
Hochschule Düsseldorf

Faculty

Electrical Engineering and Information Technology

performance evaluation of

state -of -the -art computer vision

systems in the field of autonomous

driving in dependency of optical

parameters

Thesis

Electrical Engineering and Information Technology

(M.Sc.)

Mattis Brummel

Student ID no.:

Prof. Dr. rer. nat. Alexander Braun

Patrick Müller, M. Sc.

August 23, 2021

Mattis Brummel: Performance evaluation of state-of-the-art Computer Vision Systems

in the field of Autonomous Driving in dependency of Optical Parameters, – A thesis

submitted in partial fulfillment of the requirements for the degree of Master

of Science in Electrical Engineering and Information Technology at the Düssel-

dorf University of Applied Science, Department of Electrical Engineering and

Information Technology, August 2021

supervisors:

Prof. Dr. rer. nat. Alexander Braun

Patrick Müller, M. Sc.

location:

Düsseldorf

submission:

August 2021

IV

Declaration of Authorship

I hereby declare that the thesis submitted is my own unaided work. All direct or

indirect sources are acknowledged as references.

Düsseldorf, August 23, 2021

Mattis Brummel

V

Abstract

With the development in deep learning, Computer Vision systems have received

huge performance growth. The increasing research interest in perception systems

for Autonomous Driving largely contributes to this progress. However, although

it is essential for Computer Vision systems to reliably perform in safety-critical

applications such as Autonomous Driving, little research has been done on

linking the performance of these systems to the performance of optical systems

and thus to the quality of images. In this thesis, the performances of Computer

Vision systems are evaluated under simulated, physically realistic, effects of

defocus. To this end, large-scale Autonomous Driving datasets are degraded by

an optical model to simulate driving scenes under different effects of defocus,

and the performances of Computer Vision systems on these degraded datasets

are compared with the optical performance of the applied optical model. A new

evaluation metric, called Spatial Recall Index (SRI), is proposed to evaluate the

performance of object detection and instance segmentation systems in dependency

of spatial positions in the input images. Using Hybrid Task Cascade (HTC) and

Cascade Mask R-CNN for object detection and instance segmentation concerning

pedestrians and cars in driving scenes, a dependency of the performances on

the image quality was found both with standard evaluation metrics and the new

SRI. Moreover, with the SRI metric a correlation could be observed between

the spatially varying optical performance of the optical model and the spatial

performance of Computer Vision systems. This highlights the importance of

evaluating the robustness of Computer Vision systems to naturally occurring

effects of defocus by also taking into account the spatial domain.

VII

Contents

1 Introduction 1

2 Computer Vision and Optics 3

2.1 Computer Vision . 4

2.1.1 Deep Learning . 4

2.1.2 Convolutional Neural Networks 13

2.1.3 Object Detection . 20

2.1.4 Instance Segmentation . 27

2.1.5 State-of-the-art Architectures 29

2.2 Autonomous Driving Datasets . 31

2.3 Evaluation Methodology . 34

2.3.1 Overlap Criterion . 34

2.3.2 Standard Evaluation Metrics 35

2.4 Realistic defocus simulation . 43

3 The Spatial Recall Index 45

3.1 Spatial Recall Index for Object Detection 46

3.2 Spatial Recall Index for Instance Segmentation 49

4 Evaluating defocus conditions 53

4.1 Selection of datasets . 54

4.2 Selection of Computer Vision Algorithms 56

4.2.1 Hybrid Task Cascade . 56

4.2.2 Cascade Mask R-CNN . 58

4.3 Image Degradation . 60

4.3.1 Optical Model . 60

4.3.2 Defocus Study . 61

4.4 Experimental Setup . 64

4.4.1 Test on Datasets . 64

4.4.2 Standard performance evaluation 65

4.4.3 Spatial evaluation . 67

VIII Contents

5 Performance under effects of defocus 73

5.1 Object Detection Performance . 73

5.1.1 Overall Performance . 74

5.1.2 Spatial Performance . 79

5.2 Instance Segmentation Performance 84

5.2.1 Overall Performance . 84

5.2.2 Spatial Performance . 86

5.3 Examples with largest performance drop 87

6 Discussion and conclusion 91

6.1 Discussion . 91

6.2 Conclusion . 93

7 Future work 95

A Appendix 97

References 99

IX

List of Figures

Figure 2.1 Fully-connected Neural Network (FCN) 5

Figure 2.2 Visualization of the convolution operation in a CNN 14

Figure 2.3 Visualization of the pooling operation 17

Figure 2.4 Convolution with multiple input and output channels . . . 18

Figure 2.5 R-CNN and Fast R-CNN . 21

Figure 2.6 Faster R-CNN and RPN . 24

Figure 2.7 Mask R-CNN . 28

Figure 2.8 Cascade Mask R-CNN . 30

Figure 2.9 Schematic formula of the Intersection over Union (IoU) . . 35

Figure 2.10 Results of the "greedy" matching algorithm 37

Figure 3.1 Schematic formula of the Spatial Recall Index for Object

Detection . 49

Figure 3.2 Example pair of a ground truth instance and a correspond-

ing True Positive instance . 50

Figure 3.3 Schematic formula of the Spatial Recall Index for Instance

Segmentation . 51

Figure 4.1 Evaluation of systems from the Pedestron repository on the

BDD100k validation set . 57

Figure 4.2 Baseline object detection performance of HTC with back-

bone ResNeXt (trained on CityPersons) evaluated for the

category "pedestrian" with the Precision vs. Recall curve on

a subset of the BDD100k training set 58

Figure 4.3 Baseline object detection performance of Cascade Mask

R-CNN X152 (trained on COCO) evaluated for the category

"car" with the Precision vs. Recall curve on a subset of the

BDD100k training set . 59

X List of Figures

Figure 4.4 Baseline instance segmentation performance of Cascade

Mask R-CNN X152 (trained on COCO) evaluated for the

category "car" with the Precision vs. Recall curve on a the

CityScapes training and validation set. As a comparison,

the corresponding object detection performance is plotted

in dashed lines. 60

Figure 4.5 Comparison of FWHM maps and degraded images of

the BDD100K dataset for defocus with offsets Z∆ ∈

{−1.25, 0,+1.25} . 62

Figure 4.6 Regions of interest in degraded images of the BDD100K

dataset for defocus with offset Z∆ ∈ {−1.25, 0,+1.25} in

comparison with the respective region in the original image 63

Figure 4.7 Ground truth bounding box distribution of car instances

in the BDD100k training subset (images with the flag "day-

time") for different bounding box area ranges 69

Figure 4.8 Ground truth bounding box distribution of fully visible

pedestrian instances in the BDD100k training subset (images

with the flag "daytime") for different bounding box area

ranges . 70

Figure 4.9 Ground truth distribution of instance-level semantic labels

of car instances in the CityScapes training and validation

set for different instance area ranges 71

Figure 5.1 Baseline car detection performance in comparison with

car detection performance under effects of defocus for off-

sets Z∆ ∈ {−1.25,−0.75,−0.5, 0,+0.5,+0.75,+1.25} evalu-

ated with Cascade Mask R-CNN X152 [2, 6] (trained on

COCO dataset) on daytime images of the BDD100K valida-

tion set using the Precision vs. Recall metric 75

Figure 5.2 Baseline pedestrian detection performance in

comparison with pedestrian detection perfor-

mance under effects of defocus for offsets Z∆ ∈

{−1.25,−0.75,−0.5, 0,+0.5,+0.75,+1.25} evaluated with

HTC [1] with backbone ResNeXt (trained on CityPersons

dataset) on daytime images of the BDD100K validation set

using the Precision vs. Recall metric 75

List of Figures XI

Figure 5.3 Baseline car detection performance in comparison with

car detection performance under effects of defocus for off-

sets Z∆ ∈ {−1.25, 0,+1.25} evaluated with Cascade Mask

R-CNN X152 [2, 6] (trained on COCO dataset) on daytime

images of the BDD100K training set for different bounding

box area ranges using the Precision vs. Recall metric 76

Figure 5.4 Baseline pedestrian detection performance in comparison

with pedestrian detection performance under effects of de-

focus for offsets Z∆ ∈ {−1.25, 0,+1.25} evaluated with HTC

[1] with backbone ResNeXt (trained on CityPersons dataset)

on daytime images of the BDD100K training set for different

bounding box area ranges using the Precision vs. Recall

metric . 77

Figure 5.5 Baseline car detection performance in comparison with

car detection performance under effects of defocus for off-

sets Z∆ ∈ {−1.25, 0,+1.25} evaluated with Cascade Mask

R-CNN X152 [2, 6] (trained on COCO dataset) on daytime

images of the BDD100K training set using the MR vs. FPPI

metric . 78

Figure 5.6 Baseline pedestrian detection performance in comparison

with pedestrian detection performance under effects of de-

focus for offsets Z∆ ∈ {−1.25, 0,+1.25} evaluated with HTC

[1] with backbone ResNeXt (trained on CityPersons dataset)

