y(p) = x(p)+ n(p). The signal notation
for these images is equivalent to a matrix representation.

Extraction of a dataset Y = [y1 y2 . . . yn] from such an im-
age is performed by sliding a rectangular binary pixel mask M of
dimensions B′×B′ over the image, extracting the underlying pixel
values, arranging them in a vector and repeating the step to yield
n column-vectors of size p× 1 arranged in Y. It is assumed that
the underlying unknown noise free image could be represented in
less than p dimensions if sampled in the same way. The latent
variables λ1, ...,λp are thus computed, where λp = σ2. [22] The
challenge in application of Pyatykh’s method is mostly to find a
good number p of principal components to compute, which has
to be large enough to warrant that λp is not influenced by image
content anymore and small enough to be able to extract a large
number of vectors from the image in order to obtain a reliable
dataset. These challenges are addressed as well in [22].

Note that PCA as described before is also only applicable
for signals which are corrupted with signal-independent noise. In
order to apply the technique to estimate the noise parameters a
and b of the approximated noise model

y(p) = x(p)+
√

ax(p)+bξ (p) , (5)

the technique is combined with a variance stabilizing transforma-
tion as described in [23]. The method mainly consists of opti-
mizing parameters a and b such that the noise in the transformed
image

yS (p) =
2σ

a

√
ay(p)+b (6)
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is signal-independent normally distributed noise with variance σ .
An iterative optimization process is used where in each step a
new set of estimated parameters is used to transform the original
image, the noise in this image is analysed and the normality of
the noise distribution is tested using Mardia’s test for multivariate
normality [16].

Optical model and filtering
An optical system can be characterised by its intensity point

spread function (PSF), which describes the spread of a point
source after propagation through the optical system. The PSF de-
scribes effects such as diffraction phenomena and lens aberrations
and is considered a non-linear and space-variant function.[19, 15,
14]. Often the space-variance is neglected, if it can be assured
that details of the introduced blur don’t matter. However, in the
context of physical-realistic models, the local PSF varies across
the imager. In this case, different methods exist to apply the PSFs
on images.[19] In this article, we demonstrate the noise recon-
struction method on images degraded with the space-variant blur
model from [18]. The filtered images then mimic an image taken
with a Cooke triplet, which produces lens aberrations such as
astigmatism and chromatic aberration. As with real lenses, these
aberrations can vary across the image, unlike spatially invariant
models.

Influence of Filtering Operations on the Noise
Distribution

Generally speaking, any filtering operation transforms
“white” noise, in which the spectral density of the noise is
independent of the frequency, into “coloured” noise whose
spectral density depends on the frequency. For example, a low
pass applied to a noisy signal will not only influence the signal
itself but also the noise, whose high frequency components will
be suppressed. Speaking in terms of statistical noise analysis,
this means that uncorrelated noise is transformed into correlated
noise. Concerning the noise model given before, a filtered image
still has some parameters a and b, but the random variable ξ (p)
is influenced in a way that after filtering the noise variables
of adjacent pixels are not uncorrelated to each other anymore.
Depending on the particular filter, the noise of all pixels in a
specific image region is correlated. If a real optical system’s
PSF is regarded as having similar low-pass characteristics to a
gaussian filtering operation [15, 13], then the variance of the
noise in the filtered image is lower than that in the original image.
However, the noise distribution in a filtered image is only easy
to describe mathematically as long as the filtering operation is
space-invariant, the filter mask is symmetric and the noise is
signal-independent, making a precise analysis of the actual noise
parameters in a filtered image almost infeasible.

Noise Reconstruction on Filtered Images
Our method for noise reconstruction on filtered images is

based on the principle of adding noise back to the filtered im-
age such that the overall noise variance in the resulting image is
the same as the noise variance in the original image. This concept
is visualized in figure 1. Figure 1a shows normally distributed
uncorrelated noise. The same noise distribution is shown in fig-
ure 1b after applying a Gaussian low-pass filter. The characteris-

tic, smoother appearance of correlated noise can clearly be noted.
Comparing the histograms of the unfiltered (1d) and filtered distri-
bution (1e), the effect of low-pass filtering on the variance already
described in the previous section is obvious. 1c and 1f are then ob-
tained by adding normally distributed noise back on to the filtered
distribution such that is has the same variance as the unfiltered dis-
tribution, seen in the histogram in 1f. Regarding the visual result
of this reconstruction step, 1c displays strong similarity to 1a. Our
method can therefore be built around the basic principle of simply
adding noise under the assumption that the effect of low-pass fil-
tering on image noise is strong enough such that the influence of
the filtered noise on the visual result of the reconstructed image is
low. The quality of reconstruction then depends on the variance of
the correlated noise after filtering. Figure 2 serves to explain the

