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Abstract: Sharing renewable energies, reducing energy consumption and optimizing energy man-
agement in an attempt to limit environmental problems (air pollution, global warming, acid rain,
etc.) has today become a genuine concern of scientific engineering research. Furthermore, with the
drastic growth of requirements in building and industrial worldwide sectors, the need for proper
techniques that allow enhancement in the thermal performance of systems is increasingly being
addressed. It is worth noting that using sensible and latent heat storage materials (SHSMs and
phase change materials (PCMs)) for thermal energy storage mechanisms can meet requirements such
as thermal comfort in buildings when selected correctly. However, as the operating temperature
changes, a series of complex technical issues arise, such as heat transfer issues, leaks, corrosion,
subcooling, supercooling, etc. This paper reviews the most recent research advances in the area of
sensible and latent heat storage through the porous media as potential technology while providing
useful information for researchers and engineers in the energy storage domain. To this end, the
state and challenges of PCMs incorporation methods are drawn up, and an updated database of
various research is provided while discussing the conclusions concerning the sensible and latent
heat storage in porous media, their scopes of application and impact on energy consumption. In
the light of this non-exhaustive review, it turns out that the adoption of porous matrices improves
the thermal performance of systems, mitigates energy consumption and drops CO2 emissions while
ensuring thermal comfort within buildings. In addition, at the representative elementary volume
(REV) and pore scales, the lattice Boltzmann method (LBM) is examined as an alternative method to
the commonly used, traditional numerical methods. These two approaches are compared based on
results available in the literature. Through these means, their ability to handle latent and sensible heat
storage process in a porous medium is demonstrated. To sum up, to be more complete, perspectives
of sensible and latent energy storage technologies are covered.

Keywords: latent and sensible heat; lattice Boltzmann method; mesoscopic modeling; phase change
materials (PCMs); phase heat transfer; porous media; thermal energy storage (TES)

1. Introduction

Nowadays, the energy storage sector figures as a fundamental technology facing the
rapid development of industrialization and urbanization. Thereby, over the years, energy
storage systems (ESSs) technology has been widely developed to ensure the renewable
energy resources sustainability and to balance the gap between energy demand and sup-
ply [1]. Throughout history, along with the increase in human population, the global
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consumption of energy continues to increase, as shown clearly observed in Figure 1. Energy
consumption is observed to increase faster than population size [2]. Yet, it is noteworthy
to highlight the industrialization and welfare level as the main factors responsible for the
tremendous increase in energy consumption.
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Inevitably, it is crucial to implement ESS into energy systems not only to limit the
intermittency of renewable energies but also to facilitate the flexibility of energy systems
while increasing their efficiency. Generally, the use of ESSs is aimed at matching the energy
demand and supply. As illustrated in Table 1, there are different ESSs approaches that can
be used in various engineering applications [3].

Table 1. Energy storage (ES) methods, reprinted/adapted with permissionfrom Ref. [3], 2022,
Springer Nature [3].

Energy Storage Methods

Thermal Mechanical Electromechanical Electrical Chemical

Sensible thermal Pumped hydro Electrochemical
capacitors Capacitors Hydrogen storage

Latent thermal Compressed air Batteries Super capacitors
Synthetic natural gas

Thermochemical Flywheel Fuel cells Super conducting
magnetic ES (SCMES)

Among several ES methods, TES appears as one of the emerging technologies that
can bridge the intermittency gap in renewables such as solar energy [4], energy saving and
the promotion of environmental respect (greener world). TES systems consist of a thermal
energy storage medium (heat and/or cold) kept for a defined period to use it when and
where it is needed [4,5]. The applications of these systems (TES) are in the building sector
(air conditioning, thermal comfort, domestic hot water, etc.) and industrial sector(chemical
industry, food industry, etc.) [6]. It is worthy to emphasize that the estimated annual energy
savings potential in the European Union (EU) is 7.5% thanks to the implementation of these
technologies [7].In terms of environmental savings, the annual potential CO2 emissions
were reduced by about 5.5% in the EU [7]. Later, 90% of the CO2 emissions mitigation
is expected by 2050 (according to the international renewable energy agency (IRENA))
through the application of these systems (Figure 2) [8]. Since then, these systems have
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received particular attention through an economic and environmental analysis in several
sectors (Figure 2).
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According to Calderón et al. [9], more than 14,000 publications have been achieved over
the last decade, showing that scientific research is increasingly productive in the TES field.
However, the choice of an appropriate TES system depends on various factors, basically
depending on the targeted field of application, technical conditions (volume, temperature span,
etc.), storage time and economic aspect (marketing and cost-effectiveness) [10]. Considering
the characteristics of the storage period, there are two concepts of TES systems called short-
term storage systems and long-term storage systems. The first concept is a storage cycle
of a few hours known as diurnal heat storage [11], while the second is known as storage
seasonal heat [12]. In this context and by way of example, the seasonal TES (STES) stores
the heat collected in the summer for up to more than three months (charging period) using
thermal solar power plants to be used in winter (discharging period) [13]. It is worth noting
that this reverse process can obviously be applied. Therefore, this second category of
TES systems (STES) has a significant contribution to the efficient use of renewable in
building applications such as decarbonization and district heating [14,15]. Note that such
a category competes with others on a large scale such as natural gas storage, pumped
storage hydroelectric system and heat generation methods. Yet, sector coupling remains
as the most important challenge for future energy concepts. Furthermore, large-scale TES
systems are needed for the conception of any other technology to ensure system stability
and resilience. In addition, depending on the energy storage method deemed, TES solutions
can be classified into three categories, viz., sensible heat storage (SHS), latent heat storage
(LHS) using PCMs and thermochemical heat storage (TCHS). Moreover, these classes can
be implemented in active or passive buildings [16,17]. In passive building technology, only
the SHS and LHS methods are used, which allow improving thermal comfort through
materials use with high thermal inertia [16,18]. As for the concept of active buildings, the
TCHS method, which enables to attenuate the peak load, is the one that is rather used as it
increases renewable energies contributions such as solar and aerothermal energies [17,18].
It improves the efficiency of systems by regulating the process range, for example using
frequent starts/stops to reduce discontinuous inputs [17,18]. In this context, Ben Romdhane
et al. [19] documented a review of passive building applications based on the LHS method
while comparing it to the SHS approach. They reported that the LHS technique stores five
to 14 times more heat than the SHS method. Otherwise, Rathore and Shukla [20] presented
a review of the different types of TES used in construction while paying great attention
to LHS materials. Furthermore, a description dealing with several LHS designs has been
provided, which has indicated that a macro-encapsulated phase change material (MPCM)
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could be used for a period of time, helping to alleviate the reliance on heating and cooling
devices and, thereby, saving energy.

Lizana et al. [18] reviewed the development and applications of thermal energy storage
materials for zero energy buildings (ZEBs). Different properties, designs, and classifications
of sensible, latent and thermochemical TES materials have been described and compared
based on recent scientific research, well-known international projects, and commercial
systems. They revealed that there exists a shortage of materials for TCHS solutions while
noting that the thermochemical method requires well-maintained tanks and heat exchang-
ers for small-scale processes. Thereby, further efforts are still needed to optimize the
technical and economic concept of TCHS systems. In parallel, Navarro et al. [17] conducted
a comprehensive review of TES technologies embedded into active buildings. It is worth
noting that there are two types of active systems, viz direct and indirect systems where the
storage medium is either the heat transfer fluid (HTF) or another medium. These authors
stated that the active systems design requires proper maintenance to achieve suitable in-
corporation, taking into account various conditions and requirements that may be climatic,
aesthetic and/or operational. Each type of TES has its advantages and disadvantages, the
operating principle of which depends on the targeted application, such as capacity or power.

A comparison of some TES methods is reported in Table 2 [21].

Table 2. Comparison of TES solutions [21].

TES Technique Capacity (kWh/ton) Power (MW) Efficiency (%) Storage Time Cost (€/kWh)

Sensible heat 10–50 0.001–10 50–90 d/m 0.1–10
Latent heat 50–150 0.001–1 75–90 h/m 10–50

Thermochemical heat 120–250 0.01–1 75–100 h/d 8–100

For some time now, various articles on energy storage have been published, pointing
out research trends and drawing up the state of the art [9,22–25]. In this, Cabeza et al. [26]
issued a bibliometric analysis using VOSviewer software to develop research related to
TES categories and identify research gaps. For TES topics, the approach performed using
the co-occurrence of the keywords found is illustrated in Figure 3. Through this diagram, it
appears that terms relevance can be identified from the circles size. Simply stated, a larger
circle identifies the subject with more studies. Furthermore, the research gaps are identified
by smaller circles. As shown and indicated in Ref. [27], subjects TES (red circle) and LHS
with PCMs (purple circle) indicate high relevance, meaning that they are the focus of intense
investigation both experimentally and/or numerically. The benefit of this overview is to
serve as a guide for any reader interested in the decision-making process in evolving TES
solutions for different industries.

