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Introduction: Video-based clinical rating plays an important role in assessing
dystonia and monitoring the effect of treatment in dyskinetic cerebral palsy (CP).
However, evaluation by clinicians is time-consuming, and the quality of rating is
dependent on experience. The aim of the current study is to provide a proof-of-
concept for a machine learning approach to automatically assess scoring of
dystonia using 2D stick figures extracted from videos. Model performance was
compared to human performance.

Methods: A total of 187 video sequences of 34 individuals with dyskinetic CP
(8–23 years, all non-ambulatory) were filmed at rest during lying and supported
sitting. Videos were scored by three raters according to the Dyskinesia Impairment
Scale (DIS) for arm and leg dystonia (normalized scores ranging from 0–1).
Coordinates in pixels of the left and right wrist, elbow, shoulder, hip, knee and
ankle were extracted using DeepLabCut, an open source toolbox that builds on a
pose estimation algorithm. Within a subset, tracking accuracy was assessed for a
pretrained human model and for models trained with an increasing number of
manually labeled frames. The mean absolute error (MAE) between DeepLabCut’s
prediction of the position of body points and manual labels was calculated.
Subsequently, movement and position features were calculated from extracted
body point coordinates. These features were fed into a Random Forest Regressor
to train amodel to predict the clinical scores. Themodel performance trained with
data from one rater evaluated by MAEs (model-rater) was compared to inter-rater
accuracy.

Results: A tracking accuracy of 4.5 pixels (approximately 1.5 cm) could be
achieved by adding 15–20 manually labeled frames per video. The MAEs for
the trained models ranged from 0.21 ± 0.15 for arm dystonia to 0.14 ± 0.10 for leg
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dystonia (normalized DIS scores). The inter-rater MAEs were 0.21 ± 0.22 and 0.16 ±
0.20, respectively.

Conclusion: This proof-of-concept study shows the potential of using stick figures
extracted from common videos in a machine learning approach to automatically
assess dystonia. Sufficient tracking accuracy can be reached by manually adding
labels within 15–20 frames per video. With a relatively small data set, it is possible to
train a model that can automatically assess dystonia with a performance
comparable to human scoring.

KEYWORDS

cerebral palsy, movement disorders, machine learning, motion capture, markerless
skeleton tracking, human pose estimation

1 Introduction

Videos have been used to visually assess neurologic movement
disorders for more than 100 years (Aubert, 2002; Barboi et al., 2004;
Reynolds et al., 2011). They have shown great value in diagnostics,
documentation of disease progression, and evaluation of treatment
outcome (Sambati et al., 2019). Standardized video protocols have
been established for clinical rating scales, such as the Unified
Dyskinesia Rating Scale for Parkinson’s disease (Goetz et al.,
2008) and the Dyskinesia Impairment Scale (DIS) in dyskinetic
cerebral palsy (CP) (Monbaliu et al., 2012). With the widespread use
of smartphones, self-recorded home videos have also shown their
clinical value (Billnitzer and Jankovic, 2021).

However, a major drawback of using videos in the evaluation of
movement disorders is that videos must be assessed by a clinician,
and evaluation is dependent on training and experience and remains
subjective. In addition, accurate rating of videos is time-consuming.
Open sharing of video data for training and alignment of scoring
between centers is difficult on a large scale due to privacy issues.
Recently, there has been a rapidly emerging field within computer
vision using algorithms to automatically detect actions within
skeleton stick figures (e.g., surveillance (Lin et al., 2021) or
emotion recognition (Shi et al., 2020)).

The potential of these techniques for a clinical purpose within
CP has been shown recently for the early detection of CP in infants
at risk (Groos et al., 2022) or the predicting of gait parameters from
common videos in ambulatory children with CP (Kidzinski et al.,
2020). To our knowledge, automated video-based assessment has
not yet been applied to complex movement disorders, such as
dystonia in dyskinetic CP (Haberfehlner et al., 2020).