(a) original noise (b) low pass filtered (c) filtered & add. noise

(d) histogram of origi-
nal noise

(e) histogram of filtered
noise

(f) histogram of recon-
structed noise

Figure 1: Simple illustration of the image signal path: A noisy
image is filtered using a Gaussian filter and noise reconstruction
is performed by adding noise back onto the filtered image.

use of variance stabilizing transformation for noise reconstruc-
tion in this context on a one-dimensional signal: Subfigure 2a
presents a noisy signal with some noise parameter θ describing
signal-dependent noise, visible in the different variance at lower
and higher signal amplitudes. Figure 2b then demonstrates the
variance stabilized original signal. Time-variant filtering of the
original signal is simulated in figure 2c by applying three low-
pass filters with different strength on three signal parts. On this
filtered signal, a VST with respect to the original noise parameter
θ is applied, the result of this is shown in figure 2d. On first sight,
the use of this step is not obvious. However, noise reconstruction
can now be performed by adding noise in such a way that this
signal presents a valid variance stabilized version of the desired
final signal: This is illustrated in figure 2e, where noise has been
added such that we now have the same signal-independent vari-
ance in all signal segments. The final signal with reconstructed
noise of the desired signal-dependent behaviour is then obtained
by applying the inverse of the VST with respect to θ . While a one-
dimensional signal serves well to demonstrate the general idea,
this method can be applied to images, i.e. two-dimensional sig-
nals, as well. In order to use this basic framework of the presented
method, some requirements have to be fulfilled: The original im-
age as well as the corresponding noise model has to be known
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such that the original noise parameters can be estimated. Ad-
ditionally, the existence of a variance stabilizing transformation
corresponding to the noise model is crucial. With regards to the
application considered in this work, the original image is always
available and the noise model as well as the corresponding VST
has already been described. To estimate the original noise param-
eters, we use Pyatykh’s noise parameter estimation method. It
now remains to describe how the task of determining the correct
amount of noise to add back onto each image pixel to equalize the
noise variance in the reconstruction step (represented by figure 2e
in our one-dimensional example) can be tackled.

Estimation of local noise variance in a spatially varying fil-
tered and transformed image is done by local application of PCA.
This means that the basic notion of Pyatykh’s noise variance esti-
mation method [22], extracting a dataset and computing the vari-
ance explained by the smallest principal component, is performed
on small image regions. These image regions are chosen such that
each pixel of an M×N image is at the center of one region of size
W ×W , requiring some form of padding at the image edges. In
figure 3, this concept is illustrated. To ensure approximate noise
variance estimation at the image edges, we choose symmetric
padding. The padded image is then of size (M+2w′)× (N+2w′)
with w′ = ⌊W/2⌋. As described in the section ”PCA for Noise
Parameter Estimation”, a dataset is then extracted using a slid-
ing window of size B×B and PCA is performed to estimate the
noise variance. The result is assumed to approximately repre-
sent the remaining noise variance on the image window’s cen-
tral pixel. The difference between this value σ2

PCA and the de-
sired variance σV ST used for the VST is computed and a sample
from a normally distributed random variable X ∼N(0,σ2), where

σ =
√

σ2
V ST −σ2

PCA, is added to the pixel’s grey value in a copy of
the filtered and transformed image in question. This procedure is
repeated for every pixel, such that the W ×W image window can
be regarded as a sliding window over the complete image area.
It is crucial to write the final pixel grey values into a copy of the
image as to not skew the variance estimation process. This copy
is finally transformed into the desired image with reconstructed
signal-dependent noise by the corresponding inverse VST, which
in the case of the noise model considered in this work is

yrec(p) =
ay2

S(p)
4σ2

V ST
− b

a
. (7)

In algorithm 1, the complete procedure is presented as a function
taking the estimated noise parameters as well as the dimensions
W and B as inputs. For rgb images, this algorithm has to be per-
formed separately on each color channel.