on daytime images of the BDD100K training set using the

MR vs. FPPI metric . 78

Figure 5.7 Selection of confidence thresholds for the spatial evaluation

with the help of the MR vs. FPPI metric evaluated with an

IoU of 0.5 on daytime images of the BDD100K training set . 80

Figure 5.8 Example SRI for baseline car detection with Cascade Mask

R-CNN X152 [2, 6] (trained on COCO dataset) on daytime

images of the BDD100K training set in comparison with the

SRI for car detection under defocus with offset Z∆ = −1.25,

as well as the resulting performance drop 81

Figure 5.9 Comparison of FWHM maps and the SRI performance

drop for car detection with Cascade Mask R-CNN X152

[2, 6] (trained on COCO dataset) on daytime images

of the BDD100K training set under defocus with offsets

Z∆ ∈ {−1.25, 0,+1.25} . 82

XII List of Figures

Figure 5.10 Comparison of FWHM maps and the SRI performance

drop for pedestrian detection with HTC [1] with backbone

ResNeXt (trained on CityPersons dataset) on daytime im-

ages of the BDD100K training set under defocus with offsets

Z∆ ∈ {−1.25, 0,+1.25} . 83

Figure 5.11 Baseline instance segmentation performance for the cate-

gory car in comparison with the instance segmentation

performance under effects of defocus for offsets Z∆ ∈

{−1.25, 0,+1.25} evaluated with Cascade Mask R-CNN X152

[2, 6] (trained on COCO dataset) on the CityScapes training

and validation sets for different instance area ranges using

the Precision vs. Recall metric 85

Figure 5.12 SRI performance drop for instance segmentation for the

category car detection with Cascade Mask R-CNN X152 [2,

6] (trained on COCO dataset) under defocus with offsets

Z∆ ∈ {−1.25, 0,+1.25} . 86

Figure 5.13 Examples of fully visible pedestrian instances (i.e. instances

without the flag "occluded" or "truncated") in the BDD100k

train subset (images with the flag "daytime") that show the

largest performance drop for object detection with HTC

(with backbone ResNeXt) under defocus with offsets Z∆ ∈

{−1.25, 0,+1.25} evaluated with an IoU threshold of 0.5 . . . 88

Figure 5.14 Examples of car instances in the CityScapes train-val set

that show the largest performance drop for instance seg-

mentation with Cascade Mask R-CNN X152 under defocus

with offsets Z∆ ∈ {−1.25, 0,+1.25} evaluated with an IoU

threshold of 0.5 . 89

Figure A.1 Fully-connected Neural Network 97

Figure A.2 Comparison of an original image and an extremely de-

graded image of the BDD100K validation set for test purposes 98

Figure A.3 Test of the SRI metric with extremely degraded images of

the BDD100K validation set. 98

XIII

List of Tables

Table 2.1 Autonomous Driving Datasets 33

Table 4.1 Statistics for pedestrians and cars in the BDD100K train

and val set with respect to the times of day and the object’s

visibility . 55

Table 4.2 Statistics for pedestrians and cars in the CityScapes train

and val set . 55

Table 4.3 Selection of data from the BDD100K train and val set and

corresponding statistics about fully visible pedestrians and

cars with respect to bounding box area ranges 66

Table 4.4 Statistics about pedestrians and cars in the CityScapes train-

ing and validation set with respect to instance area ranges . 67

List of Algorithms

Algorithm 2.1 Forward Pass (forwardPass) 6

Algorithm 2.2 Backpropagation (backProp) 10

Algorithm 2.3 Stochastic Gradient Descent (SGD) 12

Algorithm 2.4 Greedy Matching for one image and category (matching) . 38

Algorithm 3.1 Spatial Recall Index (SRI) . 47

XIV

Acronyms

CNN Convolutional Neural Network

DNN Deep Neural Network

R-CNN Region-based Convolutional Neural Network

HTC Hybrid Task Cascade

AI Artificial Intelligence

ReLU Rectified Linear Units

SGD Stochastic Gradient Descent

MSE Mean Squared Error

RoI Region of Interest

SVM Support Vector Machine

NMS non-maximum suppression

RPN Region Proposal Network

IoU Intersection over Union

FCN Fully Connected Network

PSF point spread function

AP Average Precision

MAP Mean Average Precision

MR Miss Rate

FPPI False Positives per Image

LAMR Log Average Miss Rate

TP True Positive

FP False Positive

FN False Negative

P Positive

SRI Spatial Recall Index

FOV Field of view

FWHM Full Width Half Maximum

XV

Notation

a
(l)
j Activation of neuron j in layer l

z
(l)
j Weighted sum of the input to neuron j in layer l before applying

the activation function h

h Non-linear activation function such as ReLU

w
(l)
jk Weight of the connection between the j-th neuron’s activation

in the current layer l and the k-th neuron’s activation in the

previous layer l− 1

b
(l)
j Bias of neuron j in layer l

a(l) Vector of all neuron’s activations in layer l

a(L) Vector of all neuron’s activations in the output layer L

z(l) Vector representing the weighted sum of the inputs to all neu-

rons in layer l before applying the element-wise activation

function h

h Element-wise activation function applied on the weighed sum

of the inputs z(l) to the neurons in layer l

W(l) Weight matrix whose components w
(l)
jk represent the weights

of the connections between the j-th neuron’s activations in the

current layer l and the k-th neuron’s activations in the previous

layer l− 1

b(l) Vector whose components are the neuron’s individual biases

b
(l)
j in layer l

L Loss (or cost) such as the negative cross-entropy or MSE over

all n individual trainings examples x representing the networks

overall agreement with the training data

Lx Loss (or cost) for one individual trainings example x

a(L)(x) Output activation of a neural network with L layers after feed-

ing and forward propagating input vector x

y(x) Target vector (ground truth) associated to input vector x

‖v‖2 Squared L2 norm of vector v

XVI Notation

∂Lx

∂z
(l)
j

Partial derivative of the loss Lx for one training example x with

respect to the summed inputs z
(l)
j to the neuron j in layer l

∂Lx

∂a
(l)
j

Partial derivative of the loss Lx for one training example x with

respect to the j-th neurons activation a
(l)
j in layer l

∂Lx

∂w
(l)
jk

Partial derivative of the loss Lx for one training example x with

respect to the weight w
(l)
jk representing the connection between

the k-th neuron in the previous layer and the j-th neuron in the

current layer

∂Lx

∂b
(l)
j

Partial derivative of the loss Lx for one training example x with

respect to the bias of neuron j in layer l

δ
(l)
j Error of neuron j in layer l

δ
(L)
j Error of neuron j in the output layer L

δ(l) Vector whose components are the errors of neurons in layer l

δ(L) Vector whose components are the errors of neurons in the

output layer L

∇
W(l)Lx Matrix whose components are the partial derivatives of the loss

Lx with respect to the weights in matrix W(l) connecting the

neurons in layer l− 1 with those in layer l

∇
b(l)Lx Vector whose components are the partial derivatives of the loss

Lx with respect to the biases of neurons in layer l

η Learning rate

w
(l)
m,n Learnable parameters in a kernel of a convolutional layer l

a
(l)
x,y Output activation of a convolutional layer l at position x,y of

the feature map

F Spatial extend of a kernel in a convolutional or pooling layer

S Stride of a kernel in a convolutional or pooling layer

P Amount of padding applied on the input of a convolutional

layer

D Depth of a feature map

Lcls Classification loss

Lloc Localization loss or bounding box regression loss

Notation XVII

Lmask Mask loss

BBgt Ground truth bounding box

BBdt Detected bounding box

BMgt Ground truth binary mask

BMdt Detected binary mask

BBgt Array of size g× 4 representing all g ground truth bounding

boxes of size 1× 4 for one category in one image

BBdt Array of size d× 4 representing all d detection bounding boxes

of size 1× 4 for one category in one image

BMgt Array of size g× h×w representing all g ground truth binary

masks of size h×w for one category in one image

BMdt Array of size d× h×w representing all d truth binary masks

of size h×w outputted by the instance segmentation system

for one category in one image

Z0
2 Zernike polynomial for defocus

Z∆ Defocus offset for the parameterizarion of the optical model

1

1 Introduction

In recent decades, huge progress has been made in the field of Autonomous

Driving. A crucial factor for this progress is the development of Computer Vision.

Tesla, for instance, one of the leading companies in the field of Autonomous Driv-

ing, relies exclusively on vision in their perception systems for semi-autonomous

cars. However, given how safety-critical automotive systems are and how much

they rely on the robustness of perception systems to navigate through real-world

environments, surprisingly little research has been done in evaluating the per-

formance of Computer Vision systems in dependency on the image quality of

their inputs, despite the fact that potential mass productions of cameras for

autonomous vehicles, due to time and cost constraints, almost unavoidably lead

production tolerances in lenses. The optics of camera systems are always spatially

variable over the field of view, so the influence of lenses on the performance of

Computer Vision systems may even vary for different spatial positions.

Motivated by this, the goal of this thesis is to evaluate the dependency of

Computer Vision systems in the field of Autonomous Driving on the spatially

varying optical performance. To this end, a newly proposed evaluation metric,

called Spatial Recall Index, is presented, which evaluates the object detection and

instance segmentation performance in dependency on spatial positions in input

images. Moreover, with an optical lens model, large-scale Autonomous Driving

datasets are degraded to simulate driving scenes under physically realistic and

spatially varying effects of defocus. Two selected state-of-the-art Computer Vision

systems for object detection and instance segmentation are evaluated on these

degraded datasets to compare their performance with the optical performance of

the underlying lens model. Using HTC and Cascade Mask R-CNN, the evaluation

focuses on object detection and instance segmentation and on pedestrians and

cars in driving scenes [1, 2]. The evaluation is carried out with standard metrics

such as the Precision vs. Recall and the MR vs. FPPI curves as well as the newly

proposed SRI metric to assess the overall performance and the spatial performance

of the Computer Vision systems under effects of defocus, respectively.

The work is organized as follows. After a thorough introduction into the

fields of Computer Vision and Optics in section 2, the SRI metric is described

in section 3. In section 4, the evaluation process from the selection of datasets

and Computer Vision algorithms, to the image degradation, and up to the actual

experimental setup is described. In section 5, the results of the experiments are

presented. Finally, after a discussion of these results in section 6.1, a conclusion is

given in section 6.2, before section 7 identifies possible future work.

3

2 Computer Vision and Optics

From a scientific perspective beyond pure engineering, Computer Vision and

Optics are closely tied. Optics, on the one hand, refers to forward models that

model, simply put, how light is refracted through camera lenses and projected

onto an image plane respectively the sensor in order to create a scene. Computer

Vision, on the other hand, tries to do the inverse by describing the scene in

an image and reconstructing its properties. While humans do this effortlessly

up to a full scene understanding, it is surprisingly tough to even achieve an

understanding of subtasks such as scene recognition, image classification, object

detection, and instance-level semantic labeling (or instance segmentation) on

the way to a fully semantic scene understanding. This becomes even more

difficult when the images created in physics and used as inputs for Computer

Vision algorithms are not focused. In fact, the aforementioned lenses in cameras

through which light passes before reaching the sensor are obviously not ideal

(or infinitely thin). Instead, real lenses suffer from aberration such as spherical

aberration, coma, astigmatism, curvature of field, and distortion. These naturally

occurring lens aberrations along with other effects of defocus are camera specific

phenomena leading to blurred regions in images that, in turn, Computer Vision

algorithms have to deal with [3].

This section links Computer Vision and Optics by describing, in the former

field, vision tasks for autonomous driving, and in the latter field, realistic defocus

simulations that in turn can be used to evaluate Computer Vision algorithm’s

robustness to those simulated defocus conditions. The goal is to first, in section

2.1, provide an understanding of Computer Vision algorithms leading to modern

frameworks respectively architectures that are used in this thesis. Since over

the last decade Deep Neural Networks (DNNs) have become the method of

choice for most Computer Vision tasks, section 2.1.1 starts by introducing deep

learning with an explanation of deep feedforward networks generally before

section 2.1.2 proceeds with the specific kind of feed forward network called

Convolutional Neural Network (CNN) due to its prevalence in modern Computer

Vision architectures for recognition tasks [3, 4]. Then, section 2.1.3 and 2.1.4

present how these deep learning techniques can be applied to Object Detection

and Instance Segmentation, respectively, two tasks with particular importance for

self driving cars. The former, Object Detection, refer to instance localization and

classification by drawing bounding boxes around recognized objects, whereas the

latter, Instance Segmentation, extends the task in terms of accuracy by assigning

each pixel to a semantic label of the instance [5]. Finally, section 2.1.5 presents

modern Computer Vision architectures from which two are used for evaluation

4 Computer Vision and Optics

in this work: Cascade Mask R-CNN [2, 6] and HTC [1].

The success in various Computer Vision tasks in the past decade is mainly

driven by the availability of large-scale datasets [5]. In fact, modern deep learning

provides a powerful framework for supervised learning, but it relies heavily on

high-quality annotated data [4]. Section 2.2 provides an overview of high-quality

datasets for autonomous driving before section 2.3 explains common evaluation

methodologies to assess the performance of Computer Vision algorithms on these

given datasets. Here, the focus is on Object Detection and Instance Segmentation.

Finally, section 2.4 makes the connection from Computer Vision to Optics.

It describes the realistic defocus simulation of camera objectives, which can be

used to assess the performance of Computer Vision systems under the effects of

defocus.

2.1 Computer Vision

Computer Vision is a field of Artificial Intelligence (AI) that focuses on vision

tasks, aiming to automatically extract meaningful information in images. Deriving

these informations requires high computational demands and sophisticated

methods for efficiency, as a single RGB image usually contains several million

values that need to be processed [5]. DNNs and especially deep networks with

convolutional layers have proved most effective in the majority of Computer

Vision tasks and are thus the most widely used machine learning models in the

field [3, 4]. They are described along with important deep learning techniques

in section 2.1.1 and 2.1.2, before section 2.1.3 and 2.1.4 narrow the field by

explicitly focussing on Object Detection and Instance Segmentation, respectively.

Finally, modern architectures with state-of-the-art performance in these tasks are

presented in section 2.1.5.

2.1.1 Deep Learning

Deep learning refers to techniques that enable learning in DNNs [7]. Inspired by

neuroscience, DNNs are by definition neural networks with two or more hidden

layers between input and output layer [7, 4, 8]. State-of-the-art DNNs are usually

composed of thousands of interconnected "neurons" (or units) organized in many

layers forming the aforementioned multiple-layer structure [4, 7]. The most

popular DNNs are feedforward networks such as CNNs trained using gradient

descent and backpropagation leading to breakthroughs in the field of Computer

Vision in the past decade [3]. This section exemplifies deep learning concepts in a

simple feedforward neural network, before section 2.1.2 discusses CNNs in order

to emphasize how convolutional layers boost the efficiency of neural networks

in image driven systems in deployment as well as in the training step. Starting

with an explanation of deep learning concepts in a fully-connected feedforward

2.1 Computer Vision 5

Layer 2Layer 1 Layer 3

w
(2)

13

a
(1)

3

a
(2)

1

a
(1)
1

a
(1)
2

a
(1)
4

a
(2)
2

a
(2)
3

a
(3)
1

a
(3)
2

Input vector

x =











x1

x2

x3

x4











=













a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4













Output vector

a(L)(x) =

[

a
(L)
1 (x1)

a
(L)
2 (x2)

]

Figure 2.1: An example of a fully-connected feedforward network with one hid-
den layer. The term a denotes the neuron’s activation and w the
weights. The input layer’s activations represent the neural network’s
input vector x, whereas the remaining activations describe the results
from the respective activation functions. Note that each neuron in
layers 2 and 3 contains an individual bias b.

network before introducing convolutional layers makes the improvements of

CNNs compared to Fully Connected Networks (FCNs) in terms of efficiency and

thus computational demand clear.

2.1.1.1 Forward Pass

In order to describe the forward pass in a neural network, figure 2.1 shows a

simple fully-connected feedforward network, which for the sake of simplicity

contains only one hidden layer with three neurons, an input layer with four

neurons, and an output layer with two neurons. In each fully-connected layer,

in which by definition all input units are connected to all output units, the j-th

neuron’s activation a
(l)
j in layer l is computed by the weighted sum of their input

activations a
(l−1)
k and a bias b

(l)
j followed by a non linear activation function

h [3, 7],

a
(l)
j = h

(

∑

k

w
(l)
jk a

(l−1)
k + b

(l)
j

)

. (1)

As highlighted in figure 2.1, the weights w
(l)
jk in equation 1 represent the

connection between the j-th neuron’s activation in the current layer and the

k-th neuron’s activation in the previous layer. The order of the chosen indices

j and k for the weights w seem somewhat counterintuitive, but they help to

rewrite equation 1 in matrix from by defining the weight matrix W(l), denoting

all connections between the fully-connected layers l− 1 and l (see appendix A).

Each neuron’s individual bias b in layer l is summarized by the vector b(l) and

the weighted sum of the inputs to the neurons in layer l before applying the

activation function h is called z(l). A forward pass through one layer of a FCN is

6 Computer Vision and Optics

Algorithm 2.1 forwardPass (Forward Pass) [7, 4]

Input: W(l),b(l), l ∈ {2, 3, ...,L} ⊲ weight matrices and bias vectors
Input: x ⊲ input vector

function forwardPass(W(l), b(l), l ∈ {2, 3, ...,L}, x)
a(1) ← x ⊲ input x representing the first layer’s activations
for l = 2, ...,L do ⊲ forward pass through layers in the network

z(l) ←W(l)a(l−1) +b(l)
⊲ weighted sum z(l) of inputs to layer l (eq. 2)

a(l) ← h
(

z(l)
)

⊲ element-wise activation h on vector z(l) (eq. 3)

end for ⊲ store vectors a(l) and z(l) in each iteration
return (z(l)(x), a(l)(x)) ⊲ return z(l) and a(l) of all L− 1 layers for input x

end function

now defined as

z(l) = W(l)a(l−1) +b(l) , (2)

a(l) = h
(

z(l)
)

, (3)

where the activation function h is typically a non-linear function such as Rectified

Linear Units (ReLU) and applied element-wise [9, 4]. ReLU is defined as

h(z) = max{0, z} , (4)

and thus basically a piecewise linear function with two linear pieces for input

values greater than and less than or equal to 0 [9, 4]. In fact, the activation

function along with the number of neurons are basically the only attributes that

distinguish different layers of a FCN [4]. For the sake of clarity, there is only

one hidden layer in the example network in figure 2.1 and the dimensions of the

weight matrices denoting their connections to the input and output layer are 3× 4

and 2× 3, respectively (i.e. it is not a DNN by the aforementioned definition).

After initializing the weights and biases, which apart from the network’s archi-

tecture itself (i.e. the number of layers and neurons, and the type of connections)

continues to be an active research area, a complete forward pass is computed by

feeding an input vector x (see input vector in figure 2.1) and forward propagating

it through each layer in the network. Therefore, applying the equations 2 and

3 repeatedly from the first layer onwards results in the output (or prediction)

a(L)(x) with L denoting the number of layers in the network (i.e. the last layer)

and a(L)(x) representing the vector of all output activations for input vector x

(see output vector in figure 2.1) [3, 4]. Algorithm 2.1 shows how to compute the

output of a neural network. The function returns not only the output vector a(L)

but also the vector z(L) as well as the vectors z(l) and a(l) from all hidden layers,

because they are used during the training as explained below.

2.1 Computer Vision 7

2.1.1.2 Loss Function

In supervised learning, which is the term for learning strategies that are based

on pre-labeled input data such as Stochastic Gradient Descent (SGD), each of

the inputs x is paired with an output (or target) y(x). Suppose, for instance,

the neural network learns to classify input images into two categories, say, "cat"

and "dog", then the input is an image converted into a pixel vector x and the

associated target is a two dimensional vector y(x) with a 1 at the index of the true

category and a 0 for the wrong category in the image. The output of the network,

after feeding and forward propagating x through the network based on algorithm

2.1, is also a two dimensional vector, and the training algorithm maximizes

the agreement between the network’s output and the target by adjusting the

initialized parameters (i.e. the learnable weights and biases) [3]. This leads to

the the so-called loss function (or cost), which quantifies how well the network’s

output a(L)(x) approximate the associated target y(x) [3, 7]. The loss function of

most modern neural networks is the negative cross-entropy between targets and

outputs [4]. In order to simplify the math for subsequent explanations, however,

equation 5 introduces a loss function called Mean Squared Error (MSE)

L =
1

2n

∑

x

∥

∥

∥y(x) −a(L)(x)
∥

∥

∥

2

, (5)

where y(x) represents the target vector associated to the output vector a(L). MSE

often leads to poor results in gradient descent algorithms and is thus usually not

an option in practical application [4]. However, it has an intuitive interpretation

that holds true for the negative cross-entropy as well [7]. In short, the loss for

one training example (i.e. input) x tends towards 0 when the output of the

network a(L)(x) (i.e. the vector of all values from the output layer’s units), after

feeding and forward-propagating the input through all layers of the network,

approximates the associated target y(x). In equation 5, the loss for one individual

training input is denoted by the term 1
2‖y(x) − a(L)(x)‖2 where the notation

‖v‖2 refers to the squared L2 norm of vector v [7, 3]. The term for the loss of one

training example may thus be rewritten as 1
2

∑
j(yj(x) − a

(L)
j (x))2 by using the

indices j for the respective units in the output layer as well as for the associated

components in target vector y(x). Instead of computing the loss for only one

input, however, the MSE in equation 5 computes, just like other loss functions

such as the negative cross-entropy, the average loss over all n individual training

examples x, resulting overall in a measure of the network’s agreement with the

training data, where n refers to the total number of examples in a training dataset.