Dyskinetic CP has a prevalence of approximately 0.12–0.3 in
every 1000 live births in Europe (Himmelmann et al., 2009). This
group of children and adults generally experience severe limitations in
mobility, manual ability and communication (Monbaliu et al., 2017a).
The dyskinetic movements and postures are characterized by two
features: (1) dystonia, described by abnormal patterns of posture and/
or slow movements, and (2) choreoathetosis, characterized by faster
involuntary, uncontrolled, recurring and occasionally stereotyped
movements (Monbaliu et al., 2017a). Dystonia and choreoathetosis
can both occur during rest and activity (Monbaliu et al., 2012).
Although dystonia and choreoathetosis often coexist in the same
patient, dystonia is predominant (Monbaliu et al., 2016) and most
strongly linked to daily life limitations and quality of life (Monbaliu
et al., 2017b).

Interventions in this group are mostly aimed at reducing dystonia
and include invasive neuromodulation treatments such as intrathecal
baclofen (Bonouvrie et al., 2019) and deep brain stimulation (Koy and
Timmermann, 2017). In addition, advanced rehabilitation techniques
(such as alternative computer access solutions and powered mobility
(Bekteshi et al., 2020)) are commonly applied within this
group. Frequent and effective monitoring of dystonia would be
extremely important for the indication and evaluation of these
interventions but is often not applied clinically due to time
constraints and lack of objectiveness in quantifying severity.

This paper proposes a new way to score dystonia in dyskinetic
CP by using data extracted by markerless motion tracking from
videos (i.e., x, y coordinates of body parts) and use supervised
machine learning to predict dystonia scores from computed
movement and position features from these extracted x, y
coordinates. Such a data-driven approach solely from video
recordings has the potential to improve in the future if more
data come available and would offer a cost-effective, easily
executable and accessible way to evaluate dystonia.

Markerless motion tracking using single camera recordings is a
rapidly evolving technology. Recently developed open-source
toolbox codes (e.g., DeeperCut (Insafutdinov et al., 2016),
OpenPose (Cao et al., 2017) and PoseNet (Oved et al., 2018))
allow users fast (or even real-time (Oved et al., 2018)) human
pose estimation based on convolutional neural networks.
DeepLabCut (Mathis et al., 2018; Nath et al., 2019) is based on
DeeperCut, but has been tailored for use in different environments
and for user-defined (body) landmarks using transfer learning with
relatively small amounts of manually labelled data. DeepLabCut can
be used in combination with pre-trained humanmodels on theMPII
Human Pose Dataset (Andriluka et al., 2014a; 2014b; Insafutdinov
et al., 2016). DeepLabCut seem to be a promising tool to apply to
videos of children and young adults with dyskinetic CP.

Within different fields of movement analysis machine learning/
deep learning techniques are increasingly used to monitor,
automatically recognize activities or (pathological) movements or
evaluate training or treatment outcome, up to now mainly using
manually crafted features, based on domain knowledge, as input
(Halilaj et al., 2018; Khera and Kumar, 2020; Dorschky et al., 2023).

To demonstrate proof-of-concept of the proposed method, we
aimed to assess whether the automated video-based method
performs equally well to human performance (i.e., compare inter-
rater to model-rater accuracy). In addition, the accuracy of
automatically tracking body landmarks from 2D videos compared
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to human labeling in children and young adults with dyskinetic CP
was assessed. Therefore, the study consists of two steps: (1)
assessment of tracking accuracy and (2) the development of
prediction models for an automated method for dystonia
assessment.

2 Materials and methods

2.1 Participants

A total of 187 videos of 34 unique individuals with dyskinetic CP
who participated in a randomized placebo-controlled trial on the
effects of intrathecal baclofen (IDYS trial, Dutch Trial Register
NTR3642) (Bonouvrie et al., 2019; Bonouvrie et al., 2022) from
Amsterdam University Medical Centers, location VUmc, were used
for the current analysis. Videos were recorded at baseline, 3-month
follow-up and 12-month follow-up. The inclusion criteria for the
IDYS trial were as follows: (1) presenting with dyskinetic CP;
(2) classified at Gross Motor Function Classification System
(GMFCS) (Palisano et al., 2008) levels IV and V (i.e. non-
walking); (3) aged 4–25 years; (4) lesions on magnetic resonance
imaging; and (5) eligible for intrathecal baclofen treatment using
commonly applied criteria. Patients at baseline had the following
characteristics: age 14.0 ± 3.9 (mean ± standard deviation) years;
weight: 32.7 ± 11.8 kg; height: 147.1 ± 20.4 cm; 8 females/26 males;
Gross Motor Function Classification System (GMFCS) IV (n = 13)
or V (n = 20), Manual Ability Classification System (MACS)
(Eliasson et al., 2006): III (n = 3), IV (n = 8), V (n = 22). This
secondary analysis of the video data was approved by the local
medical ethics committee.