The main aim and scope of this article is to provide an in-depth review of the state
of the art of TES technologies with particular attention to SHS and LHS systems and
their applications in various sectors. It also addresses the subject of phase change heat
transfer and the sensible energy storage processes in porous media. Furthermore, in recent
years, the research has moved toward numerical methods to explore the potential of these
technologies at a theoretical level. Thereby, numerical approaches such as mesoscopic REV-
and pore-scale approaches will be taken up herein to point out their ability to deal with
some mechanisms that may occur in these systems. It is worth mentioning here that this
review article can serve as a guide for researchers seeking to identify trends in research on
latent and sensible heat storage technologies using porous structures as a new strategy to
evaluate performance of these systems. Among these trends, we can cite LBM approaches
where an overview is given here with a comparison to other traditional numerical methods
to draw the attention of readers to the emerging trends.

The remaining parts of this review are arranged as follows. First, in Section 2, a
comprehensive analysis of sensible energy storage technique is provided while highlighting
the different sensible heat storage materials and the porous medium effect. Then, in
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Section 3, the technical design, economic properties and many other characteristics of
latent energy storage technologies are reviewed. In Section 4, a comparison between the
SHS and LHS options is presented. The LBM at REV and pore scale methods, including
new solutions of simulating heat transfer mechanisms in porous supports and recent
developments, are covered in Section 5. Finally, in Section 6, conclusions of the present
review are drawn.
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2. Sensible Heat Storage (SHS) Method

Sensible heat storage (SHS) is the most traditional, mature and widely applied TES
solution due to its simple operation and reasonable cost. However, it suffers from the
low-energy storage density achieved compared to the other two TES options, viz LHS
and TCHS [27]. In this approach, the energy transfer (as heat) to and from the storage
medium that can be liquid (water, oil, etc.) or solid (sand, rock beds, brick, etc.) results in the
corresponding change (increase or decrease) of the medium’s temperature. Figure 4 depicts
the SHS typical diagram during sensible heating or cooling with no phase transition during
the process [3,28]. One of the advantages of this mode is that the storage and release of the
accumulated heat (charging and discharging cycles) can be repeated without any problem
while involving a large volume to meet the needs [29]. In addition, this method generally
takes the advantage of certain properties of the storage material such as its high specific
heat [30].

Since the quantity of sensible heat stored (Q) depends on the mass (m), the heat
capacity (Cp) [30], two main characteristics of SHS materials (SHSMs) should be pursued to
increase the capacity storage volume (MJ·m−3) with high specific heat and density. Among
the abundantly available materials, water has a comparably high specific heat and density,
wherefore it is quite frequently used as a storage material in many practical applications.
For example, the sensible heat storage capacity has been estimated at 250 MJ·m−3 for a
thermal gradient of 60 ◦C in the case of water [18].

Fernández et al. [31] presented a bar chart where a certain property (e.g., specific heat
capacity) is plotted for all families of engineering materials mostly used in SHSMs to better
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identify and classify them. On the other hand, thermal conductivity, thermal diffusivity and
flow rate play a key role in charging/discharging cycles that ensure stratification ability.
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Figure 4. SHS typical diagram during sensible heating or cooling with no phase transition.

It is worth noting that a high thermal stratification facilitates the release of heat, al-
lowing a transfer of thermal energy at low temperature toward the colder zones during
the charging period, and thereby, a higher exergy (quality energy) which is promptly ob-
tained from the hottest zones during the discharge process [32]. The thermal effusivity
parameter appears as the main variable influencing thermal inertia in passive construction
applications [33]. This parameter characterizes the rate at which a material can release
or absorb heat, where its raise augments the heat stored quantity and thereby mitigates
energy consumption [18]. In addition, the availability, cost, toxicity and volume change are
further criteria for the selection of sustainable SHSMs [18]. As mentioned before, the main
disadvantages are their limited energy density and the device self-discharge [34]. To assess
the SHS system performance, González-Roubaud et al. [35] pointed out that the relevant
quantities are energy storage capacity, power, efficiency, time of charging/discharging
cycles and cost.

According to Cabeza et al. [26], the SHS approach has been widely used in solar
applications such as concentrated solar power plants (CSP) [36] or desalination [37]. For ex-
ample, the water-based SHS is one of the most widely used solar TES systems in residential
applications (see sketch in Figure 5) [3], and besides, Koçak et al. [38] have published a com-
prehensive review article on SHS systems and materials available and applied in industrial
solar heat applications. According to the temperature range, they pointed out that there are
mainly three groups of solar industrial processes, viz low-temperature (<150 ◦C), medium-
temperature (150 ◦C < T < 400 ◦C) and high-temperature (>400 ◦C) applications. They
concluded that the fixed-bed thermocline technique is the most economical and widely
used method for sustainable solar applications, regardless of the temperature range. SHS
technologies are gathered in Table 3.

Table 3. SHS techniques and their classification, reprinted/adapted with permission from Ref. [38],
2022, Elsevier.

SHS Techniques Classification

Underground thermal energy storage Aquifer thermal
energy storage

Borehole thermal
energy storage

Tank thermal
energy storage

Pit thermal energy
storage

Thermal energy storage in tanks Vertical (thermocline) Horizontal

Thermal energy storage in packed bed Stationary beds Fluidized beds

Thermal energy storage in building
structures
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It is noteworthy that numerical studies and experiments are increasingly performed
to define optimal parameters to improve the system’s performance.

2.1. Sensible Heat Storage Materials (SHSMs)

There are different reviews on TES solutions dealing with the thermophysical char-
acteristics of commonly used SHSMs and comparing the different parameters involved
(such as physical, chemical, thermal, environmental, economic, etc.) to fulfill construction re-
quirements and/or industrial applications. The SHSMs can be classified into solid and
liquid storage materials [3,18]; regarding liquid heat storage materials, the most common
materials are water, oils, and pure alcohol or its derivatives, while rocks, stones, bricks,
concrete, dry and wet soils, wood, plasterboard and cork are the most commonly used as
solid heat storage materials.

Fernández et al. [31] presented an overview of SHSMs in the temperature range of
150–200 ◦C leaning on Ashby’s method [39,40] for material selection to find suitable and
potential materials for long and short-term cycles for the SHS method. According to
these authors, solid SHSMs can be classified into metals and alloys, ceramics and glasses,
polymers and elastomers, and hybrids. The thermophysical properties of some commonly
used SHSMs are listed in Table 4 [3,18,19,41].

Note that many factors must be ensured to guarantee a long life of SHSMs such as ther-
mal and chemical stability (constant thermal properties, no chemical decomposition and no degra-
dation) at high temperature gradient regardless of the number of cycles (charge/discharge).
According to Klein et al. [42], storage substances should conduct heat better, have higher
specific heat and density, be able to operate in a suitable temperature range and be easily
accessible in terms of cost. Figure 6 displays the average volumetric specific heat capacity
vs. average thermal diffusivity for the most available SHSMs [18].

Today, the number of the available SHSMs (either liquids or solids) for engineering
purposes exceeds 150,000 [28,31]. Among them, water is the most mature material due to
its availability, non-toxicity, low cost and high specific heat capacity [28].

Almendros-Ibáñez et al. [43] performed a synthesis study on different techniques for
storing solar energy in particle beds, emphasizing the different particle methods called
packed beds and fluidized beds. They stated that liquid SHSMs have a higher specific
heat capacity than solids (e.g., rock). Unfortunately, some issues such as liquid storage
infrastructure, high cost of heat exchangers, risk of leaks and large storage tanks (hot and
cold) limit their use [18,44–46]. On the other hand, concerning solids SHSMs, their main
disadvantages are the low density, the high investment cost and the risk of self-discharge
(in the long term).
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Table 4. Thermophysical properties of some commonly used SHSMs [3,18,19,41], reprinted/adapted
with permission from Refs. [18,19], 2022, Elsevier.

SHSM Type Density
(kg·m−3)

Thermal
Conductivity
(W·m−1·K−1)

Specific Heat
(kJ·m−1·K−1)

Water (80 ◦C) Liquid 970 0.67 4.19
Water (40 ◦C) Liquid 990 0.63 4.19
Water (10 ◦C) Liquid 1000 0.6 4.19

Oil Liquid 880 0.14 1.88
Ethanol Liquid 790 0.171 2.4

Propanol Liquid 800 0.161 2.5
Butanol Liquid 809 0.167 2.4

Ceramic brick Solid 1800 0.73 0.92
Rock Solid 2800–1500 3.5–0.85 1

Concrete Solid 2000 1.35 1
Wood Solid 700–450 0.18–0.12 1.6

Aluminum Solid 2707 204 0.896
Copper Solid 8954 385 0.383
Granite Solid 2640 4.0–1.7 0.82

Sand and gravel Solid 2200–1700 2 1.18–0.91
Clay or silt Solid 1800–1200 1.5 2.5–1.67
Limestone Solid 2600–1600 2.3–0.85 1

Cement mortar Solid 1800 1 1
Brick Solid 1600 1.2 0.84

Marble Solid 2500 2 0.88
Plastic board Solid 1050 0.5 0.837
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2.2. Sensible Heat Storage in Porous Media

Without detailing, the SHS mode consists of a sensible heat storage material (SHSM),
an SHSM container (e.g., tank) to prevent leakage and heat losses and input/output de-
vices [47].Among the tools used in this storage mode, SHS in a porous medium is the most
preferred solution. Out of the available case studies in the literature in this field, a few
representative ones are reviewed in the present section. Saturated tanks of porous solid
SHSMs are used in many industrial and building applications such as power generation
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and heating [3]. Figure 7 exemplifies a residential heating application using a porous fixed
bed storage tank. In general, a fixed bed storage tank is used for the TES of solar air heaters
and represents a volume of porous medium formed by packing particles of selected SHSM
into a container. In this system, the working fluid (e.g., air) advects heat from the collector
to the reservoir. Hot fluid passes through spaces between solid SHSMs (e.g., rock or sand),
causing the particles to rise in temperature during the day (charging loop), and the quantity
of sensible heat stored inside the tank is recovered during the night (discharging loop).
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Let us point out, however, that the main parameters that influence the SHS system
performance are the working fluid type, the flow rate and the porosity [3,47].