And the aforementioned SGD represents a training algorithm that repeatedly

adjusts the weights and biases of the network in order to decrease the loss with the

goal of finding a minimum in equation 5 [7]. Before explaining the SGD, however,

8 Computer Vision and Optics

the next section explains backpropagation, which is essentially a procedure to

gain an understanding about how changing the weights and biases changes the

loss appropriately [7].

2.1.1.3 Backpropagation

The loss is a function of the output layer’s activations (see equation 5), which in

turn are functions their summed inputs (see equation 3) as well as the output

unit’s biases b
(l)
k and the weights w

(l)
jk connecting the two last adjacent layers

(see equation 2). Therefore, after each forward-pass (computed with equations 2

and 3 in algorithm 2.1) the partial derivative of the loss for one training example

with respect to the weights ∂Lx/∂w
(l)
jk and biases ∂Lx/∂b

(l)
j can be computed

using the chain rule

δ
(l)
j =

∂Lx

∂z
(l)
j

=
∂Lx

∂a
(l)
j

·
∂a

(l)
j

∂z
(l)
j

=
∂Lx

∂a
(l)
j

· h ′
(

z(l)
)

, (6)

∂Lx

∂w
(l)
jk

= a
(l−1)
k δ

(l)
j , (7)

∂Lx

∂b
(l)
j

= δ
(l)
j , (8)

where δ
(l)
j = ∂Lx/∂z

(l)
j refers to the partial derivative of the loss Lx for one

training example x with respect to the summed inputs z
(l)
j to the neuron j in layer

l [3, 7]. The intermediate quantity δ
(l)
j computed by applying the chain rule on the

partial derivative of the loss with respect to the j-th neurons activation ∂Lx/∂a
(l)
j

and the partial derivative of this activation with respect to its summed inputs

∂a
(l)
j /∂z

(l)
j is the so-called error [7]. After a complete forward pass, equation 6

can be used to compute the errors of the output layer, which is indicated by l = L

to be consistent with equation 5. Equation 7 and 8 may then be used to compute

the partial derivatives of the loss for one training example with respect to the

weights connecting the last two adjacent layer and the biases in the last layer. In

order to compute the derivatives of the loss with respect to weights and biases in

previous layers, the errors of units in previous layers must first be computed. In

fact, the term δ
(l)
j is referred to as the error in the j-th neuron in the l-th layer, as

it gets propagated backward through the network [7, 3].

In short, computing first the partial derivative of the loss with respect to

the error of units in the output layer (with equation 6) and plugging them into

equation 7 and 8 leads to the partial derivatives of the loss with respect to the

weights connecting the last two adjacent layers as well as the biases of the units

in the last layer. And propagating the error backward simply means working

2.1 Computer Vision 9

the way back through the network in order to repeatedly compute the errors of

neurons in the previous layer before plugging these errors into equations 7 and 8,

respectively, until the partial derivatives of the loss with respect to all weights

and biases of the network are computed. In a fully-connected network, the k-th

neuron in the previous layer feeds all neurons in the current layer, so the k-th

neuron’s error is a function of all errors in the current layer. More specifically, the

k-th neuron’s error in the current layer l is the weighted sum of all errors in the

next layer l+ 1 multiplied by the derivative of its activation function h ′
(

z
(l)
k

)

[3].

δ
(l)
k =

(

∑

j

w
(l+1)
jk δ

(l+1)
j

)

· h ′
(

z
(l)
k

)

(9)

In summary, equation 6 describes the error of the j-th unit in the output layer

and equation 9 explains how to propagate the error backward in order to compute

the error of the k-th unit in previous layers. Finally, equation 7 and 8 represent

the partial derivative of the loss (for one training example) with respect to the

weights and biases, respectively. Just like the equations 2 and 3 for computing

the output of a FCN, the four equations behind back-propagation can be written

in matrix form:

δ(L) = ∇aLx ⊙h
(

z(L)
)

(10)

δ(l) =
(

(

W(l+1)
)T

δ(l+1)
)

⊙h ′(z(l)) (11)

∇
b(l)Lx = δ(l) (12)

∇
W(l)Lx = δ(l)

(

a(l−1)
)T

(13)

The vector δ(L) denotes the errors in the output layer and δ(l) describes the

vector of errors in layer l as a function of the vector of errors in the adjacent

layer l+ 1. The term ∇aLx denotes a vector whose components are the partial

derivatives ∂Lx/∂a
(l)
j of the loss Lx for training example x with respect to the

output layer’s activations a(L) introduced in equation 3 [7]. The term ∇
W(l)Lx

represents a matrix whose components are the partial derivatives of the loss

Lx with respect to the weights in matrix W(l) connecting the neurons in layer

l− 1 with those in layer l. Finally, the term ∇
b(l)Lx denotes the vector of partial

derivatives of the loss Lx with respect to the biases of neurons in layer l.

As shown in algorithm 2.1, all intermediate values computed during the

forward pass must be kept in memory as they are required for backpropagating

the error. More specifically, equation 9 indicates that the weighted sums z
(l)
k are

required for backpropagating the error, and equation 7 suggests that the neuron’s

activations a
(l)
k are needed for computing the partial derivative of the loss with

respect to the weights. Storing all these values is in fact a price in memory

10 Computer Vision and Optics

Algorithm 2.2 backProp (Backpropagation) [7, 4]

Input: W(l),b(l), l ∈ {2, 3, ...,L} ⊲ weight matrices and bias vectors
Input: a(l)(x), l ∈ {2, 3, ...,L} ⊲ vectors a(l) for x returned by algorithm 2.1
Input: z(l)(x), l ∈ {2, 3, ...,L} ⊲ vectors z(l) for x returned by algorithm 2.1
Input: y(x) ⊲ target vector associated to input vector x

function backProp(W(l), b(l), a(l)(x), z(l)(x), l ∈ {2, 3, ...,L}, y(x))

δ(L) ← ∇aLx ⊙h
(

z(L)
)

⊲ vector with errors δ
(L)
j in output layer L (eq. 10)

∇
b(L)Lx ← δ(L)

⊲ vector with elements ∂Lx/∂b
(L)
j (eq. 12)

∇
W(L)Lx ← δ(L)

(

a(l−1)
)T

⊲ matrix with elements ∂Lx/∂w
(L)
jk (eq. 13)

for l = L− 1,L− 2, ..., 2 do ⊲ backpropagate the error

δ(l) ←
((

W(l+1)
)T

δ(l+1)
)

⊙h ′(z(l)) ⊲ error of layer l (eq. 11)

∇
b(l)Lx ← δ(l)

⊲ vector with elements ∂Lx/∂b
(l)
j (eq. 12)

∇
W(l)Lx ← δ(l)

(

a(l−1)
)T

⊲ matrix with elements ∂Lx/∂w
(l)
jk (eq. 13)

end for ⊲ store vectors ∇
b(l)Lx and matrices ∇

W(l)Lx in each iteration
return (∇

b(l)Lx, ∇
W(l)Lx) ⊲ return ∇

b(l)Lx and ∇
W(l)Lx for all layers

end function

capacity that is paid for the computational efficiency of the backpropagation

algorithm [10].

Nevertheless, algorithm 2.2 summarizes this section by showing the backprop-

agation procedure in its entirety. First, the errors in the output layer as well as

the partial derivatives of the loss for one training example with respect to the

weights connecting the last two adjacent layer and the biases in the last layer are

computed with equation 10, 12, and 13, respectively. Then, with each iteration

in a for loop, the error is propagated one layer backwards with equation 11 in

order to repeatedly apply equation 12 and 13 for computing the partial derivative

of the loss for this training example with respect to the remaining weights and

biases in the network. The next section describes the SGD, which is essentially a

backpropagation training rule and according to Goodfellow et al. [4] the most

used training algorithm in neural networks.

2.1.1.4 Stochastic Gradient Descent

So far, the network’s architecture, the activation functions, and the loss function

are defined. Moreover, the procedure of computing the derivative of the loss

∇xL for for one training example x with respect to all weights and biases of

the network is described (i.e. ∂Lx/∂w
(l)
jk ,∂Lx/∂b

(l)
j , l ∈ {2, 3, ...,L}). The gradient

represents, simply put, the direction of the loss and the way the SGD algorithm

works is to compute it repeatedly with respect to all weights and biases and

2.1 Computer Vision 11

update all learnable parameters in order to move with small steps in the opposite

direction of the gradient [7]. In fact, the size of the step is represented by another

parameter called learning rate η, which needs to be carefully adjusted to make

good progress without risking to miss potential minima of the loss function [7].

However, deriving the direction of the loss for one training example is a noisy

estimate and averaging the gradient over all training examples before updating

the parameters is too time intensive, especially for large datasets [3]. This is where

the term Stochastic in SGD comes in: In each training epoch, the dataset is first

shuffled and then partitioned in so-called minibatches of size m. Finally, the SGD

algorithm loops through all minibatches, averages in each iteration the loss and

the gradient, and updates the weights and biases based on the average gradient

multiplied by the learning rate η. Equation 14 and 15 define the respective update

rules that update the current weight matrices and bias vectors indexed by t in

order to move in the opposite direction of the gradient.

W
(l)
t+1 = W

(l)
t −

η

m

m∑

x

(∇
W(l)Lx) (14)

b
(l)
t+1 = b

(l)
t −

η

m

m∑

x

(∇
b(l)Lx) (15)

Indeed, more sophisticated optimization techniques have been developed over

the last decade. One of the most popular ones is the gradient based approach

Adam [11, 3]. Nevertheless, regardless of which optimization technique is applied,

the whole process must be repeated for several epochs, from which each epoch

loops though all minibatches, in order to reach the goal of finding a minimum of

the respective loss function. For the sake of clarity, algorithm 2.3 summarizes the

learning process with SGD in its entirety. It doesn’t take into account, however,

that training data is usually partitioned into a training and validation set. Section

2.2 focuses on datasets, so these details will be discussed there. It can be stated

beforehand, though, that a split in training and validation data helps to prevent

the model from overfitting by basing parameter updates only on the training data

(with algorithm 2.3) and validating the model’s progress with the loss function

after each epoch on the validation data. Finally, after completing the entire

training process, the overall performance is assessed on a test set of the dataset.

To conclude this section, a few final considerations regarding the perfor-

mance of the SGD algorithm in modern deep learning frameworks are yet to

be mentioned. For explanation purposes, the training algorithm described here

loops through all training examples in a minibatch. In modern frameworks,

however, rather than looping through each training examples, the minibatches

are combined to tensors in order to compute them simultaneously [7]. This re-

sults in dramatic speed improvements in vector based languages such as Python,

12 Computer Vision and Optics

Algorithm 2.3 SGD (Stochastic Gradient Descent) [7, 4]

Input: W(l),b(l), l ∈ {2, 3, ...,L} ⊲ initialized weight matrices and bias vectors
Input: x1, ..., xn ⊲ input vectors of n training examples
Input: y(x1), ...,y(xn) ⊲ target vectors associated to input vectors x1, ..., xn
Input: η ⊲ learning rate

function SGD (W(l), b(l), l ∈ {2, 3, ...,L}, x1, ..., xn, y(x1), ...,y(xn), η)
for e = 1, ..., kepochs do ⊲ loop through epochs (shuffle data in each epoch)

for Mi = M1, ...,M n
m

do ⊲ loop through n
m mini batches M of size m

for xt = x1, ..., xm do ⊲ loop through m training examples of batch

z
(l)
xt

,a
(l)
xt
← forwardPass(W(l),b(l), xt)

Lxt
← L

(

y(xt),a
(L)(xt)

)

⊲ loss for one training example xt

∇
b(l)Lxt

, ∇
W(l)Lxt

← backProp(W(l),b(l),a
(l)
xt

, z
(l)
xt

,yxt
)

end for ⊲ add up ∇
b(l)Lxt

, ∇
W(l)Lxt

and Lxt
in all m iterations

L← 1
m

∑m
t (Lxt

) ⊲ loss for minibatch Mi

W(l) ←W(l) − η
m

∑m
t (∇

W(l)Lxt
) ⊲ update weights by update rule

b(l) ← b(l) − η
m

∑m
t (∇

b(l)Lxt
) ⊲ update biases by update rule

end for ⊲ updated parameter in the opposite direction of the gradient
end for ⊲ after running through all batches, proceed with next epoch

end function

especially with the availability of GPU-based parallel computing. Another con-

sideration concerns the intermediate values that according to algorithm 2.3 are

stored in the forward pass in order to use them for computing the errors and

gradients during backpropagation. Since modern neural networks usually have

millions of neurons and thus activations, the number of values to be stored

may need to be reduced. This can be done with gradient checkpointing, where

activations are only stored at certain layers while others are re-computed in the

backpropagation phase [3].

Finally, with a certain kind of data such as RGB images, the network ar-

chitecture itself must be changed or complemented by computational elements

other than fully-connected layer discussed here. Considering the complexity of

standard RGB images with several million pixel values, the training process with

a fully-connected network becomes too ineffective. Even a small RGB image of

size 64x64x3 connected to a hidden layer of the same size (i.e. with 64x64x3 units)

already leads to 12,288 weights on each neuron of the first layer, which makes a

total of ca. 150 million weights connecting the first two layers [8, 12]. Neurons

in a convolutional layer, on the other hand, are only connected to a small region

of neurons in the previous layer. This drastically reduces the overall number of

parameters in the network. Nevertheless, the concepts outlined in this section

including calculating the loss function, propagating the error backwards with the

chain rule until the derivative of the loss with respect to all learnable parameters

2.1 Computer Vision 13

is computed before finally adjusting the parameters accordingly, remain with

convolutional layers essentially the same [3]. Along with other features that make

CNNs effective, convolutional layers are introduced in section 2.1.2.