2.2 Videos

Videos were recorded as part of the DIS to clinically evaluate leg
and arm dystonia (Monbaliu et al., 2012). The items “lying in rest” and
“sitting in rest” were used for the current analysis. These positions are
commonly used to assess non-ambulatory individuals with dyskinetic
CP. Participants were asked during these items to sit and lie quiet,
without intentionalmovements. Videos were recorded at 25 Hz.Within
the sitting videos all sequences were 20 s (500 frames) long. Within the
sitting videos all sequenceswere 20 s (500 frames) long.Within the lying
videos the majority (86 videos out of 94) were between 19 and 20 s
(475–500 frames), three video sequences had a length between 10 and
19 s (250–474 frames) and eight video sequences had a length between
4 and 10 s (100–249 frames). Within all videos, the faces of the children
and caregivers were blurred. Subsequently, the videos were all converted
to the same size (720 width x 575 height pixels, which covered an area of
approximately 3 × 2 meters, yielding an image resolution of 0.4 cm per
pixel) and the same video format (avi, x264 codec) using Any Video
Converter (version 5.7.8, Anvsoft Inc.).

2.3 Dataset assessment of tracking accuracy

For the assessment of tracking accuracy, only the videos in
which children were lying in rest on a mat (n = 33, 94 videos) were

selected. This is a position that enables this group of non-walking
individuals to be assessed without external support. This position
deviates from standard positions within the training data of the
pretrained human model (Andriluka et al., 2014a). For tracking
accuracy, the data were split into a development set and a
generalization set. 80% of the participants (i.e., a total of
27 subjects with 76 related videos were randomly placed in the
development set, and 20% of participants (i.e., six participants with
18 related videos) in the generalization set. The development set was
used to train models with an increasing number of manually labeled
frames (as explained in detail below). The videos of the
generalization set were manually labeled as well but kept apart
from the model development process to show the potential of
generalizability towards “unseen” videos. The process of splitting
the data and the subsequent processing in DeepLabCut is visualized
in Supplementary Figure S1.

2.4 Extraction of x,y coordinates by
DeepLabCut

From the video sequence coordinates of body parts (i.e., wrists,
elbows, shoulders, hips, knees and ankles) were extracted using
markerless motion tracking by the open-source toolbox
DeepLabCut (Mathis et al., 2018; Nath et al., 2019). DeepLabCut
enables training of a deep neural network using pretrained models
with limited training data to track user-defined body parts using
transfer learning. DeepLabCut outputs the x,y coordinates of the
body part of each frame of the video, as well as the likelihood of
prediction (p-value). DeepLabCut was run (Version 2.1) using a
single NVIDA Tesla K80 GPU platform viaMicrosoft Azure’s cloud
with a “Data science Virtual Machine—Windows 2019)” blueprint.
The conda environment (for GPU provided by DeepLabCut) was
used within a Jupyter notebook. Models were trained using an
available residual neural network with 101 layers (ResNet-101)
weights pretrained on the MPII Human pose dataset (Andriluka
et al., 2014a; Andriluka et al., 2014b; Insafutdinov et al., 2016) as
initial weights. For each video, the body parts (i.e., wrists, elbows,
shoulders, hips, knees and ankles) of 20 frames were manually
labeled. Frames for labeling were automatically selected by
DeepLabCut using k-means clustering to select frames with a
variety of postures within the datasets. The labeled frames of the
development set were randomly split into training and test sets (95%
training dataset, 5% test dataset). Training was performed using the
default settings of DeepLabcut, e.g., shuffle is true With the dataset
to assess tracking accuracy, up to 400,000 iterations were trained.
The graphs of cross-entropy loss were inspected to determine
convergence and define the minimal training iterations needed
for the dataset.