A huge range of investigations in the literature have dealt with SHS in various porous
units. Among the different characteristics of a sensible storage medium, the porosity
effect, which turned out to be a crucial characteristic, is sketched herein. To address this
topic, Mabrouk et al. [48] developed a numerical model to study the effect of pore density
parameter (PPI) on an SHS unit. The system deemed was subjected to forced convection
and compared to an LHS unit. They advised a porous metal foam to optimize energy
and exergy efficiencies while indicating that increasing the PPI for high porosity value
mitigates energy losses for sensible heat systems and thereby increases the quality of stored
energy. In another study, Amami et al. [49] explored the charging and discharging process
enhancement in a porous SHS duct held under a forced pulsating flow. They examined
several porosities of the porous support while estimating its thermal performance. They
found that with increasing porosity, the sensible energy amount stored is improved, and
the exergy efficiency (quality) is significantly raised. As an example, the energy efficiency
increased from 31% to 68.2% when the porosity increased from 0.6 to 0.8, respectively, for
a given flow pulsation amplitude. The same shall apply to exergy efficiency, which goes
from 32.4% (for ε = 0.6) to 67% (for ε = 0.8).

Elouali et al. [44] achieved four physical models through numerical simulations to
describe the thermal behavior of a packed bed for sensible heat storage. They particularly
discussed the porosity influence on the packed bed during charging and discharging periods.
They demonstrated that a decrease in porosity improves the thermal storage capacity of
the packed bed and increases the interstitial heat transfer between the coolant and the solid
particles. Furthermore, they noted that high porosity slows down the charging process.

Kasaeian et al. [50] presented a review of numerous models to simulate nanofluid
flow physics in a porous medium. They gathered details on the main features of a porous
structure embedded in thermal systems such as heat exchangers and ducts. They stated
that the use of a porous matrix extends the specific interface area between the porous
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structure and the working fluid, which results in a higher rate of heat transfer and, thereby,
significantly improves the system thermal efficiency.

Sheremet et al. [51] conducted a numerical analysis of natural convection in a concen-
tric horizontal annulus filled with a porous structure saturated by Cu-water nanofluid. It
turned out that a low porosity (ε < 0.5) increases the thermal conductivity of the medium,
and it has no effect on the flow of the fluid nor on the heat transfer. On the other hand, they
found out that a large porosity (ε > 0.5) intensifies the convective flow. In 2015, Sheremet
et al. [52] numerically examined the thermal behavior of a square cavity composed of
solid porous medium (aluminum foam and glass beads). They targeted the effects of pore
morphological parameters such as porosity. The authors noted that the local and mean
Nusselt numbers are minimum at high porosity, and the latter significantly affects the heat
transfer rate.

In 2014, Amami et al. [53] proposed a porous unit designed to store sensible heat.
They demonstrated that the use of a porous medium with high permeability and low
thermophysical properties improves the performance of the considered TES unit and raises
temperature and the stored sensible energy amount.

Heap et al. [54] discussed the influence of volcanic rock porosity and magma (SHSM).
They indicated that an increase in porosity decreases the density and compressive strength
of rocks while increasing their deformability. Thereby, they advised adopting a low porosity.
Dhifaoui et al. [55] conducted an experimental study of SHS performance of a vertical
porous bed composed of glass beads and air which is heated with a constant heat flow.

3. Latent Heat Storage (LHS) Method

Latent heat storage is based on the amount of energy absorbed or released during
the reforming of the phase structure of a phase change material (PCM) from one physical
state to another during the phenomena of melting, solidification, gasification and lique-
faction [19,27,56,57]. Due to its high thermal energy storage density and nearly constant
working temperatures, latent heat storage (LHS) technology has become a good solution for
correcting the mismatch between energy supply and demand. At the start of the charging
process, the temperature of the latent heat storage material evolves as it absorbs thermal
energy, and when it reaches a specific range, the material begins to change the phase while
storing heat. However, during the discharge period, the PCM switches to its initial state
by releasing thermal energy. Unlike SHS, the phase transition process unfolds at a nearly
constant temperature characteristic of the material physical state change [19,57].

The heat storage capacity (Q) of an LHS system typically consists of two parts sen-
sible heat (before and after the phase transition) and one part latent heat (during the phase
transition) [3,19,27,58]:

Q =

Tm∫
T1

mcpdT

︸ ︷︷ ︸
Sensible heat

+ m∆h︸︷︷︸
Latent heat

+

T2∫
Tm

mcpdT

︸ ︷︷ ︸
Sensible heat

(1)

where the mass (m), specific heat capacity (cp) and temperature (T) are the properties of the
PCM. m · ∆h is its latent heat. The indices 1, 2 and m indicate the initial, final and melting
temperature, respectively.

Recall that during the phase change operation, the temperature remains roughly
constant with small volume changes, making the phenomenon simple and safe. The typical
diagram of LHS is illustrated in Figure 8 [3,28].

The phase change process takes place in a temperature range between a solidus
temperature, Ts (the first solid melts (melting process)/the first solid forms (start solidification
process)), and a liquidus temperature, Tl (the last solid melts (end of melting)/the last solid
forms (solidification end)). In this context, Saffari et al. [59] defined two cooling/heating
PCM temperature ranges to minimize the annual energy consumption. During cooling,
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the maximum melting temperature of PCM is about 26 ◦C (melting range 24–28 ◦C), while
during heating, the minimum melting temperature of PCM is about 20 ◦C (melting range
18–22 ◦C).
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Figure 8. Diagram of enthalpy–temperature change during latent heat storage, reprinted/adapted
with permission from Refs. [3,28], 2022, Springer Nature and Elsevier.

As depicted, the PCM stores sensible heat when the PCMs temperature is outside the
phase change temperature range and latent heat when its temperature reaches the phase
change temperature. Moreover, the different phase changes in LHS can be in solid–solid,
solid–liquid, liquid–solid, solid–gas, gas–solid, liquid–gas and gas–liquid forms.

In the case of a solid–solid transformation, the crystalline structure of the material
changes and continues to store heat [34,60]. Generally, such a phase is characterized by low
amounts of latent heat and volume changes compared to solid–liquid processes. For this
process, organic solids such as pentaglycine, pentaerythritol, Li2SO4 and KHF2 [60,61] were
able to open up interesting opportunities. Leaks and encapsulation absence and a more
flexible design are their main advantages [62,63]. On the other hand, during solid–gas and
liquid–gas transformations, a large quantity of latent heat can be acquired requiring large
capacity containers due to the significant change in volume. Thereby, this solution is less
usable for the building’s thermal comfort [64]. For the sake of brevity, solid–liquid phase
change processes remain economically competitive with other LHS solutions [64].

On another aspect, the advantages of LHS mode over SHS mode can be listed as follows:

• The phase change enthalpy of PCMs is much higher than the sensible heat;
• LHS materials (PCM) have a storage density that can be five to 14 times greater than

that of SHS materials [60];
• The LHS method takes place in a quasi-isothermal manner unlike the SHS process

where the materials temperature is too high;
• SHS systems using rocks (resp. water) require three times (resp. 1.5 times) more volume

than LHS systems using paraffin wax [34];
• Seasonal overheating problems can be avoided in LHS systems due to the involved

low mass.

However, the low thermal conductivity, low thermal stability of PCMs under long-
term cycles, problems with supercooling, subcooling, phase segregation (e.g., salt hydrates)
and cost are the main obstacles to the development of the LHS materials sector [3,58,65–69].

Supercooling, phase segregation, convection and impurities problems are encountered
in PCMs such as hydrated salts, octadecane, etc. During the cooling process, the substance
temperature drops below the melting range (TPCM � Tmelting) without starting the solid-
ification mode. Thereby, nucleation is triggered, causing a sudden rise in temperature
to the melting point. Under supercooling, the onset of solidification is delayed, and the
liquid solidifies at a temperature under its freezing temperature, causing a lag between
the design and the real behavior of the considered PCM. Likewise, in case of ignorance or
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overestimation of supercooling, experimentation and numerical simulation exhibit a time
lag [70,71]. Figure 9 illustrates the supercooling of a PCM [72].
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Indeed, the supercooling phenomenon maintains the liquid state of a PCM at a tem-
perature below its solidification temperature and prevents the release of latent heat at a
temperature gradient ∆T. Note that the technique of adding nanoparticles to PCMs to form
a nanofluid has been suggested as a suitable solution to alleviate the supercooling problem.
To the best of our knowledge, Liu et al. [73] analyzed the graphene oxide nanosheets as an
additive component for the PCM–water. They found that the supercool-ing temperature
can be decreased by 69% for deionized water. Incomplete melting (during the charging
period), PCM containers with isolated parts (called cold fingers), excitation by vibrations,
magnetic and/or electric fields and ultrasound among many others could be solutions to
handle supercooling and overcome the problems caused.