2.1.2 Convolutional Neural Networks

The convolutional layer uses convolution rather than matrix multiplication and

a DNN is called CNN when at least one of its layers is a convolutional layer

[4]. Whereas in a fully-connected networks, the input values, even when they

represent pixels of an image, are usually summarized by a vector and connected

to all neurons of the first hidden layer (cf. connection between input vector x

and layer 2 in figure 2.1), neurons in a convolutional layer are only connected

to a small region of neighboring neurons called the input’s receptive field. This

basically means that the former doesn’t take into account the spatial structure of

images, while the latter even takes advantage of it [7]. CNNs are therefore mostly

used to perceive patterns in image driven systems [8].

Instead of computing the weighted sum of all activations in the previous layer,

which is the operation performed by a fully-connected layer as shown in equation

2, in a convolutional layer, the weighted sum is only performed within a small

local window [3]. The mathematical operation with which the sum is calculated

is called discrete convolution, since the inputs to CNNs are multidimensional

arrays usually referred to as tensors and thus consist of discrete values [4]. In

the convolutional network terminology, the local window is called kernel of

a certain size and slides across the input, while at each location the values of

the kernel are multiplied with the input values they overlap [13]. The sum of

these multiplications (often with an additional bias) results in the aforementioned

weighted sum of the receptive field and is usually, just like the weighted sum in

a fully-connected layer, passed through a non-linear function such as ReLU in

order to produce the final output in the current location of the resulting layer [13].

To remain in the CNN terminology, the output after performing the weighted

sum at each location is referred to as output feature map [4].

Along with the spatial extend of the kernel (i.e. the size of the receptive field),

there are certain hyperparameter such as the depth of the output volume, the

kernel (or filter) stride and padding that define how the convolutional layer oper-

ates, i.e. how the kernel slides across the input in order to compute the output

layer’s activations [12]. In fact, these parameters along with the size of the input

layer even determine the shape of the feature map respectively the size of the

output layer. This is another important difference to the fully-connected layers

where the output layer of two adjacent layers is independent from the input

layer [13]. Figure 2.2 shows an intuitive example of the convolution operation

without padding, where a 3× 3 kernel with a depth of 1 slides with a stride

length of 1 over an input layer of size 5× 5 with a depth of 1 (i.e. with one

14 Computer Vision and Optics

w
(l
)

0,0

w
(l
)

1,0

w
(l
)

2,0

w
(l
)

0,1

w
(l
)

1,1

w
(l
)

2,1

w
(l
)

0,2

w
(l
)

1,2

w
(l
)

2,2

a
(l
−1)

3,0

a
(l
−1)

4,0

a
(l
−1)

3,1

a
(l
−1)

4,1

a
(l
−1)

3,2

a
(l
−1)

4,2

a
(l
−1)

0,3

a
(l
−1)

1,3

a
(l
−1)

2,3

a
(l
−1)

3,3

a
(l
−1)

4,3

a
(l
−1)

0,4

a
(l
−1)

1,4

a
(l
−1)

2,4

a
(l
−1)

3,4

a
(l
−1)

4,4

layer l
−
1

kernel

output

a
(l
)

0,0

a
(l
)

1,0

a
(l
)

2,0

a
(l
)

0,1

a
(l
)

1,1

a
(l
)

2,1

a
(l
)

0,2

a
(l
)

1,2

a
(l
)

2,2

layer l

a
(l)
0,0 =

a
(l−1)
0,0 w

(l)
0,0

+ a
(l−1)
1,0 w

(l)
1,0

+ a
(l−1)
2,0 w

(l)
2,0

+

a
(l−1)
0,1 w

(l)
0,1

+ a
(l−1)
1,1 w

(l)
1,1

+ a
(l−1)
2,1 w

(l)
2,1

+

a
(l−1)
0,2 w

(l)
0,2

+ a
(l−1)
1,2 w

(l)
1,2

+ a
(l−1)
2,2 w

(l)
2,2

a
(l)
1,0 =

a
(l−1)
1,0 w

(l)
0,0

+ a
(l−1)
2,0 w

(l)
1,0

+ a
(l−1)
3,0 w

(l)
2,0

+

a
(l−1)
1,1 w

(l)
0,1

+ a
(l−1)
2,1 w

(l)
1,1

+ a
(l−1)
3,1 w

(l)
2,1

+

a
(l−1)
1,2 w

(l)
0,2

+ a
(l−1)
2,2 w

(l)
1,2

+ a
(l−1)
3,2 w

(l)
2,2

...

Figure 2.2: Visualization of the convolution operation in a CNN. A 3× 3 kernel
slides with a stride length of 1 over layer l− 1 of size 5× 5 with 0

padding and performs the weighted sum of the receptive fields by
omitting the non-linearity h and a potential bias, which results in a
layer l of size 3× 3. An input to a convolutional layer requires a kernel
with the same depth. In this example, the input has one channel (i.e.
a depth of 1) and correspondingly the kernel have a depth of 1.

channel), resulting in a feature map of the volume 3× 3× 1. It is an intuitive

example of the convolution arithmetic that covers two of the four aforementioned

hyperparameters (stride and spatial extend of the kernel), while making the

necessity of padding in certain cases clear. The convolution operation with a

depth larger than 1 is hard to visualize, so the last hyperparameter representing

the depth of the output volume will be explained further below.

The 3× 3 kernel, whose learnable weights w
(l)
m,n are indexed by m and n to

distinguish them from weights in a fully-connected layer, is highlighted at its

current position on the top left corner of the input layer l− 1. The respective

weighted sum results in in the output activation a
(l)
0,0. For the sake of simplicity,

the bias that is usually added as well as the non-linearity through which the

weighted sum is generally passed, is omitted in this example. With a stride

length of 1, the kernel slides one pixel to the right where its values overlap with

the three central columns, resulting in output activation a
(l)
1,0. In the next step,

the kernel overlaps the three right columns before sliding one pixel downwards

and repeating the process with the remaining rows. Generally formulated in

mathematical terms, the convolution operation for a two-dimensional image with

a kernel of arbitrary size that slides with a stride length of 1 across the input in

order to produce the weighted sums of of the local receptive fields, which in turn

are added by a bias b and passed through a non-linearity h, results in the output

2.1 Computer Vision 15

activations a
(l)
x,y

a
(l)
x,y = h

(

b+

F−1∑

m=0

F−1∑

n=0

w
(l)
m,na

(l−1)
x+m,y+n

)

, (16)

where F× F represents the kernel size, w
(l)
m,n denotes the learnable parameters in

the kernel and a
(l−1)
x+m,y+n are the input activations in the receptive field. To be

precise, since the offsets m,n in equation 16 are added to and not subtracted from

the pixel coordinates x,y, the operation is actually a cross-correlation rather than a

convolution [3]. This distinction, however, is usually not mentioned and machine

learning libraries perform cross-correlation while calling it convolution [3, 4].

Nevertheless, there are a few important things to note here with the mathematical

expression in equation 16 and more intuitively with the visual example outlined

in figure 2.2. They will be discussed in the following paragraphs.

Through the sliding window manner of the convolutional operation, the

weights of the kernel (and the bias), with which the activations a
(l)
x,y in layer l are

computed, are actually the same across all neurons. This means that the number

of parameters between convolutional layers compared to those between fully-

connected layers is not only reduced by the sparse connections but also through

shared weights and biases [7]. Apart from the reduced memory requirements for

storing the parameters as well as the obvious speed improvements in the SGD

algorithm due to the fact that simply less weights need to be updated, shared

weights have yet another important effect [4]. The kernel operates at each location

of the input with the exact same values and thus may extract the same features,

only at different locations of the input [7]. In the first layer those features may be

low-level features such as edges, while features in subsequent layers may find

patterns in edges and more complex shapes [4]. This is in fact precisely why

outputs of convolutional layers are referred to as feature maps [7].

Moreover, the example in figure 2.2 shows that the convolutional layer shrinks

the resolution from a 5× 5 input to a 3× 3 output, and it can be inferred directly

from this example that a decreased kernel of the size 2× 2 would lead to a 4× 4

feature map. It is therefore generally possible to use smaller kernels in order

to let the spatial extent of the input shrink less rapidly with each convolution

[4]. However, a method represented by the last one of the aforementioned

hyperparameter may even preserve the size of the input. More specifically, the

method is referred to as padding and it provides the possibility to control the

kernel width and the size of the output independently [4]. Considering the 3× 3

kernel with a stride length of 1 and the input size 5× 5 in the example in figure

2.2, the spatial extent may be preserved by concatenating zeros at the beginning

and at the end of the axis. This so-called zero padding would result in a 7× 7

input map with zeros in the first and the last rows and columns, respectively,

16 Computer Vision and Optics

on which the same kernel with the same stride length produces a 5× 5 feature

map. In fact, padding with respect to the input size, the kernel size and the

stride length that preserve the input dimensionality in the aforementioned way

is often referred to as half padding, whereas increasing the dimensionality (by

concatenating more zeros at the beginning and at the end of the axis) is called

full padding [13].

Decreasing the size of the input, on the other hand, is more straightforward.

A stride length of 2, for instance, which means that the kernel moves two pixels

to the right (or down), would lead in the example above (with 0 padding) to a

2× 2 feature map. However, it is important to note that the spatial arrangement

hyperparameters have mutual constraints [12]. Simply put, while a stride length

of 2 is possible in this example, it may not be feasible on an input with a different

size. This is the case because, as mentioned before, the hyperparameters define

the dimension of the output and the output’s neurons with their receptive fields

must fit neatly across the entire input [12]. More specifically, the output of a

convolutional layer is determined by

W2 =
W1 − F+ 2P

S
+ 1 , (17)

H2 =
H1 − F+ 2P

S
+ 1 , (18)

where F is the spatial extent of the kernel (i.e. its size F× F), P is the amount of

padding that is used on the boarders, and W and H are the width and height of

the feature maps indexed by 1 for the input and 2 for the output [12]. The setting

of the hyperparameters is not feasible when the width and height of the output

calculated with equation 17 and 18, respectively, doesn’t result in an integer,

since a result with a fractional component indicates that there is a mismatch

between input and output (i.e. the kernel cannot slide neatly across the input’s

entire width and height) [12]. This is in fact what happens when the input in the

aforementioned example was 10× 10 instead of 5× 5, because without padding

and with a 3× 3 kernel whose stride length is 2, the output width would be

(W1 − F− 2P)/S+ 1 = (10− 3+ 0)/2+ 1 = 4.5 and thus not an integer.

Apart from increasing the stride length, however, there is another way to

reduce the resolution of the input which essentially all CNNs employ [4]. The

respective operation is called pooling. It reduces the number of parameters

and therefore the computational complexity of the network [8]. Just like the

convolutional layer, the pooling layer is composed of neurons that are connected

to their receptive field in the layer preceding it [8]. Pooling means that the values

in the local receptive fields, which determine the output of the respective units in

the output layer, are summarized to one value. Most CNNs use max-pooling to

simply output the maximum value of the receptive field [8]. Figure 2.3 visualizes

2.1 Computer Vision 17

4
6

5
3

5
7

4
6

3
0

5
4

2
4

8
9

layer l
−
1

kernel

7
6

4
9

layer l

max pool with
2×

2

kernel and stri
de = 2

Figure 2.3: A filter of size 2× 2 slides with a stride length of 2 across the input
in order to downsample the spatial dimension from 4× 4 to 2× 2

by outputting the maximum value of the local receptive field. This
operation is called max pooling.

a simple example of the max pooling operation in which a kernel of size 2× 2

with a stride length of 2 downsamples the input layer l− 1 from 4× 4 to 2× 2.

More generally, the output dimension of the pooling layer can be calculated

analogous to the output of the convolutional layer. As padding is usually not

applied in a pooling layer, the output dimension W2 ×H2 is given by

W2 =
W1 − F

S
+ 1 , (19)

H2 =
H1 − F

S
+ 1 , (20)

where F denotes the spatial extent of the kernel and S represents the stride length.

With the convolutional and the pooling layer sketched here as well as the

fully-connected layer discussed in section 2.1.1, the main components of CNNs

have been presented. However, for the sake of simplicity the examples given

in this section showed a two-dimensional input (i.e. with a depth of 1), while

generally CNNs have to deal with images containing multiple channels such as

standard RGB images (i.e. with a depth of 3). In this case, the receptive field

and the kernel must have the same depth as the input [12]. In other words, the

kernel in a convolutional layer always extends through the input’s entire depth

[12]. The weighted sum is then basically performed in the same way as shown

before, but for each channel in the input and its corresponding depth slice in

the kernel separately, before the results for each channel are summed together

element-wise to form the final output of the convolution operation [13, 12]. This

means that if, for example, only the depth (i.e. the number of channels) of layer

l− 1 and correspondingly the depth of the kernel in figure 2.2 were changed,

the dimensionality of the output layer l wouldn’t be changed. The depth of the

output would still be 1, so the convolutional layer would decrease the number of

18 Computer Vision and Optics

Figure 2.4: Convolution with multiple input and output channels. Each kernel
extends through the full depth of the input (i.e. takes all D1 channels
as input). The convolution with each kernel results in one of the D2

output channels. Since K = 4 kernels are applied, the depth of the
output is D2 = K = 4. Each kernel has F×C1 weights with F denoting
the spatial extend of the kernel (i.e. its size K×K), so the total number
of learnable weights is F2 ×D1 ×D2 [3].

channels in this example from 3 to 1. Put more generally, it means that applying

one kernel in a convolutional layer always leads to an output feature map with a

depth of 1. However, usually multiple kernels (with the depth of the input) are

applied in one convolutional layer, which finally leads to the last hyperparameter

representing the depth of the output volume. Along with the width W2 and

height H2 calculated by equation 17 and 18, respectively, the output volume of a

convolutional layer is complemented by the depth

D2 = K , (21)

where K denoted the number of kernels. Usually, the number of kernels can

be inferred indirectly from neural network diagrams, as convolutional layer are

labeled mostly only with the kernel size (without depth) and the number of

output channels [3]. Figure 2.4 shows exemplary a convolution with K = 4

kernels with a size of F = 3 (i.e. 3× 3 kernels) that map D1 input channels to

D2 = K = 4 output channels, which makes a total of F2 ×D1 ×D2 learnable

weights in this layer. In summary, the convolutional layer

• accepts a tensor of size W1 ×H1 ×D1

• requires 4 hyperparameters: the number of filters K, their spatial extend F,

the stride S, and the amount of zero padding P

• produces a volume of size W2 ×H2 ×D2 computed with equation 17, 18

and 21, respectively, where the d-th channel in the output represents the

result of the convolution with the d-th kernel over the input

• introduces (with parameter sharing) D1F
2K learnable weights and K biases

2.1 Computer Vision 19

Just like the convolution operation, the pooling operation was demonstrated

for an input with a depth of 1. Unlike the convolutional layer, however, the

pooling layer operates independently on every depth slice (or channel) in the

input, so it downsamples only the height and width, while the depth of the

output is always equal to the depth of its input [12]. Therefore, in general, the

pooling layer

• accepts a tensor of size W1 ×H1 ×D1

• requires 2 hyperparameters: the spatial extend F and the stride S

• produces a volume of size W2×H2×D2, where the hight and width results

from equation 19 and 20, respectively, and the depth D2 is equal to D1

The functioning of a CNN can now be summarized as follows: In a convo-

lutional layer, a filter matrix of a size equivalent to the receptive field, whose

elements are referred to as weights, is convolved with the values of the receptive

field to determine outputs of the convolutional layer respectively the outputs of

its corresponding neurons [8, 12, 14]. A pooling layer summarizes the values

of the local receptive field in order to decrease the complexity of the network.