2.5 Evaluation of tracking accuracy

All models were evaluated against their own dataset, i.e., test and
train error and towards the generalization data set,
i.e., generalization error (Supplementary Figure S1). The model
evaluation was performed within DeepLabCut by calculation of
the Euclidean distance for x,y coordinates (i.e., manually labeled
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versus predicted by the model). The mean of Euclidean distances
(across all body points and frames) was taken as the mean absolute
error (MAE). MAEs were calculated with and without a p-cutoff of
0.8 (i.e., leaving predictions out with a low likelihood to be correctly
identified by the model, e.g., due to occlusion of body parts).

2.6 Clinical scores

The original videos were scored by three raters using the DIS
(Monbaliu et al., 2012). The DIS evaluates 12 body regions (eyes,
mouth, neck, trunk, right and left arm proximal, right and left arm
distal, right and left leg proximal, and right and left leg distal)
during rest and activity. For our aim, only the videos recorded
during rest (sitting in a comfort position, in all cases within their
own wheelchair) and lying supine on a mat on the floor were used.
Within these items, the proximal lower extremity (during lying)
and proximal upper extremity (during sitting) are scored
according to the DIS protocol. The amplitude (percentage of
range) of dystonia was used within our approach (scoring: 0, 1,
2, 3, 4). (i.e., dystonia leg and dystonia arm). A percentage score
was calculated by dividing the individual score by the maximum
possible score on the corresponding item (leading to percentage
scales of 0, 0.25, 0.50, 0.75 and 1). Three raters (two pediatric
therapists and one medical student), all trained to score the DIS,
scored different videos, with some overlap (maximal two different
raters for one video). The scores of Raters 2 and 3 were collected
during the IDYS trial. Each of them scored half of the videos of the
whole trial. The same rater always assessed all three time points
(baseline, 3-month follow-up and 12-month follow-up) in an
individual participant. Rater 1 scored all videos from baseline
and 12-month follow-up to compare model-rater accuracy
towards inter-rater accuracy.

To allow comparison between inter-rater to model-rater
accuracy the mean absolute error (MAE) between Rater
1 and Rater 2, and Rater 1 and Rater 3, respectively, were
calculated.

2.7 Dataset x,y coordinates for prediction
models

For training of the prediction models, the aim was to have as
precise coordinates as possible. Therefore, the videos and manual
labels (20 manual labels per video) from the generalization set,
which were primarily left out in the training process to assess
generalization of tracking, were also added to the training set to
increase tracking accuracy for the whole dataset. All models were
trained up to a minimum of 200,000 iterations with a batch size of
one within this step. In addition, movies were created overlaying
the stick figures on the original video. These overlay movies were
inspected one by one. Additional manual labels were added, and
the model was re-trained with these additional labels for all videos
where it was deemed necessary. This was the case in 11 videos
(especially for children lying or moving towards lateral position,
children with wide clothes on—covering the joints and
participants with hips flexed more than 90° with knees covering
hips).

2.8 Engineering of movement and posture
features

Movement and posture features were based on the clinical
definition of dystonia to capture movement and postures from
the stick figures (x, y coordinates). For the 11 out of 94 videos for
the lying position with a shorter video length than 500 frames (i.e.
20 s), the data was extrapolated by adding the existing frames (x,y
coordinates) until the length of 500 frames was reached. For each
frame, the following three basic features of posture from the
extracted x,y coordinates of the body points were computed: (1)
distance-to-middle-point, (2) distance-to-line and (3) joint-
angle (Figure 1). These features were calculated by: (1)
Distance-to-middle-point: the pixel distance to the average of
the body part position in the entire video. For sitting videos, the
distance-to-middle-point was calculated for wrist, elbow, and
shoulder coordinates (Figure 1A), and for lying videos, the
distance-to-middle-point was calculated for ankle, knee, and
hip coordinates (Figure 1B). (2) Distance-to-line: A “line” was
drawn from the shoulder to the hip. For lying videos, the
distance-to-line was calculated for ankle and knee coordinates
(Figure 1A), and for sitting videos, the distance-to-line was
calculated for wrist and elbow coordinates (Figure 1B). (3)
Joint angle: For sitting videos, the joint angle was calculated
for the elbow joint using the wrist, elbow, and shoulder
coordinates (Figure 1A), and for lying videos, the joint angles
were calculated for the knee joint using the ankle, knee, and hip
coordinates (Figure 1B). Note that the joint angle is not the real
joint angle but includes some projection error due to the camera
angle, which was not standardized during video collection.