Phase segregation represents another crucial issue of some PCMs, in particular salt
hydrates. It consists of a separation of phases causing an accumulation of the dense phase
as seen in Figure 10 [3]. Therefore, the PCM split into different phases loses its expected
characteristics and cannot be used in an LHS application. In this context, thickeners are the
most commonly used solutions to avoid phase segregation.
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3.1. Latent Heat Storage Materials (LHSMs or PCMs)

Since PCM is the central ingredient (component) of an LHS system, it is expected to
meet certain requirements to improve energy storage density and ensure thermal stability
under long and/or short term loops. Its sound selection is based on its main desired
thermophysical, kinetic, chemical, economic and environmental characteristics. These have
been listed by Sharma et al. [60] and Nomura et al. [74] as follows:

• In terms of thermal properties, the PCM must have a phase change temperature
corresponding to the operating temperature of the LHS application. Moreover, it
must have a latent heat and a specific heat. PCMs with high thermal conductivity are
advocated to facilitate phase transition and interstitial heat transfer;

• Regarding physical properties, PCMs should exhibit large density, small volume
changes and low vapor pressure during the phase transition process while respecting
the operating temperature range to limit containment issues;

• As for kinetics properties, subcooling and supercooling should be avoided, and a
sufficient crystallization rate should be achieved;

• For chemical properties, PCMs should be compatible with the materials in the appli-
cation. They should retain their chemical stability for long-term cycles (no chemical
degradation and breakdown). In addition, the latent heat storage material should be a non-
toxic, non-flammable, non-corrosive, and even less explosive substance. Moreover,
charging and discharging periods must be fully completed;

• Low-cost PCMs should be preferred in terms of economic properties.

For environmental properties, PCMs should have a low environment impact by being
non-polluting and recyclable. Unfortunately, each PCM has its own characteristics that
make it virtually difficult to provide a clear answer to all the listed criteria.

As tacitly stated above, PCMs can be split into PCM solid/solid, PCM solid–liquid, PCM
solid/gas and PCM liquid–gas. It is solid–liquid PCMs that are involved in this section and
can be divided into organic, inorganic and eutectic, as depicted in Figure 11 [3,20,24,75–77].
In addition, an attempt to compare the groups that have been up-cited is provided in
Table 5 [24,77].
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Table 5. Benefits and drawbacks of PCMs based on their classification [24,77].

Classification Benefits Drawbacks

Organic PCMs

No subcooling
No supercooling

No phase segregation
Large storage capacity

High latent heat
Recyclable substances

Certain renewable substances (fatty
acids and alcohols)

Available for all temperature range
Compatible with other materials

Low thermal conductivity
(∼ 0.2 W ·m−1 ·K−1)

Flammable
Large volume change

Certain non-renewable
substances

Inorganic PCMs

High thermal conductivity
High latent heat

High storage capacity
Small volume change

Availability and low cost

Supercooling
Corrosion

Presentation of chemical
instability

Eutectics

No segregation
High storage density

Adjustable phase transition
temperature

Lack of test data for certain
thermophysical characteristics

Same drawbacks of pure
organic or inorganic PCMs

It is worth noting the PCMs’ use has spread to various industrial sectors such as
textiles, satellites, telecommunications and medicine thanks to the change in their physical
states. For moderate melting temperatures (below 15 ◦C), PCMs are best suited for air
conditioning and extreme cooling applications where the operating temperature matches
that of melting. On the other hand, for extreme melting temperatures (above 90 ◦C), PCMs
are used to prevent a sudden temperature rise which can cause fires [78–82].

Figure 12 portrays the enthalpy of fusion vs. the melting temperature of some existing
PCMs [77,78,82–84]. Close examination of such a figure indicates that suitable PCMs for
construction applications are those with a phase temperature between 18 and 40 ◦C. Simply
put, potential PCMs for building applications are paraffin, fatty acids, salt hydrates and
eutectic mixtures. These are used (a) as passive thermal storage integrated within building
elements, and (b) as independent storage units coupled with heating, ventilation and air
conditioning (HVAC) systems.
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From an energy consumption point of view, PCMs are widely applied in building
applications (around 40%) and the industrial sector (around 55%). The rise of these materials
will take on its full importance when raising awareness of recycling and optimizing energy
consumption are the challenging tasks [85,86]. Indeed, more and more efforts in buildings
are directed to achieve comfortable conditions in terms of the living environment. These
efforts remain linked to the (high) costs and increased use of PCMs, and they can lead to
environmental pollution. In addition, controlling energy consumption appears to be an
innovative way to limit energy consumption and environmental pollutants [87–91]. In
recent years, PCMs and energy storage technologies are among the tools that have become
increasingly important in buildings’ energy management. In this field, Faraj et al. [85]
discussed a fairly comprehensive literature on TES with a focus on PCMs for building
applications such as cooling, heating and hybrid applications. They exhibited the active
and passive processes while providing a summary of the PCMs used, their characteristics,
and their incorporation techniques. Theyconcluded that the use of PCM reduces energy
consumption for heating, ventilation and air conditioning in the active system as well as
ceilings in the passive system; however, the main disadvantage isincomplete solidification
during the night for the cooling systems. Another review on the use of PCMs for cool-
ing building applications was carried out by Souayfane et al. [92]. They presented and
discussed several cooling applications based on PCM integration such as solar cooling
systems, free cooling, evaporative and radiative cooling systems, air conditioning systems,
and PCMs active and passive systems application in building envelopes. The authors dealt
with the selection criteria of PCMs and concluded that the PCMs incorporation reduces
energy consumption while ensuring thermal comfort and mitigating temperature fluctu-
ations. They did, however, report many drawbacks such as low convective heat transfer
coefficients, considerable portions of PCM used, incomplete cycle of the PCM solidification
process at night, and limited interstitial heat transfer between the PCM and the heat transfer
fluid. So, it has been claimed that active systems using paraffin can handle the problem of
poor convective heat transfer. It should be noted that several studies have reported that
organic solid–liquid PCMs are the most used substances where paraffin waxes represent a
good share (about 27%) for applications as PCMs [82,93–95].

Figure 13 exhibits the relationship between the PCMs’ properties and LHS devices’
performance. As can be seen in the figure (supported by different investigations in the literature
on this topic), PCMs have a strong influence on the LHS systems’ thermal performances [3].

In addition, let us point out that a PCM is suitable for applications if its properties do
not degrade after a certain number of repeated cycles, i.e., if it remains stable in cycling
and in the long term [96]. Having said this, the economic aspect remains a crucial factor in
the MCP choice [60,87,97].

Note that the integration of PCMs can be completed via many techniques includ-
ing the direct integration of PCM (liquid or powder (such as gypsum, concrete, plaster, etc.)
mixed with other materials), incorporation in porous structures, shape stabilization and
macro-encapsulation or micro-encapsulation or even nano-encapsulation approaches [85].
Encapsulation techniques help to increase the interstitial surface area, to prevent thermal
losses and to limit the direct exposure of PCMs to the environment. In some cases, this
method is used to improve the thermal conductivity or to preserve the PCM morphol-
ogy during the phase change. Generally, capsules (containers) are made of polymer or
metal [77,98–101].

To the best of our knowledge, the micro-encapsulation technique was first conducted
by Umair [93], and it is widely applied in building and textile industries for thermal
regulation. On the other hand, the first experimental study on solid–liquid phase change
heat transfer of porous form stabilized PCM was developed by Weaver and Viskanta [102]
using water and glass as embedded PCM in a porous matrix.

Figure 14 shows some methods of integrating PCMs [20,103–105].
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3.2. Latent Heat Storage in Porous Medium

It has been mentioned many times that most pure PCMs exhibit low thermal conduc-
tivity, which limits their use in many fields [105]. To deal with this problem, solutions have
been proposed:

• Manufacture of a composite by associating a PCM and a porous matrix (metal foam or
expanded graphite) [106];

• Addition of metal spheres, fins and wools to form a new MCP with improved thermal
conductivity [107–109];

• Implementation of nanomaterials [110–112].

Porous supports can be classified according to their pore size into macro-porous
(>50 nm), mesoporous (2–50 nm), and microporous (<2 nm) [113].

Figure 15 depicts the most used porous supports [114,115] that can be used as heat
transfer promoters due to their large interstitial surface. Meso and microporous media
exhibit excellent guest–host interaction while preventing leakage. In hierarchical porous
forms, macro-pores store PCMs in a cavity. As for mesopores, they provide transport
pathways, while micropores block the movement of PCMs by exerting capillary forces.
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The impregnation of PCMs with a porous structure consists of the manufacture of a
porous medium (copper, aluminum, graphite, metallic foam, etc.) in the form of a solid matrix
having interconnected or disconnected voids called pores where the PCM is embedded
for the latent heat storage. It has been reported that at the nano or microscale, PCMs can
retain their original shape without any leakage during phase transition due to capillary
and surface tension forces [28,74]. Moreover, performance enhancement depends on the
morphology and the properties of the structure such as porosity, pore density and thermal
conductivity [28,116,117]. In this context, Mabrouk et al. [118] numerically studied the
laminar phase change process of a PCM in an open-ended porous channel filled with
porous metal foam. They found that the melting rate intensifies as porosity decreases and
Reynolds number (Re) number increases, and they noted that the thermal performance
improves significantly at low porosities. Following a similar idea, these authors numerically
investigated the effect of pore morphological parameters such as pore per inch (PPI) density
and porosity of a metal foam/paraffin composite on the heat transfer mechanisms involved
during the phenomena of melting/solidification [119]. They demonstrated that increasing
Re with high PPI and porosity reduces the melting time, while it is slowed down with low
PPI and porosity.