With an interleave of multiple layers, which is the definition of deep learning,

CNNs basically construct a feature hierarchy of its input [8, 14]. By adding fully

connected layers to the interleave of convolutional and pooling layers, non-linear

combinations can be learned from the constructed feature hierarchy in a super-

vised manner, i.e. with labeled input data [14]. More specifically, CNNs can be

optimized on a loss function (e.g. MSE or negative cross-entropy) using the SGD

algorithm introduced in section 2.1.1, where the equations of back-propagation

and the parameter updates must be adjusted to the computational elements (i.e.

convolution and pooling) of the layers in the CNN. Simply put, this enables a

CNNs to adapted to different visual tasks [14]. According to the respective task,

the final layer contains activation functions to predict a conditional probability

for each neuron [14]. In section 2.1.1, these neurons were summarized by the

vector a(L). As an example, the probability (also called score or confidence)

computed by an object detection or instance segmentation system is, simply put,

the predicted probability of whether or not a bounding box or an instance mask

is actually the predicted object [15].

Despite the relatively small number of different layers, building a CNN is

more complicated than simply stacking multiple layers, especially when it comes

to difficult tasks such as object detection and instance segmentation. These

tasks require numerous additional elements (such as region proposal generation,

bounding box regression, etc.) that are not sketched in this section. Therefore,

section 2.1.3 and 2.1.4 discusses these two vision tasks before section 2.1.5 presents

state-of-the-art CNN architectures.

20 Computer Vision and Optics

2.1.3 Object Detection

Per definition object detection systems perform both classification and localization

of objects in input images. Assigning a proper class label to each foreground

object is the solution of the classification problem, whereas accurate assignments

of bounding boxes to these objects refers to the solution of the localization

problem [2]. Consequently, object detectors aim to assign a class label (to solve

the recognization or classification problem) and a rectangular bounding box (to

solve the localization problem) to each object in an image [14]. Additionally,

as noted in section 2.1.2, CNN-based object detectors predict the probability

of whether or not a detection actually is the respective object and score each

detection bounding box accordingly.

Modern object detection systems are usually divided into two categories, one

of which is a two-stage method and the second one is a single-stage approach [16].

Algorithms following the former approach, which are also referred to as region

proposal based frameworks, generate several region proposals in the first stage in

order to perform region-wise regression of features and classifications in object

categories in the second stage [16, 2, 3]. Single-stage object detection systems,

on the other hand, use a unified framework that delivers recognization and

localization results directly [14]. It can generally be stated that two-stage object

detection systems perform well with respect to localization and recognization

accuracy, whereas single-stage detectors, although they typically lag behind in

terms of accuracy compared to their two-stage counterparts, are computationally

efficient and thus reach high inference speed [16, 2].

Indeed, the limitations in detection accuracy of single-stage detectors have

been addressed and detectors with results comparable to two-stage detectors

were proposed [2]. However, with many of the recently proposed object detectors

following the two-stage approach, the region proposal based framework has

become predominant in the past years [2]. In fact, many modern object detection

systems extend the region based framework Faster R-CNN proposed by Ren et al.

in 2016 in order to address various problems of detail, making it the cornerstone

of modern object detection [17, 2]. This goes well beyond object detection as

even modern instance segmentation frameworks are based on the Faster R-CNN

framework [18]. Cascade Mask R-CNN, for instance, which is used in this work

for both object detection and instance segmentation, is a multi-stage extension of

the Faster R-CNN architecture with state-of-the-art performance in general object

detection and instance segmentation tasks [2, 6]. Also HTC, another architecture

selected for evaluation in this work, pursued the idea behind Cascade R-CNN

evolving in a different Cascade architecture that is not directly a Faster R-CNN

extension but still follows the region proposal based approach [2, 1]. Both Cascade

Mask R-CNN and HTC will be described in section 2.1.5. Previously, however,

the basis will be provided with an explanation of region based frameworks from

2.1 Computer Vision 21

(a) R-CNN

Deep

ConvNet

Conv

feature map

RoI

projection

RoI

pooling

layer FCs

RoI feature

vector

softmax

bbox

regressor

Outputs:

FC FC

For each RoI

(b) Fast R-CNN

Figure 2.5: (a) R-CNN takes an input image (1) and performs object detection
in 3 stages: (2) region proposal generation with selective search, (3)
feature extraction for each region proposal with a CNN, (4) final
classification and bounding box regression [19]. (b) Fast R-CNN
performs feature extraction with a CNN on the entire image before
extracting fixed-size feature vectors for individual region proposals.
While region proposals are generated by methods such as selective
search, the feature vectors are extracted with a RoI pooling layer.
Finally, after passing the feature vectors through fully connected
layers, two sibling output layers perform bounding box regression
and softmax classification, respectively [21].

the first approach to Faster R-CNN, and up to Mask R-CNN, from which the

latter will be introduced in section 2.1.4 as it provides (with an additional mask

branch for Faster R-CNN) a framework for instance segmentation.

2.1.3.1 R-CNN

The approach of combining region proposals with CNNs was introduced by

Girshick et al. in 2014 [19]. As shown in figure 2.5 a, the proposed architecture,

called R-CNN, consists of three modules through which input images are fed.

In the first module, a method called selective search is used to generate region

proposals of arbitrary sizes and aspect ratios, which have to be rescaled (warped),

since the fully connected layers in the CNN model represented by the subsequent

module need a fixed-size input [16, 20]. To this end, each so-called Region of

Interest (RoI) is warped to a 227× 227 image [19]. Thereafter, the fixed-size

region proposals are fed separately into a CNN with five convolutional and two

fully-connected layers in order to extract features as described in section 2.1.2 and

2.1.1, respectively [19]. Finally, in the last module, the features from each region,

which are represented by 4096-dimensional feature vectors, are scored by pre-

trained class-specific Support Vector Machines (SVMs) (i.e. classified), adjusted

by bounding box regression and filtered with non-maximum suppression (NMS)

in order to produce final bounding boxes, class labels and scores for obtained

object locations and classes, respectively [19].

22 Computer Vision and Optics

2.1.3.2 Fast R-CNN

R-CNN improved the object detection performance compared to previous models.

However, its architecture is very time-consuming and inaccurate compared to

modern detectors [14]. The mentioned feature extraction for each RoI with a

CNN is very expensive in time and warping regions reduces recognition accuracy

[21, 22]. In a time of active research, various region proposal based frameworks

emerged and improved both accuracy and speed.

One of these frameworks, called Fast R-CNN, uses convolutional layers in the

first stage to produce feature maps for the whole image all at once [14]. Thereafter,

a fixed size feature vector is extracted for each region proposal regardless of the

RoI’s size and aspect ratio [16]. The region proposals are, just like in R-CNN,

produced with selective search, and the extraction of fixed-length feature vectors

from each RoI in the convolutional feature map is performed by a so-called

RoI pooling layer [14, 21]. Finally, the fixed-size feature vectors are fed into

fully connected layers before two sibling output layers perform bounding box

regression and classification, respectively [14]. Rather than utilizing SVMs for

classification (as R-CNN does), Fast R-CNN makes use of softmax classification,

which together with its sibling output layer for bounding box regression is part of

the architecture’s two heads [3]. In fact, these two separate heads for both tasks

require two different loss functions for training [3]. Both of them are summarized

to a so-called multi-task loss in order to be able to jointly train classification and

bounding box regression [14]. The loss is defined as

L(p,u, tu, v) = Lcls(p,u) + λ[u > 1]Lloc(t
u, v) , (22)

where Lcls(p,u) is the classification loss and Lloc(t
u, v) is the localization or

regression loss. The classification loss is based on the ground truth class u and

the predicted probability distribution p = (p0, ...,pC−1). Here, the probability dis-

tribution predicts the respective class with C outputs (for each of the C categories)

represented by neurons in the last fully-connected layer of the classification head

[14]. During the training, a RoI (extracted by the RoI pooling layer) is labeled

with a ground truth class u when the RoI together with a ground truth bounding

box exceed a certain Intersection over Union (IoU) threshold (for a detailed de-

scription of the IoU see section 2.3.1) [21]. This means that u > 1 suggests that

a RoI matches a ground truth bounding box with respect to the IoU threshold,

and the Iverson bracket indicator function [u > 1] evaluates to 1. Conversely, the

term [u > 1] evaluates to 0 if the RoI doesn’t match any ground truth bounding

box with respect to the IoU threshold (i.e. when u = 0 = background). In other

words, the term [u > 1]Lloc basically selects a set of positive RoI examples to

train the regressor (when [u > 1] is equal to 1) and omits background RoIs (when

[u > 1] is equal to 0) [14, 2]. The regression loss itself, Lloc(t
u, v), is defined over

2.1 Computer Vision 23

the predicted offsets tu = (tux , tuy , tuw, tuh) and the ground truth bounding-box

regression targets v = (vx, vy, vw, vh) [14]. Finally, neural networks with multiple

heads and thus outputs (here for classification and regression) must be carefully

balanced, which is the purpose of the factor λ [3, 21]. Fast R-CNN can be trained

end-to-end by optimizing, with the sole exception of the region proposal genera-

tion, all parameters with the multi-task loss in equation 22 [14]. Its architecture is

shown in figure 2.5 b.

In summary, by interchanging the CNN and region extraction stages, Fast

R-CNN improved the performance compared to the first R-CNN architecture

in which the region extraction happens first [3]. This improvement is most

obvious in terms of speed as the convolutional network in R-CNN must process

each region proposal individually, whereas Fast R-CNN applies the CNN in

the first stage in order to generate feature maps for the entire image only once.

However, although interchanging the stages in the aforementioned way resulted

in considerable speed improvements, Fast R-CNN relies, just like the first R-CNN

architecture, on methods such as selective search for generating region proposals

[14]. This is time-consuming and thus an obstacle on the path to real-time object

detection [14].

2.1.3.3 Faster R-CNN

Ren et al. addressed this problem and observed that feature maps extracted

by a CNN can also be used to generate region proposals [17]. They introduced

a Region Proposal Network (RPN), combined it with the Fast R-CNN detector

and called the composed system Faster R-CNN. More specifically, a deep CNN

such as VGG-16, which consists of 13 convolutional layers, 3 fully-connected

layers and 4 max pooling layers takes an input image and extracts feature maps

as explained in section 2.1.1 and 2.1.2 [17, 23]. The RPN operates in a sliding-

window manner on a specific convolutional layer of the CNN with the layers

preceding it [14]. It contains two sibling fully-connected layers for classification

(cls layer) and box regression (reg layer) to generate a set of rectangular region

proposals and to score these proposals based on the predicted probabilities of

whether or not they contain an object [14]. Since the fully-image features extracted

in the convolutional layers are not only used by the RPN but also shared with

the Fast R-CNN detector in the second stage, region proposals are computed

in a nearly cost-free way [17]. This is a notable difference to the slow selective

search method leveraged by the previous models for generating RoI’s. Finally,

both the relevant RoI’s produced by the RPN and the feature maps produced by

the backbone CNN are used by the Fast R-CNN detector, which in turn evaluates

each region proposal in the above-mentioned manner (i.e. with a RoI pooling

layer, a softmax classifier and bounding box regression) to output bounding boxes

and scores (or confidences) for detected class-specific objects [17]. The Faster

24 Computer Vision and Optics

I conv

H0

C0 B0

p
o

o
l

H1

C1 B1
RPN

(a) Faster R-CNN architecture

sliding window

conv feature map

512-d

2k-scores 4k-coordinates

intermediate layer

cls layer reg layer
k anchor boxes

1:1

1:2

2:1

...

(b) Region Proposal Network (RPN)

Figure 2.6: (a) The Faster R-CNN architecture has a shared backbone CNN "conv"
for feature generation. A RPN operates on a specific convolutional
layer in "conv" and produces RoI’s. The RoI’s along with the features
from "conv" are evaluated by Fast R-CNN with a RoI pooling layer
"pool" (which is not to be confused with the pooling operation de-
scribed in section 2.1.2) and fully connected layers represented by
the head "H1" as well as two sibling output layers for classification
("C1") and bounding box regression ("B1"). (b) The RPN operates in a
sliding-window fashion with a convolutional layer that extracts 512-d
feature vectors and that simultaneously predicts k region proposals
represented by anchor boxes with different scales and aspect ratios
centered at each sliding window position. The region proposals are
refined and classified by a reg and cls layer, respectively. The RPN cat-
egorizes object only into foreground and background without taking
into account to which class the object belongs.

R-CNN architecture and its RPN are shown in figure 2.6 a and 2.6 b, respectively.

As mentioned before, both architectures used in this work are related to the

Faster R-CNN architecture. Cascade Mask R-CNN is a multi-stage extension

of Faster R-CNN and HTC is another Cascade architecture that uses a RPN for

region proposal generation. Consequently, the architecture is described in more

detail below. Although Faster R-CNN is now often used with different CNNs

such as ResNet-101 as backbone, the description will be based on the VGG-16 as

proposed by Ren et al. in 2016 [24, 17].

The backbone network VGG-16, through which input images are passed

in the first stage, has 13 convolutional layers and 4 max pooling layers [23].

Each convolutional layer operates with 3× 3 kernels, a stride length of 1, and the

padding is 1 pixel, which according to equation 17 and 18 preserves the resolution

after each convolution. Only the number of kernels in each layer differs and

ranges from 64 to 512. The four pooling layers operate with a 2× 2 kernel and a

stride length of 2, so each pooling operation, which perform max pooling, cut

the resolution in half based on equation 19 and 20. The published paper states

2.1 Computer Vision 25

that the RPN operates at the last "shared" convolutional layer of VGG-16, which

according to the original implementation is actually its 13-th convolutional layer

and thus the last one of the entire backbone network [17, 25]. This specific layer

has 512 output channels and the output feature map’s spatial dimension is 1/16

of the original input image as it is preceded by all four aforementioned max

pooling layers that downsample the input by a factor of 2 each time [17, 25].