For each feature, the frames were divided into 10 equally sized
time windows (2 s). As input for the machine learning model, the
median value in those windows was used to represent the
distribution of the feature over the entire video in a size-10
vector. Because the resulting set of features is symmetric with
respect to the vertical axis of the body, the features and
corresponding scores from the two sides of the body were treated
as two samples.

2.9 Machine learning, evaluation of
prediction models

To deal with the expected disagreement between raters, a
separate model for each rater to predict arm and leg dystonia
was trained from the extracted movement and posture features.
The different resulting models were also evaluated using data from
the same rater.

With the extracted movement and posture features and the
clinical scoring, a random forest regression model was trained.
The RandomForestRegressor from scikit-learn (Pedregosa et al.,
2011) was used, with standard settings (i.e., number of
estimators = 100; criterion is squared error and without a
maximum depth set).

To address the small number of samples per rater, 5-fold cross-
validation was applied. The data were split into five folds (each
containing approximately 20 samples). Data from a single patient
was always assigned to a single fold using GroupKFold from scikit-
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learn (Pedregosa et al., 2011). In addition, the two samples created
from a single video (i.e., left and right for the arm and leg,
respectively) were always put in same folds. A different model
was trained in each iteration (five in total), leaving a different
fold out each time used to test the model.

As evaluation metrics the MAEs were computed based on model
predictions versus clinical human scores on the left-out folds.Model-rater
accuracy for each rater was expressed asMAE ±standard deviation (SD).

Confusion matrices were plotted to allow visual comparison for
both the inter-rater and model-rater accuracy. The code that was

used to perform the analysis is available online (van de Ven et al.,
2021). In Figure 2, the whole dataflow is summarized.

3 Results

3.1 Tracking accuracy

Concerning tracking accuracy within the test set, MAE decreased
from 10.09 (1 labeled frame) to 4.49 pixels (20 additionally labeled

FIGURE 1
Example of extracted pixel coordinates of one stick figuremovie during sitting (A) and lying (B) “in rest” : Themean stick figure of the videos is plotted
in black, in color one example frame is provides, including also the dots of the body points of the whole video. The features are calculated for the left and
right wrist and elbow within the sitting videos (A) and for the left and right ankle and knee within the lying videos (B). (1), (2), (3) are the features that are
extracted from each frame. The features are indicated by a red dotted line: (1) The pixel distance to the average of the body part position in the entire
video (distance-to-middle-point), (2) The distance to the line drawn from the shoulder to the hip (the bodyline is indicated with a blue dashed line) (3) The
angle of a joint.

FIGURE 2
Videos were collected within a clinical trial. These videos were scored by three raters. From these videos, stick figures have been extracted. From the
x,y coordinates of the body points, meaningful movement and position features are calculated and used to train a random forest regressor towards the
clinical scores.
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frames per video) (Table 1). Applying a p-value cutoff of 0.8 did not
significantly affect the error. The lowest MAEs were reached with the
model with 15–20 additional labeled frames per video. Within the
generalization set, MAE decreased from 107.04 (no labeled
frame—i.e., pretrained model only) to 33.18 pixels (20 labeled
frames) (Table 1). Applying a p-cutoff within the generalization set
improved the MAE towards 19.88 pixels (Table 1). The x,y
coordinates extracted by DeepLabCut are available online, as well
as stick figure movies to visualize the data (Haberfehlner et al., 2021).