Our method is applicable under the assumption that the im-
age section size W can be chosen to be small enough such that the
variance computed by PCA is representative of the central pixel’s
actual noise despite the strongly space variant filtering and the
subsequent transformation with respect to the original noise pa-
rameters. As a smaller image window and thus smaller dataset
size necessarily results in a higher variance of the noise estima-
tion, underestimation of the actual noise variance at smaller win-
dow sizes W may be balanced out by this effect. We find W = 9
and B = 3 to be the smallest parameters yielding good results, re-
sulting in a dataset of size 49×9 at each segment and 9 principal
components computed by PCA.

Algorithm 1: Noise Reconstruction

1 function ReconstructNoise (y f ,a,b,W,B);
Input : Filtered version y f of M×N image y, noise

parameters of original image y a and b,
window size W , block size B

Output: Reconstructed image yrec
2 y f ,vst ←V ST (y f ,a,b,σV ST = 1)
3 pad image y f ,vst
4 for m = 0,1, ...,M−1 do
5 for n = 0,1, ...,N−1 do
6 Y ← extract image window of size W ×W

around pixel y f ,vst [m][n]
7 D← extract (W −B+1)2×B2 dataset from Y

using a sliding window of size B×B
8 σ2

PCA← compute value λB2(D) by PCA on D
as an estimate of the variance of remaining
uncorrelated noise

9 σ ←
√

σ2
V ST −σ2

PCA

10 yrec,vst [m][n]← y f ,vst [m][n]+sample(N(0,σ2))

11 end
12 end
13 return yrec← inverseV ST (yrec,vst ,a,b,σV ST )

orig. a rec. a
0.96 0.91
1.03 1.01
1.05 1.08
1.0 0.96
1.02 0.99
0.85 0.84

orig. b rec. b
54.57 57.52
47.63 47.34
46.81 43.02
50.56 53.07
49.15 48.51
60.11 59.47

Table 1: Example results from the red channel of six images with
noise parameters a≈ 1 and b≈ 50

Results
In this section, we present results from application of our

method on noisy images degraded with an optical model, focus-
ing on showing the correct reconstruction of the original noise
parameters as well as the space-variant behavior of the method.
We also briefly point out the influence of noise reconstruction on
PSNR. Finally, as an exemplary demonstration of the effect on
computer vision algorithms, we degrade and reconstruct a num-
ber of images and observe the influence these operations have on
the performance of a detection algorithm.

Noise parameter reconstruction
In table 1, the noise parameters of the red channel of six

images from the BDD100k dataset [25] corrupted with synthetic
noise with parameters a ≈ 1 and b ≈ 50 are presented before
degradation (columns ”orig. a” and ”orig. b”) as well as after
degradation and subsequent application of our noise reconstruc-
tion technique (columns ”rec. a” and ”rec. b”). In order to eval-
uate the method without any unwanted effects of quantization at
very low noise levels, we chose to add synthetic noise according
to the considered noise model to real images with negligibly low
noise. Noise parameters are additionally estimated before apply-
ing our method as to simulate the whole process and point out
the influence of the parameter estimation method in use on the
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(a) noisy original signal y(t)
with noise parameter θ

(b) noisy original signal after
application of VST: vst(y(t),θ)

(c) filtered original signal y f (t)

(d) filtered original signal
after application of VST:
vst(y f (t),θ)

(e) vst(y f (t),θ) plus added
noise to equalize variance

(f) signal from (d) after applica-
tion of inverse VST with respect
to θ

Figure 2: process of filtering and noise reconstruction shown on a 1d signal

W

W

B
B

N

Mw’

N+2w’

M+2w’

Figure 3: noise reconstruction method dimensions

Figure 4: Image from BDD100k with added noise and degraded
by an optical model, with ROIs from figures 5 (red) and 6 (green)

method’s applicability. Estimation of the parameters of the recon-
structed method are performed using Pyatykh’s method as well
and with the same hyperparameters. Comparing the values of re-
constructed and original parameters, our method achieves suffi-
cient accuracy. It has to be noted, however, that the outcome also
depends strongly on the accuracy of the noise parameter estima-
tion method in use at the respective noise parameters.