The intermediate layer H0 of the RPN is also a convolutional layer with a

3× 3 kernel, a stride length of 1, and 512 output channels, which uses padding

of 1 pixel so that the spatial dimension remains unchanged. This means that

according to the explanation in section 2.1.2, the intermediate layer of the RPN

contains 512 kernels that extract a 512-dimensional feature vector at each spatial

position of the sliding window in order to form all 512 output channels. To

increase non-linearity, ReLU is applied at the output of the convolutional layer

[14]. Figure 2.6 b shows one position of the so-called mini-network that slides

across the feature map outputted by the last convolutional layer of VGG-16, which

extracts at this specific location a 512-d feature vector [17, 25].

In addition to the extraction of the 512-d feature vector at every position of the

sliding window, the mini-network predicts k region proposals called anchors with

different scales and aspect ratios that are centered in the 3× 3 sliding window.

These anchor boxes are basically projected into the original image, where they are

centered at the point of the image that corresponds to the point in the feature map

(marked in blue in figure 2.6 b). Now, due to the fact that the feature map, on

which the RPN operates, is downsampled by a factor of 16 (through the four max

pooling layers), the total stride is also 16, meaning that one pixel to the right (or

down) on the feature map represents a stride of 16 pixels on the original image.

This means subsequently that the center of all k anchors for every sliding window

position, which are based on the feature map but actually represent regions in

the original image, are located with a distance of 16 pixels to the center of their

neighboring anchors. The proposed system applies anchor boxes with three

aspect ratios and three scales, which makes 9 anchors at every sliding window

position and thus a total of WHk anchors on a W ×H feature map. To put this

into perspective, a typical 1000× 600 image would be downsampled by a factor

of 16 so that the spatial dimension of the feature map after the final convolutional

layer in VGG-16 equals approximately 60× 40. Consequently, there would be

approximately 20k(≈ 60 · 40 · 9) anchors projected into the original image. In

the proposed Faster R-CNN architecture, the scales of the anchor boxes are 1282,

2562 and 5122 pixels and each scaled anchor is projected with the aspect ratios

1 : 1, 1 : 2 and 2 : 1 into the original image [17, 25].

The output of the intermediate layer H0 is then passed to two sibling layers

for box regression and classification. The first one, called cls layer (C0), is a

convolutional layer with a 1× 1 kernel, a stride length of 1 and no padding, which

26 Computer Vision and Optics

maps the 512 input channels from the intermediate layer to 2k (i.e. 2 · 9 = 18)

output channels. With this, it produces at each spatial window position 2k scores

representing for each anchor centered at this particular location the probability

of whether it actually is an object (first score) or no object and thus background

(second score). The other sibling layer, called reg layer (B0), is also a convolutional

layer with a 1× 1 kernel, a stride length of 1 and no padding, but it maps the 512

input channels from the intermediate layer to 4k (i.e. 4 · 9 = 36) channels. These

channels represent 4 regression coordinates for each one of the k anchor boxes

at each sliding window position, which correct the original coordinates of the

respective anchor boxes before passing them to the RoI pooling layer [17, 25].

In summary, the RPN is a fully convolutional network that outputs WHk

region proposals, which along with the feature map from the VGG-16 network

are passed to the Fast R-CNN detector for final evaluation towards true bounding

boxes (i.e. classification and bounding box regression) as explained before. In

figure 2.6 a, the parts of Fast R-CNN are represented by "pool" for the RoI pooling

layer, H1 for the fully connected layers, as well as C1 and B1 for the architecture’s

two heads (bounding box regression and classification) [17].

The entire Faster R-CNN network contains four losses. Two of them represent

the classification loss and regression loss inside the RPN for a kind of class

agnostic object detection, i.e. for a localization of proposals (or anchors) and

their classification in "foreground" and "background" without taking the specific

category into account [26]. It is defined similarly to the loss in equation 22 by

L(pi, ti) =
1

Ncls

∑

i

Lcls(pi,p
∗

i) + λ
1

Nreg

∑

i

p∗

iLreg(ti, t
∗

i) , (23)

where pi is the predicted probably of whether the i-th anchor is an object. The

term p∗

i is basically an assignment in positive or negative anchors based on the

IoU of anchor i with any ground truth bounding box. More specifically, p∗

i is 1

for a positive or 0 for a negative assignment and, analogous to u in equation 22,

selects the set of samples (i.e. anchors) used to train the regressor. To this end,

it activates the regression loss by the term p∗

iLreg for positive anchors (p∗

i = 1)

and disables it otherwise (p∗

i = 0). The regression loss Lreg itself is based on

four predicted bounding box coordinates represented by ti and four coordinates

of the ground truth bounding box t∗i associated with a positive anchor. Finally,

the terms for classification and regression are normalized by Ncls and Nreg,

respectively, and the factor λ is analogous to the loss in equation 23 applied for

balancing the two individual loss functions [17].

The other two losses are represented by the multi-task loss from the Fast

R-CNN detector in the second stage for class specific object detection and thus de-

fined by equation 22. By jointly optimizing all four losses and thus all parameters

including those for the region proposal generation, Faster R-CNN can be trained

2.1 Computer Vision 27

end-to-end with back-propagation and SGD according to section 2.1.1 and 2.1.2

[14, 26]. This is an additional improvement compared to the Fast R-CNN network,

which can only optimize the parameters that aren’t related to region proposals.

On a final note it must be stated that based on the explanation above, plenty of

region proposals (i.e. anchors) cross image boundaries (e.g. those anchors that

are projected from the boarders of the feature map into the original image). In

the training process, these anchors are ignored, so they won’t contribute to the

loss [17].

In conclusion, the developments of region proposal based object detection in

the past decade can be summarized as follows. With respect to the test time, the

first architecture, R-CNN, took about 50 seconds for one image. Compared to this,

Fast R-CNN and Faster R-CNN achieved a 25× and 250× speedup, respectively

[26]. With respect to the training, the process went from a multi stage pipeline

in R-CNN, in which different parts of the network had to be trained separately,

to the Faster R-CNN network, which can really be trained end-to-end. Today,

Faster R-CNN is mostly combined with the 101 layer deep network ResNet-101

or other advances in backbone architectures as they outperformed the original

implementation with VGG-16 [24]. It is still state-of-the-art and, again, extended

by many modern detectors to address various problems of detail. Mask R-CNN

is one example. It will be introduced in section 2.1.4.

2.1.4 Instance Segmentation

Instance segmentation extends the object detection task in terms of accuracy by

producing pixel-accurate masks for visible regions of the objects rather than draw-

ing bounding boxes around them [3]. A breakthrough in instance segmentation

came with the introduction of Mask R-CNN by He et al. in 2017 [3, 18]. It uses the

same region proposal network as Faster R-CNN and adds an additional branch

for predicting the object mask in parallel to the existing branch for classification

and bounding box regression [18]. Figure 2.7 shows the architecture, which is

essentially the same architecture as Faster R-CNN in figure 2.6 a. Only the branch

S for predicting the object mask is added [2].

Without going into detail, the mask branch is a small FCN applied to each

RoI and produces binary masks for localized objects [18]. Consequently, it assigns

a pixel-level semantic class label to each pixel belonging to the object localized

within the respective RoI. A notable difference between Mask R-CNN and Faster

R-CNN architecture apart from the mask branch S regards the pooling layer that

extracts fixed size feature vectors from the region proposals [18, 21]. The RoI

pooling layer in Faster R-CNN (and Fast R-CNN) was designed for bounding

boxes and performs spatial quantization of features that are too coarse for pixel-to-

pixel alignments [18]. He et al. introduced a layer called RoIAlign that preserved

the exact spatial locations of features [18]. Although replacing the RoI pooling

28 Computer Vision and Optics

I conv

H0

C0 B0

p
o

o
l

H1

C1 B1S
RPN

Figure 2.7: The Mask R-CNN architecture complements the Faster R-CNN archi-
tecture by adding the mask branch "S" for instance segmentation in
parallel to the existing branch for classification "C1" and bounding
box regression "B1".

layer with RoIAlign is a small change, it has a significant effect on the mask

accuracy. It resulted in a relative improvement by 10% to 50% [18].

Mask R-CNN has multiple heads and requires, like Fast R-CNN and Faster

R-CNN, several losses. Straightforwardly, a loss for the mask branch Lmask is

added to the multi-task loss defined by equation 22. Therefore, the loss for Mask

R-CNN, whose individual terms must be balanced just like that of the multi-task

losses described in section 2.1.3, is formally defined as

L = Lcls +Lreg +Lmask . (24)

Analogous to the regression loss in Faster R-CNN (and Fast R-CNN), the

mask loss Lmask is activated when the RoIs is considered positive. And the

classification in positive or negative itself is based on whether a RoI matches a

ground truth box with respect to a certain IoU threshold. Consequently, the set

of samples used to train the mask loss is chosen analogously to that for training

the regression loss. In mathematical terms, the selection may thus be defined

analogously to the regression loss in equation 22 with the term [u > 1], where

u denotes the ground truth class with which the respective RoI is labeled (i.e.

[u > 1] = 0 if u = 0 = background and [u > 1] = 1 if u > 1 = foreground

category) [18].

Mask R-CNN outputs for each RoI K binary masks with the size m×m, one

for each of the K classes. However, for an RoI associated with class u (provided

that [u > 1] = 0), the loss is only defined on the u-th mask (i.e. the mask outputted

for the respective class), whereas the remaining outputs do not contribute to the

loss. The loss Lmask is then defined as the the average binary cross-entropy [18].

Since Mask R-CNN contains the same RPN as Faster R-CNN, two additional

losses are used for the RPN optimization. They are defined by the multi-task loss

in equation 23 [18].

2.1 Computer Vision 29

2.1.5 State-of-the-art Architectures

This section presents state-of-the-art Computer Vision architectures with the focus

on the region proposal based approach. With Faster R-CNN and Mask R-CNN,

two modern architectures are already described. This section adds two more

architectures, both of which are region proposal based Cascade (or multi-stage)

architectures. The first multi-stage architecture was introduced by Cai et al. in

2018 under the name Cascade R-CNN [27]. Later, they combined the architecture

with a mask branch for instance segmentation and called it Cascade Mask R-CNN

[2]. With the first proposal they already reported improvements in object detection

over their two-stage counterpart Faster R-CNN, but the simple combination of

their multi-stage architecture with a mask branch later showed improvements in

instance segmentation over Mask R-CNN as well [2]. The second architecture,

HTC, focused on the question how the Cascade architecture can be introduced

to instance segmentation in a more sophisticated way than simply combining

Cascade R-CNN and Mask R-CNN [1]. Nevertheless, both of these mult-stage

architectures showed strong results in both instance segmentation and object

detection.

The idea behind the Cascade architecture proposed by Cai et al. in 2018

is to sequentially increase the quality of proposals in a region proposal based

architecture, as they observed that the quality of the detector directly correlates

with the quality of object (or region) proposals [2]. Here, the quality is defined

by the IoU between the candidate and ground truth bounding boxes [2]. The

overlap criterion represented by the IoU will be described with respect to eval-

uation methodologies in section 2.3.1, but the IoU is also used to train object

detection systems. As shown with equation 22 and 23 in section 2.1.3, in modern

region-proposal based architectures, this holds true for both optimizing the final

detection task and the RPN. Regarding the RPN, equation 23 shows that in

the cls head ("C0") the IoU threshold is used to classify proposals (or anchors)

in the categories "positive" (object) and "negative" (background), and in the reg

head ("B0"), although the bounding box regression task doesn’t directly need a

definition in positive and negative examples, the IoU threshold is required to

select the set of samples used to train the regressor [2]. And this is essentially

where the observations by Cai et al. in 2018 begins [2].

The observations eventually resulted in Cascade Mask R-CNN shown in

figure 2.8 b and can be summarized as follows. Setting the IoU threshold for

the RPN training up obviously increases the quality of object proposals (i.e

higher IoU between proposal and ground truth). In theory, this also increases

the object detection quality because as mentioned above there happens to be a

match between the quality of the detector and that of the proposal. However, the

RPN tends to produce object proposals that are imbalanced towards low quality,

which has a dramatic effect on the absolute number of proposals during training

30 Computer Vision and Optics

I conv

H0

C0 B0

p
o

o
l

H1

C1 B1S
RPN

(a) Mask R-CNN

I conv

B0

p
o

o
l

H1

C1 B1S1

p
o

o
l

H2

C2 S2 B2
p

o
o

l

H3

C3 S3 B3

(b) Cascade Mask R-CNN

Figure 2.8: Cascade Mask R-CNN represents a sequence of object detectors
trained with increased IoU thresholds. They use object proposals
from the previous model with a lower IoU threshold in order to pro-
duce object proposals of better quality for the subsequent model. "B0"
represents the proposals from the RPN in both Mask R-CNN and
Cascade Mask R-CNN.

when the IoU threshold is high. In other words, using larger IoU thresholds

exponentially reduces the number of proposals produced by the RPN, which in

turn decreases the number of positive examples for training the detection head

"H1" in the second stage. This means that with a large IoU threshold, the detection

head basically sees the same training examples over and over again. Subsequently,

since neural network are very example intensive, the model can’t generalize well

and overfits these particular training examples that are left over [2].

A final observation which intuitively explains the cascade architecture is that

a bounding box regressor trained for a certain IoU threshold tends to produce

bounding boxes of higher IoUs. The idea of Cascade R-CNN is to start with an

object detector trained with a low IoU threshold and use its output as object

proposals for training a second object detector with an increased IoU threshold.

This process is basically repeated to sequentially use outputs of a detector trained

with a lower IoU threshold as proposals for training a detector with the next

higher IoU threshold. Through this process, the quality of region proposals

outputted by the RPN in the first stage increases with each subsequent stage

without risking to reducing the number of training examples. Consequently,

a higher object detection accuracy is achieved by avoiding the aforementioned

overfitting [2].

Finally a mask branch "S" is added to Cascade R-CNN. Since the multi-stage

architecture contains multiple detection branches, Cai et al. tested various strate-

gies. One of them is shown in figure 2.8 b where the segmentation branch is

added in every stage. In other strategies they implemented only one segmenta-

tion branch. However, regardless of the training strategy, at inference time the

segmentation mask is produced in parallel to the last detection stage [2].

The improvements for instance segmentation achieved by Cascade Mask

2.2 Autonomous Driving Datasets 31

R-CNN are, unlike the obvious improvements in object detection, non-trivial

because the information flow happens only with respect to bounding boxes [2,

1]. Training the segmentation branch happens in the respective stages in parallel

to the bounding box regression, but the increased quality of object proposals

in later stages doesn’t necessarily help pixel-wise operations performed by the

segmentation branch [2]. This is in fact precisely why Cai et al. tried the various

aforementioned strategies with respect to the segmentation branch [2]. HTC

proposed another Cascade architecture to address this problem. Without going

into detail, rather than performing bounding box regression and mask prediction

in parallel, HTC interleaves these tasks in order to improve the information flow

[1]. With this, HTC achieved strong performance in both instance segmentation

and object detection.