3.2 Prediction models

Inter-rater and model-rater accuracy revealed similar results.
Concerning inter-rater accuracy theMAEs ±SD between Rater 1 and
Raters 2 and 3 for arm dystonia were 0.21 ± 0.22 and 0.16 ± 0.20 for
leg dystonia, respectively (Figure 3). In comparison the model-rater
accuracy of the prediction models of Rater 1 reached
MAEs ±standard deviation (SD) of 0.21 ± 0.15 for arm dystonia
and 0.14 ± 0.10 for leg dystonia. In Figure 4, the “ground truth” of
Rater 1 is plotted towards the scores from the model (transformed
towards percentage scores). MAEs ± SD for Rater 2 were 0.29 ± 0.19

(arm dystonia) and 0.19 ± 0.17 (leg dystonia) and for Rater 3 were
0.25 ± 0.21 (arm dystonia) and 0.25 ± 0.19 (leg dystonia). The figures
for Rater 2 and Rater 3 are provided in the Supplementary Figures
S2, S3, respectively and summarized for all raters in Supplementary
Figure S4. In all cases, high discrepancies (i.e., differences of >0.5)
were rare between the scores predicted by the model and scores
given by the human rater (Figure 4 and in Supplementary Figures
S2–S4). The detailed results predicted by model versus humans are
available together with the code online at GitHub in the result
section (GitHub—RehabAUmc/modys-video).

4 Discussion

This proof-of-concept study is the first time to show the
possibility of automatically predicting a dystonia score from
common stationary videos, extracting stick figure data (i.e., joint
positions) using a machine learning approach. With the use of
videos from a common camera, such an approach has the potential
to be used within a real-life environment, perhaps even by using
smartphone recordings in the future. The results show that the
information needed for the model to learn how to score upper and

TABLE 1 Mean absolute error (MAE) in the development set (training and testing) and in the generalization set, evaluated with and without p-cutoff 0.8.

Labeled frames Train set Test set Test set with p-cutoff 0.8 Generalization set Generalization set with p-cutoff 0.8

0 107.04 pixels 121.18 pixels

1 1.17 pixels 10.09 pixels 10.23 pixels 37.24 pixels 28.72 pixels

2 1.11 pixels 5.83 pixels 5.83 pixels 39.00 pixels 28.89 pixels

6 1.65 pixels 5.14 pixels 5.06 pixels 32.82 pixels 23.51 pixels

10 1.8 pixels 5.86 pixels 5.18 pixels 34.68 pixels 25.91 pixels

15 2.36 pixels 4.49 pixels 4.48 pixels 36.26 pixels 28.33 pixels

20 2.71 pixels 4.49 pixels 4.48 pixels 33.18 pixels 19.88 pixels

FIGURE 3
Comparison of scores between Rater 1 and Rater 2 and 3 for the amplitude of dystonia in arm (A) and leg (B).
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lower leg dystonia at rest is preserved within the extracted stick
figures, even with the 2D representation.

The extraction of the required input from videos does not yet
work fully automatically. In the current study, it is shown that a
tracking error of only 1.5 cm is achieved (compared to human
labeling) if 15–20 labeled frames per video are added. Within the
current study, DeepLabCut was used to extract coordinates from the
videos, as it provides an accessible platform for tuning models
towards an own video dataset and assessing the tracking error.
For now, using transfer learning based on a pretrained humanmodel
in combination with manually added labels is a feasible option to
generate input data to further improve our approach for the
automated assessment of dystonia.

To reach a fully automatic approach in the future, a generalizable
model is needed to extract x,y coordinates from the videos without
manually labeling some of the videos first. We have shown that the
current dataset (<100 videos) is too small to generate a model that can
extract stick figures within an uncommon position from unseen
videos within the same dataset. However, the field of human pose
estimation is rapidly emerging, with approaches promising even real-
time 3D human pose estimation from a single common camera in the
near future (Choi et al., 2021). As soon as these approaches become
accurate enough to extracted data from pathologic movements and in
uncommon situations such as persons in a wheelchair or lying down,
stick figures can be easily generated and used as accessible input for
the models predicting dystonia scores.