Along the same lines, Yang et al. [120] proposed a new LHS system filled with porous
metal foams with positive and negative gradients in pore parameters to improve the thermal
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performance. They found that an almost 18% reduction in time to complete melting can
be achieved with positive gradients porosity design, while an increase of around 36%
can be achieved with negative gradients. To cope with the low thermal conductivity
issue, Li et al. [121] developed a physical and numerical model to examine the effect of
metal foam porosity and nanoparticle concentration on an LHS device where PCMs are
embedded. They pointed out that a 83.7/88.2% reduction in melting/solidification time is
achieved with the addition of 95% porous metal foam, while a decrease of 25.9/28.2% is
secured by adding 5% copper nanoparticles. Sardari et al. [122] investigated the copper
metal foams’ porosity effect on the melting process and stated that low porosity improves
the system performance compared to higher porosity. However, pore size has no effect.
For their part, Yang et al. [123] conducted an experimental and numerical survey on the
solidification performance of impregnated PCMs into a metallic structure. The effects of
porosity and pore density have been targeted. They reported that the complete solidification
time with a porosity of 0.93 and 0.97 can be reduced by 87.5% and 76.7%, respectively,
while at low porosity, the melting/solidification rate rises. In addition, they confirmed
that the addition of the metal foam effectively improves the thermal conductivity of the
composite media involved. Zhang et al. [124] implemented an experimental and numerical
study on the behavior of a copper foam/paraffin composite during the melting process.
Compared to pure paraffin, the fusion rate has been significantly improved due to the high
thermal conductivity gained. Moreover, Atal et al. [125] experimentally reported on the
porosity effect of the aluminum metal foam in an LHS unit and pointed out that small
porosities could reduce the phase transition time. Note that the improvement of thermal
performance [65,126] has been proven by decreasing the pore size, while Refs. [127,128]
have rather shown a negative effect.

4. Latent Heat Storage (LHS) vs. Sensible Heat Storage (SHS)

Using the bibliometric analysis method, Cabeza et al. [26] reported that up to 2021,
more than 27,016 TES-themed articles have been published in the literature. Explicitly,
nearly 2900 articles dealt with the SHS, while a record number of around 12,152 concerned
the LHS subject matter.

Table 6 sets out a non-exhaustive comparison between the SHS and LHS techniques in terms
of operating principle, advantages, most used materials and application domains [5,60,114].

Table 6. Comparison between SHS and LHS techniques [5,60,114], reprinted/adapted with permis-
sion from Ref. [114], 2022, Elsevier.

Operating Principle Benefits Materials Application Domains

SHS Temperature change
(Increase/Decrease)

Inexpensive;
Simple operation Water, rock, concrete, etc.

Concentrated solar power (CSP)
Plants or desalination

Building heating

LHS Phase change
(Solid–Liquid)

Large storage density;
Large latent heat;

Stable temperature

Paraffins, salt hydrates,
metallics, etc.

Solar applications
Building heating/cooling

Heat pump
Thermal control

Industrial waste heat storage

Zhao et al. [27] drew up and analyzed the technical parameters characterizing SHS
and LHS (see Table 7).

Faraj et al. [85] published a critical paper on the use of PCMs for cooling applications
in buildings. It was noted that LHSMs store between five and 14 times more energy than
SHSMs [129] and that certain materials (e.g., rocks) offer much higher storage volumes than
that of certain organic or inorganic PCMs.
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Table 7. Technical parameters of SHS and LHS, reprinted/adapted with permission from Ref. [27],
2022, Elsevier.

Heat Storage Density Storage Period Heat Transfer Time Technical Maintenance

SHS ≈ 50 kWhm−3

≈ 0.02− 0.03 kWhkg−1
limited short uncomplicated

LHS ≈ 100 kWhm−3

≈ 0.05− 0.1 kWhkg−1
limited short complicate

5. Lattice Boltzmann Methods (LBMs)

Due to the limited capacity for theoretical analysis, huge cost, and long periods of
experimental investigation, numerical simulation has emerged as an effective alternative
tool for various industrial applications. Among the multitude of methods that have
emerged, we find the LBM approach and its variants because of their significantly simple
formulation compared to traditional methods dealing with Navier–Stokes equations (NSE).
They are the starting point in the scale of molecular cluster-based discrete approaches
(e.g., MD for molecular dynamics, DSMC for direct simulation Monte Carlo, DPD for Dissipative
Particle Dissipation, etc.) as depicted in Figure 16 [130].
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Lattice Boltzmann methods (LBMs) have become an active subject of investigation
in the fields of computational fluid dynamics and thermal science. Over the past decade,
they have led to unprecedented results in the field of low-Mach, thermal, hydrodynamics,
transport in porous media, groundwater flows, textile materials, fuel cells, aerodynamics,
aeroacoustics, etc. The findings also include the appreciable stability of its streaming and
collision algorithm in solving incompressible flows, its programming and parallelization
flexibility, the treatment of nonlinear convective terms and pressure (Poisson’s equation),
the simplicity of dealing with complex boundary conditions and the ability to incorporate
microscopic interactions. In practice, the CPU costs would be significantly lower than those
of conventional Navier–Stokes solvers. In addition to being second-order accurate in time
and space, the LBM method exhibits excellent dissipation properties for pressure waves,
which are comparable to high-order numerical methods. It is based on a distribution of
particles while aiming mainly to guess the macroscopic characteristics [131,132]. It should
be stressed that the low computational intensity (number of iterations, computation time, CPU
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use, etc.) of this approach [133] is one of its most important advantages over traditional
computational fluid dynamics (CFD) methods.

In the case of 2D porous structures, Yoshino et al. [133] reported a comparison between
LBM and the finite difference method (FDM) for two different flow problems (lid-driven
cavity flow and buoyancy-driven cavity flow). In the first case, they depicted the velocity
distribution profiles at Re ≤ 103 and showed that the LBM results are more accurate than
the FDM ones with a slight difference in the computation time. However, at Re > 103, the
LBM simulations take longer (1.3 times) than simulations via FDM. In the second case, the
authors found that the CPU time of LBM is generally lower, demonstrating the efficiency
of LBM compared to FDM.Nevertheless, for high Rayleigh numbers (Ra), LBM requires
more grid numbers than FDM to ensure its numerical stability. A summary statement of
these findings [133] is depicted in Table 8.

Table 8. Comparison between LBM and FDM in cases of buoyancy-driven cavityand lid-driven
cavity flows [133].

Problem Method Ra Re Grid Number Iterations Number CPU Time (s)

Buoyancy-driven flow

LBM
FDM 710 - 50 × 50 11,146

8501
282
542

LBM
FDM 105 - 50 × 50 27,352

30,148
705

1904

LBM
FDM 106 - 100 × 100 58,101

32,029
4802
8594

Lid-driven flow

LBM
FDM - 100 100 × 100 10,963

5149
886

1131

LBM
FDM - 400 150 × 150 30,557

10,848
5249
5360

LBM
FDM - 1000 200 × 200 50,853

13,964
15,902
12,214

For the finite difference approach, the most influential parameters are the number
of discretization points and the CFL number. Unlike the FDM, the equivalent to a CFL
number for the LBM cannot be chosen explicitly. LB velocities, cell spacing and time step
sizes are bound to the used lattice.

In another comparative study [134], the efficiency of hybrid LBM was compared to
FDM by considering the problem of transient conduction radiation in a 1D planar geometry.
It has been shown that the LBM requires more iterations and longer computation time
than the FDM, but that it has computational advantages in the case of a multidimensional
medium. Mondal and Mishra [135] conducted a comparative study of the discrete ordinate
(DOM)-LBM and DOM-FDM methods by dealing with transient conduction–radiation
heat transfer problems in 1D and 2D square cavities containing an absorbing, emitting and
isotropically diffusing medium. They stated that the CPU times for the LBM-DOM were
slightly faster than those of the FDM-DOM with almost the same number of iterations.
Gohari and Ghadyani [136] used the LBM and SFV (Stream Function-Vorticity) schemes to
simulate a flow over a flat plate. They were interested in the CPU/GPU solver execution
time and acceleration and the type of GPU arrays used. They found that although the
execution time of SFV is lower than that of LBM, the potential for accelerating LBM
using NVIDIA GTX 480 is better. Goodarzi et al. [137] addressed numerically the internal
convective heat transfer phenomena through cavities and enclosures using both the FVM
(finite volume method) and LBM with various discretization schemes.They concluded that
at the corners, the FVM can exhibit more accurate results compared to those of the LBM.
By simulating turbulent flows, Kerimo and Girimaji [138] applied the gas kinetic method
(GKM) while assessing its capacity by comparison with LBM and Navier–Stokes solvers.
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They stipulated that LBM simulations are performed with the same physical time as GKM
and NS but with fewer iterations.

Nonetheless, the LBM also has some disadvantages.Among these, we can cite the
need for a large memory for the simulations, which can pose problems for 3D problems,
some ambiguity concerning the values of non-hydrodynamic moments, the inadequacy
of dealing with highly compressible flows and flows with large temperature fluctuations,
which remain tough tasks and, thereby, are still under investigation [139].