2.2 Autonomous Driving Datasets

Datasets have played a profound role in the development of computer vision

[28]. The whole progress presented in section 2.1.3, 2.1.4 and 2.1.5 wouldn’t have

been possible without high-quality datasets, as all CNN-based Computer Vision

systems rely on supervised learning. The classical paradigm of supervised learn-

ing is to partition the dataset into three statistically independent sets: training,

validation, and test set [8]. In fact, even though some datasets are released only

with a test and a training set, it is still necessary to subdivision the latter into

two separate sets for training and validation [28]. The intent here is to leave the

decision about the specific partition to users (i.e. regarding the training-validation

ratio) [28]. The ultimate purpose of partitioning the dataset into three indepen-

dently and identically distributed sets is to ensure that the algorithm generalizes

well during the training and thus shows a good performance on unseen data.

The following paragraph elaborates on this learning paradigm.

As its name implies, the training set, which contains most of the data in the

dataset, is used to train a deep learning model. Simply put, it is the only data

in the dataset to which the algorithm has direct access. Section 2.1.1 describes

the training process in detail using a FCN as an example. Indeed, the process

is mathematically more complicated with state-of-the-art CNNs. These neural

networks incorporate additional elements such as convolutional and pooling layer

(see section 2.1.2) as well as various techniques and specific loss functions for

computer vision tasks such as object detection and instance segmentation (see

section 2.1.3 to 2.1.5). The main concepts of SGD and back-propagation, however,

are essentially the same as in FCNs. And regardless of which computational

elements are used, plenty of choices are to be made prior to the training of neural

networks. Section 2.1.2 discussed parameter such as the stride and the kernel size

that need to be defined for convolutional and pooling layer. Additional choices

32 Computer Vision and Optics

such as the learning rate, η, and the type of loss function, L, were described

in section 2.1.1. All of these so-called hyper-parameter have in common that

they can’t actually be learned. Instead, they must be manually defined. To

this end, the validation set basically provides (for the algorithm unseen) data

to figure out how to set hyper-parameters properly [7]. More specifically, since

choices of hyper-parameters are not necessarily trivial, usually different sets of

hyper-parameters are tried during the training process and evaluated with the

validation set. However, picking the set of hyper-parameters that results in the

best performance on the validation set might, in the worst case, only be the

set that accidentally causes the algorithm to perform well on the validation set

[29]. In fact, multiple settings are tried until the best performance is reached,

so the final performance on the validation set is no longer representative of

the performance on unseen data. Therefore, the test set is used after the whole

training is completed to provide a final assessment of the algorithm’s performance

on unseen data.

Partitioning the dataset is essential for all Computer Vision dataset. What

distinguishes Computer Vision datasets, however, are the specific tasks they are

used for. In this work the focus is on object detection and instance segmentation.

The former, object detection, requires datasets with class-specific bounding box

coordinates for each object, whereas the latter, instance segmentation, requires

class-specific polygons or binary masks for each object. Both tasks will be

examined in the field of Autonomous Driving. Due to the growing research

interest in self-driving cars in the past decades, numerous datasets with driving

scenes captured in urban, non-city and agricultural environments have been

published. Table 2.1 lists some Autonomous Driving datasets that are worth

mentioning.

Apart from the obvious improvements through the architectural developments

of deep learning algorithms (see section 2.1.3 to 2.1.5), the progress in Computer

Vision can primarily be attributed to datasets with respect to their high-quality

data for training. However, datasets also galvanized research progress in Com-

puter Vision from another point of view. Many datasets such as Caltech, KITTI,

and COCO include online rankings, which have led to competitions between

various research teams and thus contributed to the rapid progress in Computer

Vision in the last decade [30, 31, 37]. Particularly important for the research

process in Computer Vision in the last decade is the MS COCO dataset. The

first version of the dataset was released in 2014 and coincided with the shift

in Computer Vision [3]. This alludes not only to the introduction of the first

Region-based Convolutional Neural Network (R-CNN) for object detection in

2014 (see section 2.1.3), but also to deep networks for instance segmentation. It

is a general recognition dataset containing 300,000 images with annotations for

both object detection and instance segmentation for 80 classes with an average

2.2 Autonomous Driving Datasets 33

Dataset Published # Images # Classes # Objects Resolution

Caltech [30] 2009 250, 000 1 350, 000 640× 480

KITTI [31] 2012 14, 999 8 80, 256 1392× 512

NREC [28] 2017 95, 924 1 76, 662 720× 480

CityScapes [32] 2016 5000 8 65, 400 2048× 1024

CityPersons [33] 2017 5000 1 35, 016 2048× 1024

EuroCity Persons [34] 2019 238, 200 2 47, 335 1920× 1024

Waymo [35] 2020 1.15M 3 9.9M 1280× 1920

BDD100K [36] 2020 100, 000 11 1, 84M 1280× 720

Table 2.1: Autonomous Driving Datasets. Caltech, NREC, CityPersons, and Eu-
roCity Persons are person detection datasets with one (person) or two
(pedestrian, rider) classes. In addition to bounding boxes coordinates,
BDD100K provides annotations for semantic segmentation. Cityscapes
and CityPersons provide ground truth data for instance level semantic
segmentations. Waymo is not only a Computer Vision but also 3D
LiDAR dataset.

of 7 instances per image [14]. Up until today, most Computer Vision Systems

evaluate their performance on the MS COCO dataset [3]. In fact, the MS COCO

dataset is not only worth to mention due to its prevalence in Computer Vision

in general, but also in the context of Autonomous Driving. Although it is not a

dataset specifically for Autonomous Driving, it contains a considerable amount

of street scenes and a number of traffic participants per image that is comparable

to that in Autonomous Driving datasets such as CityScapes [32].

On a final note it must be stated that quality of datasets depends on how well

they depict the reality. This is in fact the reason why datasets are often compared

not only with respect to the total number of images and object instances but also

based on the diversity of scenes. In Autonomous Driving datasets, for instance,

images may be captured in urban environments or non-city environments such

as highways at different locations, at different times of the day, and in different

weather conditions. In summary, not only the aforementioned training paradigm

with training, validation, and test sets, but also the data itself must ensure that

the algorithms generalize well, or, conversely, don’t overfit to the idiosyncrasies

of the particular data in the dataset [28]. Various common methodologies that

are used for the final evaluation of object detection and instance segmentation

systems will be explained in section 2.3.

34 Computer Vision and Optics

2.3 Evaluation Methodology

In section 2.1, modern CNN-based Computer Vision systems are described with

respect to their functioning. Their main components are described in section

2.1.1 and 2.1.2 and some architectures for both object detection and instance

segmentation are presented in section 2.1.3 to 2.1.5. Moreover, it is described

which individual loss functions the respective algorithms use for training. All of

these loss functions (defined by equation 22, 23 and 24) indicate that the particular

metric modern object detection and instance segmentation systems try to optimize

is the IoU, which is commonly used to evaluate the accuracy of both localizations

and instance segmentations. As shown in section 2.1.3 and 2.1.4, the IoU is used

by all of these loss functions to classify proposals into negatives (background) or

positives (class agnostic in case of the RPN and class specific in case of the final

cls, reg, and mask heads). Section 2.3.1 provides a more detailed description about

the overlap criterion as provided before. Nevertheless, with respect to the overall

performance evaluation, the IoU is only used to classify individual detections

or instance masks in True Positives (TPs) or False Positives (FPs). It is basically

only the first step in the evaluation of the overall performance. The second step

is presented in section 2.3.2 by providing an explanation of common evaluation

metrics used for both object detection and instance segmentation.

2.3.1 Overlap Criterion

The IoU is also known as the Jaccard index or Jaccard similarity coefficient [3].

In the context of Object Detection, it computes the match between a detection

bounding box (referred to as BBdt) and a labeled ground truth bounding box

(referred to as BBgt)

IoU =
BBgt ∩BBdt

BBgt ∪BBdt
, (25)

where the numerator is the intersection of BBdt and BBgt (i.e. the area of overlap

of both bounding boxes) and the denominator is the union (i.e. the total area of

both bounding boxes combined). Figure 2.9 visualizes the IoU with a schematic

formula. With respect to instance segmentation, the intersection over union is

computed by

IoUBM =

∑(
px(BMgt)∧ px(BMdt)

)

∑(
px(BMgt)∨ px(BMdt)

) , (26)

where BMgt and BMdt denote the ground truth and detection mask, respectively.

The numerator is the intersection computed by the sum over all pixels that belong

to both binary masks (i.e. to both BMgt and BMdt). The denominator is the

union calculated by the sum over all pixels that belong either to BMgt, or to

BMdt, or to both of them.

2.3 Evaluation Methodology 35

IoU

BBgt

BBdt

= =
BBgt ∩BBdt

BBgt ∪BBdt

Figure 2.9: Schematic formula of the Intersection over Union (IoU)

2.3.2 Standard Evaluation Metrics

For the evaluation metrics it is important to remember from previous sections

that object detection systems output bounding box coordinates (localization) and

classifies them (classification) while also producing a score (or confidence score).

The same applies to instance segmentation systems with the sole difference that

an additional segmentation branch also produces binary masks for localized

objects. Apart from the IoU computation, the evaluation metrics presented in this

section are the same for object detection and instance segmentation.

Probably the most widely used performance metric for modern object detec-

tors and instance segmentation systems is the Precision vs. Recall curve, and

quantitatively, the Average Precision (AP) derived from this curve. The COCO

dataset, for instance, on which the performance of virtually all new systems is as-

sessed, incorporates the AP in its challenge (computed under strict requirements

regarding the IoU threshold) [38].

Another metric often used in research papers for object detection systems

in the field of Autonomous Driving is the Miss Rate (MR) vs. False Positives

per Image (FPPI) metric from which the Log Average Miss Rate (LAMR) can be

derived as numerical performance assessment [39, 28, 30]. As its name implies,

it provides the possibility to set an upper limit of the acceptable false positives

per image, which is obviously essential for safety-critical applications such as

self-driving cars [30]. Both of these metrics, however, are computed in a very

similar way. First, ground truth bounding boxes and detection bounding boxes

are matched for each image and category individually. Then, the results are

accumulated in order to visualize them with the respective curve. For the sake

of simplicity, the process will be explained for object detection. Again, only the

IoU computation differs between the metrics for object detection and instance

segmentation, so the process relates to instance segmentation as well.

2.3.2.1 Per image and category evaluation

This section explains the evaluation of one image and one category, which must

be performed on each image and category individually. Suppose that an object

detector performed detection on the entire test set and for one particular image

and category, all detection bounding boxes (of size 1× 4) and associated scores are

36 Computer Vision and Optics

stored in d rows of the arrays BBdt ∈ R
d×4 and S ∈ R

d×1, respectively, where d

is the number of detection bounding boxes. Suppose also that the corresponding

ground truth bounding boxes for this image and the category are stored in the

array BBgt ∈ R
g×4, with g denoting the number of ground truth bounding boxes.

Optionally, ground truth labels L ∈ R
d with Lj ∈ {0, 1} (1 = ignore and 0 = don’t

ignore) can be assigned to ground truth bounding boxes in order to evaluate only

a subset of the test set (i.e. only those bounding boxes with Lj = 0). Note, the

only differences between the evaluation of different images and categories are

the number of ground truth bounding boxes g and detection bounding boxes d.

Matching detection bounding boxes (BBdt)k in BBdt and ground truth bound-

ing boxes (BBgt)j in BBgt is performed "greedily", which means that each de-

tection (BBdt)k can match only one ground truth bounding box (BBgt)j and the

detections with highest confidence score are matched first [30]. In other words, if

one (BBgt)j matches multiple (BBdt)k, only the match with the highest scored

(BBdt)k counts. Conversely, if one (BBdt)k matches multiple (BBgt)j, only the

match with highest IoU counts. A proper match presupposes that a bounding

box pair with any (BBdt)k and (BBgt)j exceeds a pre-defined IoU threshold

IoUt. Algorithm 2.4 shows how to perform greedy matching. The pseudo code

is derived from the COCO API and only slightly changed to adapt the algorithm

to the aforementioned arrays [38].

First, the detection bounding boxes in BBdt and associated scores in S are

sorted in descending order by the scores. Moreover, if only a subset of the

dataset is to be evaluated, the ground truth bounding boxes in BBgt and its

corresponding ignore labels in L are sorted, so that all (BBgt)j with Lj = 1 are

placed last. Then, for each possible bounding box pair, the IoU is computed and

stored in the array IoUs ∈ R
d×g with (IoUs)k,j denoting the IoU of (BBdt)k

and (BBgt)j.

Final results of the greedy matching function in algorithm 2.4 are stored in

the vectors GTM, DTM, and DTI. The elements in DTM correspond to the

elements in BBdt and are assigned to the index of the ground truth bounding

box in BBgt that they match. Conversely, elements in GTM correspond to the

elements in BBgt and are assigned to the index of the detection bounding boxes

in BBdt that they match. The indexes in both DTM and GTM are 0 if there is

no proper match for the respective (BBgt)j or (BBdt)k. Finally, the vector DTI

corresponds to BBdt and its elements are either 1 or 0 based on whether or not

the respective (BBdt)k is to be ignored, which is determined by whether or not

it matches a (non-regular) ground truth bounding box (whose ignore label is

1). Figure 2.10 visualizes the result vectors along with the sorted arrays and the

following paragraphs explain the process in algorithm 2.4 with which the vectors

are populated.

An outer for loop iterates over indexes of all d detection bounding boxes

2.3 Evaluation Methodology 37















x1 y1 w1 h1

x2 y2 w2 h2

x3 y3 w3 h3

...
...

...
...

xg yg wg hg















BBgt















0

0

1
...
0















L















0

3

d
...
0















GTM

match between
(BBgt)2 and (BBdt)3

match non-regular BBgt















0

0

2
...
3















DTM















0

0

0
...
1















DTI















S1
S2
S3
...
Sd















S















x1 y1 w1 h1

x2 y2 w2 h2

x3 y3 w3 h3

...
...

...
...

xd yd wd hd















BBdt

Figure 2.10: Results of the "greedy" matching algorithm. Elements in GTM and
DTM link matching bounding box pairs. If a detection bounding box
(BBdt)k matches a non-regular ground truth bounding box (BBgt)j
(i.e. with ignore label Lj = 1), it is assigned a label (DTI)k = 1 and
is, just like the corresponding ground truth bounding box, ignored
in further evaluations (red). Conversely, if a detection bounding box
matches a regular (BBgt)j (i.e. with ignore label Lj = 0), the match
counts and flows into subsequent evaluations (green).