In the current study, conventional supervised machine learning
(Random Forest Regressor) was explored. Such algorithms are not
suitable to be fed by the whole time series of extracted x,y
coordinates. Therefore, movement and posture features are
required as input. Within the current study, we engineered
features by using the clinical definition of dystonia (i.e., sustained
muscle contractions causing abnormal posturing, involuntary and/
or distorted voluntary movements) and visually inspecting stick
figure data to define features that capture position and movement

within the recorded time frame. Features were calculated for each 2-s
time window to accommodate for the variability known to occur in
dystonia (Sanger, 2006). If more data are available in the future,
feature engineering and selection could be performed in a more
extensive way as a step within the machine learning process.

Within the trained prediction models to score dystonia at rest, the
models trained with the scoring of Rater 1 showed a performance that
reached human performance (i.e., by comparing MAEs of inter-rater
accuracy and model-rater accuracy). The additional trained models
for Rater 2 and Rater 3 showed slightly higher errors. High prediction
errors (i.e., >0.5) were rare, and it is necessary to take into account that
such a disagreement in scoring obviously also exists between human
raters. Within our dataset, the inconsistency could originate from two
raters (Rater 2 and 3) having scored the videos spread out over 2 years,
whereas Rater 1 scored the videos all in one period (approximately
1 month). To take automated video-based assessment to the next step,
it will be important to gather a dataset with high-quality labels. This
can be achieved by having multiple (3–10) raters score the same
sample, then aggregating the scores using inter-rater statistics into a
single gold standard (Dekel and Shamir, 2009). In addition, it will be
important to understand the sources of disagreement between raters
and inconsistencies within videos scored by the same rater. Models
might also improve with a more balanced dataset.

Within the available data, all participants were non-ambulatory
(GMFCS IV-V), which is known to be related to higher dystonia
scores (Monbaliu et al., 2017b). By adding data from ambulatory
children and young adults with dyskinetic CP (GMFCS I-III) or even
typically developing subjects, model performance will most likely
improve. In addition, a larger dataset will allow to analyze or include
factors within the models that possibly affect the prediction such as
gender, age, GMCFS and MACS level.

The population within the current study had dystonia as the
primary motor disorder, although a mixed presentation of dystonia
and spasticity is common in dyskinetic CP (35). The current study
was confined to measuring dystonia at rest, where spasticity is not

FIGURE 4
Heat plot of the correlation of the ground truth scoring for Rater 1 towards the predicted scores of the model for the amplitude of arm (A) and leg
dystonia (B). The values on the diagonal represent a correct prediction.
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expected to influence the observed dystonia. The largest group of
children with dyskinetic CP has limited motor function. However,
for children with sufficient motor function, assessment of dystonia
during activities (such as reaching, standing) can be of importance
(Monbaliu et al., 2012). When assessing dystonia during activity,
distinguishing dystonia from spasticity can also possibly become
relevant. How to do this, possibly adding EMG, is a topic of future
research.

To facilitate the above mentioned possible improvements of
the models by pooling the data, we made our data and code open-
source available (Haberfehlner et al., 2021; van de Ven et al., 2021).
By using markerless motion tracking from 2D videos, historical
data and multicenter data can be used to develop a clinically
applicable model. Each center can extract x,y coordinates locally,
without the need to share videos, and datasets can easily be pooled
without privacy issues. Therefore, with considerably larger datasets
at hand in the future, automated video-based assessment in
dyskinetic CP might also benefit from a deep learning approach
to improve the prediction quality of dystonia at rest from stick
figures.

5 Conclusion

This proof-of-concept study shows the potential of using 2D
skeleton stick figures extracted from common videos in a machine
learning approach. Even a small data set allows us to train a model
that can automatically assess dystonia in the arms and legs in
children and young adults with dyskinetic CP in short video
sequences with an accuracy comparable to human performance.
Expanding the available training data as well as advanced machine
learning techniques are the next step to approach the prediction
accuracies necessary for clinical use.
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