Still, the LBM is now admitted as a powerful and effective approach for the flows in
its ranges of application. Here, a suitable choice of a lattice model (arrangement of nodes
in space) is an important first step. It is basically a Cartesian mesh lattice structure (grid)
grid where particles propagate from one node to the next. Indeed, in general, the LBM
is based on a uniform or regular grid for an easy implementation. However, there are
scientific issues where non-uniform domain mesh should be implemented (e.g., complex
porous media) without increasing the computation cost. In this context, various refinement
approaches (uniform and non-uniform grid refinement) have been implemented in the LBM
framework such as adaptive mesh refinement (AMR) [140], multi-grid approach [141],
multi-domain approach [142] and the so-called non-uniform staggered Cartesian grid
(NSCG) approach [143]. In their pioneering work, He et al. [144] implemented an LBM
algorithm with a non-uniform mesh and found an excellent agreement with previous
experimental and numerical results.

Due to the general physical description of the Boltzmann transport equation, a whole
series of Lattice Boltzmann methods have been proposed to simulate various processes. On
this basis, software tools such as Power FLOW and Open LB have been developed to simu-
late practical engineering problems. Initially, the LBM was designed to deal with isothermal
flows. To broaden the applications, the LBM has also been extended to simulations of
thermal flows in porous media, whether or not involving PCMs, etc.

There are three typical collision operators in the LBM context: the single relaxation
time (SRT) collision operator, the two relaxation time (TRT) collision operator, and the
multiple relaxation time (MRT) collision operator. In terms of numerical accuracy and
stability, these three operators obviously differ from each other [145]. However, and
unsurprisingly, it is the SRT model that is best known for its simplicity and ease of imple-
mentation [134].Nevertheless, the accuracy of the velocity distribution may be impaired
when the single relaxation time increases [145], and non-physical artifacts may occur in
case of complex geometries [146]. To have a better precision and numerical stability, the
MRT collision operator is a judicious alternative which tunes each relaxation parameter
based on a comprehensive asymptotic analysis [147,148]. However, its implementation
is more complicated, and the multiple relaxation times selection is a difficult point. The
intermediate TRT model is as simple as the SRT while exhibiting the advantages of the
MRT model in terms of accuracy and stability [145]. It uses two relaxation times to relax
the particle distributions, one fixed and the other tunable [149,150]. In the following, a brief
description is presented to introduce these schemes coupled with direct forcing to deal
with sensible and latent heat transfer processes in porous media. Generally, the discrete LB
equation with external forces can be written as:

fi/gi(x + eiδt, t + δt)− fi/gi(x, t)︸ ︷︷ ︸
streaming

= Ωi( fi/gi)︸ ︷︷ ︸
collision operator

+ δt·Fei/Si︸ ︷︷ ︸
f orce term/Source term

(2)

where fi/gi is the fluid distribution function for the dynamic ( fi) and thermal (gi) fields,
respectively, with the discrete velocity ei and Fei/Si, the second right term represents
external forces (or source terms) depending upon the governing equations considered. Note
that the general flowchart of any LBM based on Equation (2) is depicted in Figure 17.
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5.1. Single Relaxation Time (SRT) Collision Model

Depending on the choice of the collision operator Ω, different lattice Boltzmann
schemes can be constructed, the simplestof which is the single relaxation time (SRT) model,
as already mentioned above (also known as the lattice BGK model) [151]. Without external
force or source terms [114,152], the collision operator takes the following form:

Ωi( fi) = −τv
−1( fi − f eq

i )︸ ︷︷ ︸
Dynamic f ield case

, Ωi(gi , f /s) = −τg, f /s
−1(gi , f /s − geq

i, f /s)︸ ︷︷ ︸
Thermal f ield case

(3)

where the subscripts f and s represent the fluid and solid phases. f eq
i /geq

i, f /s is the equilibrium
distribution function and τv/g, f /s is the single relaxation time, which are computed as:

f eq
i = ρwi

(
1 + eiu/c2

s + uu :
(

eiei − c2
s I
)

/2c4
s ε
)

, geq
f ,i = wiTf

(
1 + eiu/(εc2

s )
)

, geq
s,i = wiTs (4)

τv = 3ν + 0.5, τT, f = 3αe, f /(δtc2) + 0.5, τT,s = 3αe,s/(δtc2) + 0.5 (5)

αe f f , f /s, c (= δx/δt), wi, ε and cs (= c/
√

3) being the effective diffusivity, the lattice
velocity, weighting factor, porosity and the sound speed, respectively.

The force terms in Equation (2) can be calculated as:

Fei = F(ei − u)2 f eq
i /RT0︸ ︷︷ ︸

Porous medium′s effect

, F = −ε

 υ/K︸︷︷︸
Darcy f orce

+ Fε/
√

K‖u‖︸ ︷︷ ︸
Forchheimer f orce

u for the dynamic field (6)

Si, f = wi

La/Cp, f (( fi(x, t + δt)− fi(x, t))/δt)︸ ︷︷ ︸
Latent heat

+ hs f (Ts − Tf )/
(

ε(ρCp) f

)
︸ ︷︷ ︸

Solid/fluid interactions

 for thermal field (7)

Si, s = wi(hs f (Ts − Tf )/((1− ε)(ρCp)s)︸ ︷︷ ︸
Solid/ f luid interactions

) for thermal field (8)
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where La, Ts/ f , h, K and Fε are the latent heat, solid/fluid temperature, interfacial heat trans-
fer coefficient between solid and liquid phases, permeability and Forchheimer coefficient,
respectively.

The great success of the SRT-LBM comes from the simplicity of its numerical scheme,
which can be split in two steps (collision–streaming): first, the collision mimicking the effects
of inter-particle collisions, which is followed by a node-to-node streaming of discrete
populations ( fi/gi) on a Cartesian grid.

Lastly, the mass density ρ, the velocity u, and temperature T are updated using the
following relationships:

ρ = ∑
i

fi; u = ∑
i

fiei/ρ + δtFei /2; Tf /s = ∑ gi, f /s (9)

5.2. Multiple Relaxation Time (MRT) Collision Model

The MRT-LB model is the most general formulation within the theoretical framework
of the LB equation and kinetic theory. It is generally turning out to be appropriate for
flow problems with and without heat transfer in porous or non-porous media for which
the numerical scheme stability has to be significantly raised compared to the BGK model
when moments relax at different rates. Simply put, the MRT-LBM using multiple relaxation
parameters can achieve more stable and accurate simulations by adjusting these parameters,
making it an approach known to be more accurate than its earlier SRT version. However, a
comprehensive asymptotic analysis is necessary for an optimal selection of all relaxation
parameters involved [147,148]. That being said, the MRT collision operator for any problem
(fluid, thermal, etc.) without a forcing term can be expressed as:

Ω( f ) = −(M−1S f )(m−meq)︸ ︷︷ ︸
Dynamic f ield

, Ω(g) = −(N−1Sg)(n− neq)︸ ︷︷ ︸
Thermal f ield

(10)

where M(N) and Sf(Sg) stands for transformation and diagonal relaxation matrices, respec-
tively. m (or n) and meq (or neq) are the velocity moment of f (g) and their equilibria feq(geq).
Note that the relaxation times of the diagonal matrices (Sf, Sg) have a significant influence
on the collision phase.

In two-dimensional (2D) problems, and without loss of generality, the D2Q9 discrete
velocity set (with nine velocities) is commonly deemed, and thereby, quantities involved
in the collision operator can be described as follows [153,154] to cite a few: the relaxation
matrix Sf(Sg) in moment space is a diagonal matrix given by diag(τi) where τi represents
the relaxation rates. The passage from one space (discrete velocities) to another (moments) is
achieved by the matrices M(N) via the following relations, e.g., [154]:

m = M · f ; meq = M · f eq; n = N · g; neq = N · geq (11)

Finally, the macroscopic fluid variables (density, velocity, scalar (e.g., temperature)), are
updated from the moments of the distribution functions according to the relationships (9)
up-cited.

5.3. Two Relaxation Time (TRT) Collision Model

Alternative to SRT schemes, the TRT-LBM adopts a collision operator involving two
relaxation times. Hence, in the space of discrete velocities, the expression for the collision
operator (without body force term) reads [149]:

Ωi( fi) = τ
−1

s ( f s
i − f s, eq

i )− τ
−1

a ( f a
i − f a, eq

i ) (12)

where f s
i and f a

i are symmetric and antisymmetric parts of fi (= f s
i + f a

i ), which are
expressed as:

f s
i =

(
fi + fi

)
/2; f a

i =
(

fi − fi
)
/2 (13)
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where the index i is in the direction opposite to i. These parts are, respectively, associated
with relaxation times τs and τa. The former (called the viscous relaxation time) is used to de-
termine kinematic viscosity, and the latter (called the free relaxation time) is tuned to improve
numerical stability and accuracy. Moreover, the symmetric and antisymmetric components
of the distribution function are linked by f s

i = f s
i

and f a
i = − f a

i
for a link. It should be

pointedout that the relations (13) hold for the equilibrium distribution function f eq
i . It can

be shown that relaxation times need to satisfy a monitor factor Λ (= (τs − 1/2)(τa − 1/2))
whose role is to control the algorithm stability. Obviously, TRT-LBM degenerates into
SRT-LBM when τs = τa. In addition, modeling of the Navier–Stokes equations with the
TRT operator is discussed in detail in Refs. [154–156], to name a few. Nonetheless, although
such an approach can draw its advantages from those of SRT and MRT methods (simplicity
and stability), it remains much less popular due to its tedious mathematical derivation,
which can hamper a computer code implementation.