The space variant behavior of our method is shown in fig-
ure 5, where a section of an image from the BDD dataset cor-
rupted with strong synthetic noise is presented before filtering,
after degradation with an optical model and after noise recon-
struction. Comparing the filtered image section in figure 5b with
the noisy original image in figure 5c, the space-variant filtering
is obvious: In the right part of the image region in figure 5b, the

noise still resembles that in figure 5a, while the low-pass effect
is clearly noticeable towards the left image edge. After noise
reconstruction using our algorithm separately on all three color
channels with W = 9 and B = 3, the noise in the final image, of
which the respective section is shown in figure 5c, has the same
visual characteristics as the original noise. Comparing the recon-
structed image with figure 5b, we note that the effect of the noise
reconstruction algorithm is lower in areas where the effect of the
filter on the noise is as well, as expected. With regards to the
importance of noise reconstruction in the case of high noise lev-
els, we consider figure 6. A section of a driving scene from the
BDD100k depicting a person is shown in figure 6a and after cor-
ruption with synthetic noise in figure 6b. The PSNR of the noisy
image compared to the noise-free image is 25.7dB. After degra-
dation using an optical model, seen in figure 6c, the PSNR is now
25.6dB. Considering the strong low-pass filter effect on the un-
derlying image content, it is not surprising that the PSNR drops
slightly despite the lower noise variance detectable by visual in-
spection. Nonetheless, some remaining correlated noise is visible
in figure 6c. After application of the noise reconstruction algo-
rithm to the degraded image, the resulting noise in figure 6d has
the desired properties and visually resembles that in figure 6a.
The PSNR drops significantly to 22.7dB. Considering the impor-
tance of noise reconstruction in the context of computer vision
algorithms, this leads to the conclusion that when driving scenes
corrupted with noise are used to train such algorithms and the im-
age quality is varied by degradation with optical models, then the
noise has to be taken into account. Otherwise, the original camera
sensor noise would be neglected to some extent due to low-pass
filtering, which could, considering the sensitivity of neural net-
works often used in computer vision, lead to unexpected results
when testing an algorithm on the road.

Impact on CV detection algorithms
The importance of the difference in visual quality of filtered

images before and after noise reconstruction is further corrobo-
rated by the results presented in Tab. 2, where the average pre-
cision results from an object detection algorithm on 21 daytime
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(a) Noisy original

(b) Spatially-variant filtering applied to (a)

(c) Noise reconstruction applied to (b)

Figure 5: Demonstrating the space variant behavior of the presented noise reconstruction method

(a) PSNR→ (b) 25.7dB (c) 25.6dB (d) 22.7dB

Figure 6: ROI from a driving scene from BDD100k

images from the BDD100k dataset are noted. We assume the orig-
inal images to be almost noise-free. The drop in average precision
after adding noise with parameters a = 1 and b = 50 is −7% in
person detection and −3.9% in car detection. After degradation
using a strongly defocused Cooke-Triplet optical model, average
precision in these tasks compared to the noise-free unfiltered im-
age drops by −17.2% and −12.2% respectively. Reflecting the
influence of noise on the image quality, average precision after
application of our method is even lower, at −28.8% for person
detection and −21.6% for car detection compared to the preci-
sion on ground truth.

AP person AP car
ground truth 69.31 81.82
noisy image ∆ −7.3% −3.9%
degraded −17.2% −12.2%
reconstructed −28.8% −21.6%

Table 2: Average precision results from 21 daytime images for
strongly defocused Cooke-Triplet optical model

Conclusion
In this work, we present an approach to original image noise

reconstruction on spatially varying filtered images. To tackle the
main challenges of signal-dependent noise and spatially-varying
filter characteristics, we combine variance stabilizing transforma-
tion with local application of a noise variance estimation method.

Our method performs successful image noise parameter recon-
struction. Results indicate a drop in average precision of computer
vision algorithms after application of our method, demonstrating
the importance of noise reconstruction.

For future work, further evaluation of the algorithm on real
driving scenes is needed. As no denoising is performed before
noise reconstruction, comparison of our method to other possi-
ble approaches involving denoising before noise reconstruction
might prove useful with regards to the influence on computer
vision algorithms. Concerning differences between the original
noise distribution and the final reconstructed distribution due to
the remaining correlated noise in the latter, which in this work we
assume to be negligible due to the relatively low variance of cor-
related noise but which may change the perceived image content,
the use of neural networks such as autoencoders, already applied
successfully in image denoising or image generation, may prove
an interesting consideration in future work.
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