5.4. Application to Fluid Flows by Advection/Diffusion with Phase Change in Porous Media

Due to its distinctive advantages, the LB methods have proven to be promising in
simulating thermal flows in porous media with or without phase change. In this framework,
the LBMs are generally split into two classes, viz representative elementary volume (REV)
scale and pore scale approaches [157–159]. At REV-scale LB simulation, neither the detailed
properties of the fields (dynamic, thermal, etc.) nor the geometry detail (e.g., porous medium
involved) are covered, while pore-scale LB simulation targets the local details of flow and
heat transport processes considering the real geometry. It requires prohibitive computing
times and high computing resources and should be applied only to small regions where a
verydetailed analysis is required.

In terms of equations, only one averaged conservation equations set deals with the
REV concept, whereas two sets of equations for the porous medium and the phase change
material, respectively, are involved in the pore scale approach. Although many efforts have
been deployed, the application of the latter concept remains tedious. On the other hand,
much research has demonstrated that the REV-LBMs simulations can lead to sufficiently
accurate solutions for many flow average properties in even complex geometries (e.g.,
porous media embedding phase change materials). In this approach, the porous structure and
the fluid occupying the pores are assumed to form a single computational control volume.
Only statistical (averaged) parameters, such as porosity, permeability, effective thermal
conductivity, etc. are considered without any detail on the pores structure, which results in
non-excessive computation times.

The REV-LBM simulation method is based on a generalized Navier–Stokes equations
model that describes the fluid flow in porous media with or without phase change [158–160]
to cite a few. In this approach, the flow field LB-equation is supplemented with an ad-
ditional term based on empirical or semi-empirical models (e.g., Darcy model, Brinkman’s
extended Darcy model, and non-Darcy model generalized), which represents the porous medium.
Obviously, according to the model chosen, the REV scale method yields suitable results
corroborating other studies (experimental or numerical if there are any). Thereby, the REV-scale
LB method is increasingly being adopted to study fluid flows and heat transfer in large
porous media systems. Several models based on the REV-scale method have been proposed
to describe the interaction between the porous medium and the fluid involved.

According to the key points and main application features, Table 9 compares the
REV-scale and pore-scale LBM-approaches to simulate heat transfers in a porous structure
(either during phase change or during sensitive storage process).
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Table 9. REV scale vs. pore scale (principle, advantage/disadvantage, geometry, governing equations).

Method REVScale PoreScale

Simulation approach Volume average simulation (FVM, FEM, LBM). Direct numerical simulation (LBM, DNS).

Advantages
Fluent implementation and programming; less

computational requirements; large computational
domain size.

Reflection of pores’ effect on mechanisms
involved; interstitial heat transfer study; no need

for empirical models.

Disadvantages Less reflection of pores’ transport mechanisms;
need for semi-empirical models.

Important computing platform; small
computational domain; high computational

demands; tedious implementation and
programming.

Computational domain
[160,161]
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Table 9. Cont.

Method REVScale PoreScale

Evolution of
solid/liquid phase
interface [124,163]
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In Equations (14)–(19),
→
u , p, Tf , Ts, ε, ρ, ν f , Cp, λe f f and Γ represent the velocity

vector filed, pressure, fluid and porous medium temperatures, structure porosity, density,
kinematic viscosity of PCM, thermal capacity, the equivalent thermal conductivity and
the liquid fraction, respectively. Subscripts f and s point out the fluid and solid phases,
respectively.

Using the enthalpy method, the liquid fraction Γ can be computed as [118,119]:

Γ(T) =


0(

Tf − Tm + ∆T
)

/2∆T
1

i f
Tf ≤ Tm − ∆T
Tm − ∆T ≺ Tf ≺ Tm + ∆T
Tf ≥ Tm + ∆T

(20)

∆T being the PCM’s melting temperature range.
The permeability and the Forchheimer’s form coefficient can be expressed, respectively, as:

Fε = 2.12× 10−3(1− ε)−0.132(
dp

d f
)

1.63

(21)

K = ε3d2
p

(
150(1− ε)2

)−1
(22)

d f and dp being, respectively, the average diameters of ligaments and of pores, which can
be written:

d f = 1.18((1− ε)/3π)1/2dp and dp = 22.4× 10−3/ω (23)

In Equations (16) and (18), the specific surface area of the porous structure (as f ) and
the interfacial heat transfer coefficient between porous medium and PCM (hs f ) can be
estimated via the following correlations:

as f = 3πd f

(
1− e−(1−ε)/0.004

)
/0.59/d2

p (24)

and

hs f =


0.76·Re0.4

d Pr0.37 λ f
d f

0.52·Re0.5
d Pr0.37 λ f

d f

0.26·Re0.6
d Pr0.37 λ f

d f

f or


1 ≤ Red ≤ 40
40 ≤ Red ≤ 103

103 ≤ Red ≤ 2.105
(25)

More details can be found in Refs. [48,114,118,119].
Generally speaking, natural convection is considered in certain circumstances and is

sometimes negligible to simplify the mathematical model. However, Andreozzi et al. [164]
showed that for solar organic Rankine cycle systems, natural convection strongly affects the
temperature field and the energy stored in the PCM, when the solar radiation decreases. On
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the other hand, Feng et al. [165] conducted a numerical investigation of the PCM melting
process using two approaches, viz., pore-scale and averaged-volume models. Their findings
showed that natural convection reduced the total melting time by 28%. In addition, these
authors demonstrated the ability of the pore-scale model to capture local melting behavior
and indicated that this approach could be used as a benchmark to handle the application of
the volume-averaged method with the single temperature model.

5.4.1. Forced Convection Melting of a PCM in a Latent Heat Thermal Energy System (LHTES)

In what follows, some results of recent numerical studies on laminar forced convection
with melting in porous media are presented to illustrate our points on the ability of the
REV-LBM approach to deal with this type of problem and many others. These findings
provide insight into the applications of REV-LBM to a variety of transport phenomena in
porous media saturated with phase change materials.

For the values of the relevant parameters considered, the reader can consult the Refs.
cited herein.

The open-ended straight channel incorporating a porous medium (here copper foam) and
filled with a PCM (paraffin) is here considered as it may depict an LHTES template [118,119,166].

Figure 18 exhibits the temperature contours of the fluid and porous medium (Θ f and
Θs) for Reynolds numbers of 200 and 400 during the charging process without viscous
dissipation (Ec = 0) characterized by the key dimensionless parameters, viz the numbers
of Prandtl (Pr), Biot (Bi), Darcy (Da), Eckert (Ec), thermal conductivities ratio (Kr), heat
capacities ratio (Rc), and the medium’s porosity (ε). It can be seen that the heat propagates
very slowly (from left to right) for fluid phase temperature (Θ f ) compared to that of the
solid phase temperature (Θ f ). This gives rise to the forced convection in the channel, which
speeds up the heat transfer toward its exit (right).
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Figure 19. Porosity effects on melt front ( Γ ) vs. time during charging process for Re = 400 with
350 0 1 1 10 1000 1 5Pr ,Bi . ,Ste ,Da ,Kr ,Rc ,Ec−= = = = = = =  [118]. 

Figure 18. Reynolds number effect on temperature contours (Θ f , Θs) during the charging process
with Pr = 50, Kr = 103, Rc = 1, Bi = 0.1, Da = 10−3, Ec = 0 and ε = 0.6 [166]: (a) Re = 400;
(b) Re = 600, reprinted/adapted with permission from Ref. [166], 2022, Elsevier.

Figure 19 portrays the melt front evolution vs. time(s) during charging process for
Re = 400 with Pr = 50, Bi = 0.1, Ste = 1, Da = 10−3, Kr = 103, Rc = 1, Ec = 5. It appears
that the melting speed improves when the porosity decreases (see from right to left).

Figure 20 highlights the effect of pore density (PPI) on U-shaped contours during the
charging process at the porosities ε = 0.8 and 0.9, respectively. It can be observed that
the PPI obviously influences the streamwise velocity (U) during charging and discharging
processes, even though the latter is deliberately left out here.
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Figure 19. Porosity effects on melt front (Γ) vs. time during charging process for Re = 400 with
Pr = 50, Bi = 0.1, Ste = 1, Da = 10−3, Kr = 1000, Rc = 1, Ec = 5 [118].
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5.4.2. REV-LBM Simulation of Unsteady Flow and Heat Transfer around and through a
Confined Diamond-Shaped Porous Block

Porous body arrangement could arise when designing porous heat sinks, pin-fin
arrangements, etc. Recently, Vijaybabu et al. [167] have numerically investigated the
hydrodynamic and thermal behavior of a diamond-shaped porous block confined in a
laminar unsteady uniform flow via the SRT-LBM approach (see Figure 21). They demon-
strated the effect of permeability on flow and heat transfer for different Darcy numbers
(10−6 ≤ Da ≤ 10−2) and Reynolds numbers (50 ≤ Re ≤ 150). They pointed out that the
higher the permeability, the greater the thermal plume downstream of the block.
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6. Conclusions

Thermal energy storage in the form of sensible and latent heat continues to be a way
to address the mismatch between energy supply and demand. It has been identified as a
very attractive strategy for high energy efficiency buildings. This paper reviews advanced
research studies regarding sensible and latent heat thermal energy storage in porous media.
The open-ended straight channel incorporating a porous medium (copper foam) and paraffin



Appl. Sci. 2022, 12, 6995 30 of 39

(PCM) is the typical LHTES template. As metal foams and paraffin are the most widely used
couple inPCMs and porous media, they are increasingly being used to improve heat transfer.
The present review has focused on mesoscopic modeling approaches for single-phase and
solid-liquid phase change heat transfer in porous media, which are widely involved in
energy/environmental science and technology. This approach has experienced an amazing
growth in the development of its methodologyand application over the past three decades
showingdistinctive strengths over themacroscopic and microscopic numerical methods.
Thereby, it bridged the gap between macroscopic methods dealing with Navier–Stokes
equations and microscopic particle-based microscopic approaches such as the Monte Carlo
and molecular dynamics methods.

A brief introduction to three methods that can handle the fluid flows and heat transfer
involved in a typical chosen LHTES model has been provided. Subsequently, two simu-
lation methods, i.e.,the REV-scale method and pore-scale method, have beenselected and
compared, and it is concluded that the REV-scale simulation is able to provide the flow and
heat transfer features without the tedious effort in implementing the pore-scale approach.
The REV-scale modeling has been shown to provide a sufficiently accurate prediction of
most transport mechanisms in porous media, and as such, it can help to achieve efficient-
design improvements of such systems. It should be stressed that for phase change heat
transfer in porous media at the REV scale, the standard LB method must be modified to
consider both the influence of the PCM and porous medium.

Based on the literature, the following conclusions can bedrawn:

• Through the bibliometric analysis that was carried out on TES methods, it is the LHS
category that appeared to be the most relevant technique investigated.

• SHS and LHS systems are most widely used systemsin different applications due to
their high availability. However, most TCHS devices are not commercially available,
except in a small range of applications, due to their unstable lifetime and high prices.

• The SHS method has been widely used in solar applications where water is the most
used material due to its low cost and high specific heat capacity. Note that porosity is
one of the main parameters that influences the performance of any SHS system.

• Despite their low thermal conductivity, PCMs can still be integrated into applications
using various modes of incorporation, of which the impregnation of PCMs in porous
structures appears to be the most relevant solution due to the high thermal conductivity
engendered.

• It turns out that PCMs can store an appreciable amount of energy which ismore than
that ofSHSMs in a small relative storage volume.

• Using foam metal in thermal energy storage can improve heat transfer rate while
shortening charge/discharge periods.

• Decreasing the porosity speeds up the melting phenomenon
• Increasing the PPI can enhance the forced convection heat transfer performance of the

liquid PCM.
• Pore-scale and REV-scale LBM approaches showed great potential for thesimulation

of phase change phenomenon and sensible storage in a porous medium due to their
inherent transienceand robustness to handle complexphysics. They can help to under-
stand the complex interactions between different processes, which are challenging to
obtain even for the most advanced experimental techniques. Their combinations with
macro/micro/nano scale fabrication techniques will certainly lead to new generation
porous media.

• There is no doubt that LB methods will continue to play an increasingly important role
in the study of solid-liquid phase change heat transfer in porous LHTES. However,
this will certainly have to entail a development of a numerically stable and accurate
multi-scale simulation method by combining the REV-scale and pore-scale methods.

To sum up, particular attention still needs to be paid to optimization works on the
thermophysical, mechanical and geometric characteristics of PCMs and SHSMs. Two main
research gaps have been identified. The first research gap is related to the weaknessof the
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environmental analysis, and the second is related to the weakness of technical–economic
analysis. These two issues play a key role in the marketing of the devices studied and the
optimization of their use. Moreover, the application of the LB method in micro/macro
LHTES energy systems for more details analysis and optimization alsohasagreat potential.

Author Contributions: The authors have contributed to different parts of the paper preparation
as follows: Conceptualization, R.M., H.N. and H.D.; Methodology, R.M., H.N., H.D. and A.C.B.;
Software, R.M., H.D. and H.N.; Validation, R.M., H.N., H.D. and A.C.B.; Formal analysis, H.N., H.D.
and A.C.B.; Investigation, R.M., H.N. and H.D.; Resources, R.M. and H.D.; Data curation, R.M. and
H.D.; Writing—original draft, R.M., H.N., A.C.B. and H.D.; Writing—review and editing, H.N., H.D.
and A.C.B.; Visualization, R.M., H.N. and H.D.; Supervision, H.N. and H.D.; Project administration,
H.D.; Funding acquisition, H.D.The authors’ order was approved by mutual agreement between the
authors. All authors have read and agreed to the published version of the manuscript.

Funding: This research has not received any specific grants from funding agencies in the public,
commercial or non-profit sectors.

Acknowledgments: The authors very much appreciated the fruitful discussions taking place within
the team which led to the elaboration of this work.

Conflicts of Interest: The authors declare no potential conflict of interest regarding authorship
and/or publication of this paper. Furthermore, the first-author scholarship had no role in the study
design nor in the manuscript writing or decision of its publication.

Nomenclature

as f Specific interfacial area (m−1)
Bi Biot number, Bi = hs f as f H2/λs
c Lattice speed (m · s−1)
Cp Specific heat capacity at constant pressure (kJ · kg−1 ·K−1)
cs Sound speed (m · s−1)
Da Darcy number, Da = K · H−2

df Mean ligament diameter (m)
dp Mean pore diameter (m)
Ec Eckert number, Ec = Uo2/(Cp f · ∆Tre f )

ei Discrete velocity in direction i
Fε Forchheimer form coefficient
F Body force per unit mass (N · kg−1)
Fei Discrete body force in direction i (kg ·m−3 · s−1)
fi, gi Distribution function in direction i
g Gravity
fi

eq, gi
eq Equilibrium distribution function in direction i

f s
i Symmetric distribution function

f a
i Antisymmetric distribution function

H Characteristic length scale (m)
h Enthalpy
hs f Interfacial heat transfer coefficient (W ·m−2 ·K−1)
K Porous medium permeability (m2)
Kn Knudsen number
KR Thermal conductivity ratio, KR = λs/λ f
La Latent heat (J · kg−1)
M (N) Transformation relaxation matrix
m (n) Velocity moment
meq (neq) Equilibrium moment
p Pressure (Pa)
Pr Prandtl number, Pr = ν f /α f
R Universal gas constant
Ra Rayleigh number
Re Reynolds number, Re = Uin H/ν f
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Red Pore Reynolds number, Red = Redp/εH
Rc Heat capacity ratio, Rc = (ρCp)s/(ρCp) f
Si Source terms
Sf(Sg) Diagonal relaxation matrix
Ste Stefan number, Ste = Cp f (Th − Tm)/La
T Temperature (K)
Tm PCM melting temperature (K)
Θ Dimensionless temperature
t Time (s)
u, v Velocity (m · s−1)
U0 Inlet velocity(m · s−1)
x, y Cartesian coordinates (m)
Greek symbols
∇ Gradient operator
∇. Divergence operator
α Thermal diffusivity (m2 · s−1)
β Thermal expansion coefficient (K−1)
ε Media porosity
ω Pore density (PPI)
λ Thermal conductivity (W ·m−1 ·K−1)
µ f Dynamic fluid viscosity (kg ·m−1 · s−1)
Γ PCM melting fraction
ν Kinematic viscosity (m2 · s−1)
ρ Density (kg ·m−3)
τa Free relaxation time
τv/g, f /s Single relaxation time
τi Relaxation rates
τs Viscous relaxation time
Λ Monitor factor
Ω Collision operator
wi Weight coefficient in direction i
Superscripts/subscripts
e f f Effective
f Fluid
i Direction opposite to i
m Melting
◦ Initial state
Ref Reference
s Solid
Abbreviations
ARM Adaptive mesh refinement
BGK Bhatnagar–Gross–Krook
CFD Computational fluid dynamics
CFL Courant–Friedrichs–Lewy
CNT Carbon nanotubes
DBTE Discretization of Boltzmann transport equation
DSMC Direct simulation Monte Carlo
DNS Direct numerical simulation
DPD Dissipative particle dissipation
EG Expanded graphite
ES Energy storage
EU European union
ESS Energy storage system
FDM Finite difference method
FEM Finite element methods
FVM Finite volume methods
GKM Gas-kinetic method
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HPC Hierarchical porous carbon
HPP Hierarchical porouspolystyrene
HTF heat transfer fluid
IRENA International renewable energy agency
LES Large eddy simulation
LBM Lattice Boltzmann method
MD Molecular dynamics
MOF Metal organic framework
MRT Multiple relaxation time
NSCG Non-uniform staggered Cartesian grid
PCM Phase change material
PPI Pore density (Pore Per Inch)
RANS Reynolds-averaged Navier–Stokes
REV Representative elementary volume
TCHS Thermochemical heat storage
TES Thermal energy storage
TRT Two relaxation time
LHTES Latent heat thermal energy storage
LHS Latent heat storage
PCP Porous coordination polymers
SHS Sensible heat storage
SHSM Sensible heat storage material
SRT Single relaxation time
STES Seasonal thermal energy storage
ZEB Zero energy buildings
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