(BBdt)k in BBdt (due to the pre-sorting in descending order from detections

with highest score to that with lowest score) and an inner for loop iterates over

indexes of all g ground truth bounding boxes (BBgt)j in BBgt (where (BBgt)j

with ignore label Lj = 1 are sorted last). In each iteration of the outer loop, the

IoU threshold is assigned to the variable IoU and the variable m is initialized

with −1 (indicating no match). The inner loop tries to find the best match for

the current (BBdt)k in the outer loop and sets the value of m to the index j of

(BBgt)j with which the detection matches best in terms of the IoU. The value of

m remains equal to −1 if none of the ground truth bounding boxes in the image

matches the current detection (BBdt)k properly with respect to the IoU threshold

IoUt and the aforementioned requirement that a ground truth bounding box

can only match with one detection bounding box. This is achieved with three if

statements explained below.

The first if statement (if GTMj > 0) checks whether the current ground

truth bounding box (BBgt)j already matched properly with a previous (higher

scored) (BBdt)k. As mentioned above, this is the case if the j-th element in GTM

representing (BBgt)j is already assigned to the index of any of the previous

(BBdt)k and thus greater than 0. If this is true, the inner loop proceeds with the

next iteration. The second if statement (if m > −1 and Lm = 0 and Lj = 1) checks

whether the best match for the current detection is already found. This is the

case if m is already assigned to an index of a previous ground truth bounding

box (if m > −1) whose ignore flag is 0 (if Lm = 0) and the current ground truth

bounding box (BBgt)j as well as all remaining ground truth bounding boxes (due

to the pre-sorting) are to be ignored (if Lj = 1). If this is the case, the inner loop

can be left to store the match accordingly. If both if statements are false, however,

the third if statement (if (IoUs)k,j < IoU) checks whether the IoU of the current

bounding box pair (stored at index k, j in IoUs) is smaller than the value of IoU,

38 Computer Vision and Optics

Algorithm 2.4 matching ("Greedy" matching for one image and category) [38]

Input: BBdt ∈ R
d×4

⊲ d detection bbox coordinates (BBdt)k of size 1× 4

Input: S ∈ R
d×1

⊲ d scores Sk ∈ [0, 1] for each (BBdt)k
Input: BBgt ∈ R

g×4
⊲ g ground truth bbox coordinates (BBgt)j of size 1× 4

Input: L ∈ R
g×1

⊲ g ignore labels Lj ∈ {0, 1} for each (BBgt)j
Input: IoUt ⊲ Intersection over Union threshold chosen for evaluation
Output: DTI ∈ R

d×1,DTM ∈ R
d×1,GTM ∈ R

g×1,BBdt ∈ R
d×4,

BBgt ∈ R
g×4,S ∈ R

d×1,L ∈ R
g×1

function matching(BBdt ∈ R
d×4,S ∈ R

d×1,BBgt ∈ R
g×4,L ∈ R

g×1, IoUt)
⊲ sort rows in BBdt and S in descending order by scores in S

⊲ sort rows in BBgt and L so that (BBgt)j and Lj w/ Lj = 1 are placed last
GTM← 0g×1 ⊲ initialize zero vector for future results
DTM← 0d×1 ⊲ initialize zero vector for future results
DTI← 0d×1 ⊲ initialize zero vector for future results
for k = 1, ...,d do ⊲ number of iterations equals number of dt bboxes

IoU← IoUt ⊲ initialize IoU with threshold IoUt for evaluation
m← −1 ⊲ value of m refers to match (m > −1) or no match (m = −1)
for j = 1, ...,g do ⊲ number of iterations equals number of gt bboxes

if GTMj > 0 then

continue ⊲ skip to next gt bbox as this gt bbox already matched
end if

if m > −1 and Lm = 0 and Lj = 1 then

break ⊲ stop, best match with current dt bbox was already found
end if

if (IoUs)k,j < IoU then

continue ⊲ skip to next gt bbox unless better match found
end if

IoU← (IoUs)k,j ⊲ a new best match was found, so store its IoU

m← j ⊲ store index of gt bbox that matches current dt bbox
end for

if m = −1 then

continue ⊲ skip to next dt bbox, this one doesn’t match any gt bbox
end if⊲ if this point is reached, a match for the current dt bbox is found
DTIk ← Lm ⊲ link ignore label of gt bbox to matching dt bbox
DTMk ← m ⊲ link index of gt bbox to matching dt bbox
GTMm ← k ⊲ link index of dt bbox to matching gt bbox

end for

return (DTI,DTM,GTM,BBdt,BBgt,S,L)
end function

2.3 Evaluation Methodology 39

which prior to the inner loop is assigned to the IoU threshold. If this is true, the

inner loop proceeds with the next iteration. If this false, however, a potential

best match is found and the index j of the current ground truth bounding box

(BBgt)j is assigned to m. Moreover, the IoU of the current bounding box pair is

assigned to the variable IoU, so that the last if statement in subsequent iterations

of the inner loop may check for better matches of the current detection bounding

boxes (in the outer loop) with other ground truth bounding boxes (in remaining

iterations of the inner loop).

After the inner loop, m is either equal to −1 if there is no proper match for

the current detection bounding box or equal to the index of the ground truth

bounding box with which it matches best. Consequently, it can be proceeded

with the next iteration of the outer loop (i.e. with the next detection bounding

box) if m = −1. If m is larger than −1, however, the match must be stored in

the aforementioned vectors. The index of the ground truth bounding box m

involved in the match is assigned to the k-th element in DTM (i.e. at the index k

that represents the current detection bounding box (BBdt)k). Analogously, the

index of the current detection bounding box k is assigned to the m-th element

in GTM (i.e. at the index m that represents the ground truth bounding box

(BBgt)m involved in the match). Finally, the ignore label Lm of the ground truth

bounding box involved in the match is assigned to the k-th element in DTI,

because detection bounding boxes that match non-regular ground truth bounding

boxes (i.e. with Lj = 1) must later be ignored.

Repeating this process with all detection bounding boxes results in three

arrays (or vectors) DTI, DTM and GTM with information about matches for

one category in one image. In summary, the values in DTM (representing

detections) and GTM (representing ground truths) are equal to 0 for no match

and equal to the counterpart’s index for a match (see figure 2.10). The values

in DTI are 1 if they represent detections that match a ground truth bounding

with ignore label Lj = 1. In fact, in addition to the overall evaluation, the COCO

API also evaluates objects of a specific area ranges, which can be useful for more

precise performance evaluations [38]. To this end, detection and ground truth

bounding boxes of sizes outside these area ranges may additionally be ignored

and thus assigned a 1 in DTI and L, respectively.

The vectors DTI, DTM and GTM are returned along with the sorted arrays

BBdt, BBgt, S and L, which provide corresponding information about the ground

truth bounding box coordinates and ground truth ignore labels as well as the

detection bounding box coordinates and scores. In fact, subsequent computations

for the Precision vs. Recall or MR vs. FPPI require not all data returned from

the function in algorithm 2.4. The sorted bounding box coordinates in BBdt and

BBgt, for instance, are redundant in this context. However, the data is required

for further evaluations in this work and thus returned accordingly.

40 Computer Vision and Optics

For the sake of completeness, it should be noted that the only differences

between the per-image and per-category evaluation for object detection and

instance segmentation are the arrays of ground truth and detection instances

and the way in which they are used to compute the IoUs. The evaluation for

object detection sketched here calculates the IoUs with the arrays BBdt ∈ R
d×4

and BBgt ∈ R
g×4 for g ground truth bounding boxes (of size 1 × 4) and d

detection bounding boxes (of size 1× 4) with equation 25. The evaluation for

instance segmentation, on the other hand, requires arrays BMdt ∈ R
d×h×w

and BMgt ∈ R
g×h×w for g ground truth masks and d detection masks (of size

h×w) to calculate the IoUs with equation 26. These binary masks (BMdt)k and

(BMgt)j in the arrays BMdt and BMgt, respectively, are equal to 1 for pixels

that belong to the respective GT or DT object and 0 for the remaining pixels. The

entire evaluation process in algorithm 2.4 apart from the IoU computation is for

instance segmentation exactly the same.

2.3.2.2 Accumulation of evaluation results

The Precision vs. Recall curve and the MR vs FPPI curve can be computed by

accumulating the arrays DTM, L, DTI and S for all images and categories. Before

explaining the accumulation process, however, it is necessary to first introduce

the terms that are to be plotted against each other. They are defined based

on the number of TPs, FPs, and False Negatives (FNs). Unmatched detection

bounding boxes (i.e. BBdt that doesn’t match a BBgt with respect to the "greedy"

matching function in algorithm 2.4) count as FPs and unmatched BBgt count

as FNs. Detection bounding boxes that match a regular ground truth bounding

box (i.e. a BBgt whose ignore label is not 1) count as TPs. This being said, the

Precision and Recall are defined as

Recall =

∑N
n TPn

∑N
n TPn +

∑M
m FNm

=

∑N
n TPn

∑K
k Pk

, (27)

Precision =

∑N
n TPn

∑N
n TPn +

∑J
j FPj

, (28)

where
∑K

k Pk =
∑N

n TPn +
∑M

m FNm is the number of Positives (Ps) (i.e. the

number of regular ground truth bounding boxes) for the given category. Simply

put, the Recall divides the number of correctly predicted examples by the number

of examples that are actually positive, whereas the Precision penalizes FPs (i.e.

detections that doesn’t match any ground truth bounding box). Finally, FPPI is,

2.3 Evaluation Methodology 41

as its name implies, the FP rate per image, whereas MR is defined as

MR =

∑M
m FNm

∑N
n TPn +

∑M
m FNm

=

∑M
m FNm
∑K

k Pk
=

∑K
k Pk −

∑N
n TPn

∑K
k Pk

= 1−

∑N
n TPn

∑K
k Pk

= 1− Recall ,

(29)

and can thus be derived from the Recall. In order to plot Precision vs. Recall or

MR vs. FPPI, the respective values must be computed for decreasing confidence

thresholds. More specifically, the confidence threshold must be varied from high

to low and the values of the Precision and Recall or the MR and FPPI must be

computed for each decreasing confidence threshold in order to plot them against

each other. This can be done straightforwardly by accumulating the arrays (or

vectors) DTM, L, DTI and S that are returned for each image and category. In

this respect, it is important to remember from section 2.3.2.1 that DTM represents

detection bounding boxes with values equal to or larger than 0 based on whether

or not the respective detection matches a ground truth bounding box (see figure

2.10). Moreover, L and DTI represent ignore labels (1 = ignore, 0 = don’t ignore)

for ground truth and detection bounding boxes, respectively. Finally, the values

in S are scores of the detections. For the sake of simplicity, only one category is

considered in the following explanation.

First, all arrays must be concatenated, so from here onwards, the arrays DTM,

DTI, S and L refer to vectors that contain not only data for one image but for all

images in the dataset. Next, the former three vectors must be sorted in descending

order based on the scores in S. Then, based on the concatenated vectors DTM

and DTI, each detection is classified in a TP or FP. The k-th detection in DTM

is a TP if it’s ignore label DTIk is 0 and the value of DTMk is greater than

0, as this indicates that the detection bounding box is not to be ignored and

matches a ground truth bounding box. Instead, the k-th detection is a FP if both

it’s ignore label DTIk and the value DTMk are equal to 0, since this indicates

that it is not to be ignored and doesn’t match any ground truth bounding box.

Two binary vectors TP and FP are derived from DTM and DTI accordingly.

Note, the elements of each vector are ordered by descending scores. Hence, the

components of the vector S are equivalent to the confidence thresholds whereby

the corresponding indexes determine, which values in the logical vectors TP and

FP are beyond the respective thresholds. More precisely, the number of values

that are true in both logical vectors up to a specific index determine the number

of TPs and FPs, respectively, and the value at the corresponding position in vector

S defines the confidence threshold belonging to those numbers. Thus, simply

computing the cumulative sum of the elements of both logical vectors rearrange

them accordingly, so that their elements describe the number of TPs and FPs,

42 Computer Vision and Optics

respectively, up to the threshold represented by the value at the corresponding

index in the vector S.

Based on equation 27, the Recall vector Rc for category for decreasing confi-

dence thresholds in S can now be computed by dividing the vector TP element-

wise by the total number of ground truth bounding boxes P, which in turn is the

number of ground truth ignore labels in L that are equal to 0 (i.e. all ground truth

bounding boxes that are not to be ignored). Moreover, equation 28 can be applied

element-wise with the vectors TP and FP in order to compute the corresponding

Precision vector Pr for decreasing confidence thresholds. Plotting Pr against

Rc results in the Precision vs. Recall curve, in which the ideal performance is

put in the upper right corner of the chart (i.e. at Precision = Recall = 1). The

area under the curve is called AP and thus ranges from 0 (worst performance)

to 1 (ideal performance). If the dataset contains multiple categories, the AP for

each category may be averaged in order to derive a final performance assessment

of the detection system on all categories. This is referred to as Mean Average

Precision (MAP).

The MR vs. FPPI curve can also be derived from the vectors TP and FP.

However, according to equation 29, the MR is also a function of the Recall, so

the MR vector Mr for decreasing confidence thresholds in S can be computed

by simply subtracting the elements in vector Rc from 1. The corresponding FPPI

vector fppi is straightforwardly the element-wise division of the vector FP by

the total number of images in the dataset. Finally, the vector Mr can be plotted

against fppi, which is usually done with a semi-logarithmic scale. In contrast to

the Precision vs. Recall curve, the ideal performance in the MR vs. FPPI curve

is put in the lower left corner of the chart. In order to summarize the detector

performance in the MR vs. FPPI curve, the MR at 9 evenly spaced data points

in log space in the range 10−2 to 100 (i.e. at FPPI = 10−2+ x
4 , x ∈ {0, ..., 8}) are

averaged by

LAMR = e

(

1
9

8∑

x=0

(

ln
(

MR
(

FPPIx=10
−2+ x

4

)))

)

, (30)

which is conceptually similar to the AP in the sense that it represents the curve

with a single value [30].

In summary, both the Precision vs. Recall and the MR vs. FPPI curve visualize

the performance of an object detection or instance segmentation system on a

given dataset for the whole range of confidence thresholds. Both curves can thus

be used to set a proper confidence threshold for deployment. For instance, if

the respective task requires to detect (or segment) most of the instances properly

while the number of FPs is not important, the threshold may be set very low to

maximize the Recall (and minimize the MR). Conversely, if the number of FPs

must be minimized, which is obviously the case for safety-critical applications

2.4 Realistic defocus simulation 43

such as self-driving cars, the confidence threshold must be increased, which in

turn decreases the number of FPPIs and increases the Precision, though at the

cost of an increased MR and a decreased Recall. In fact, choosing the confidence

threshold is always a tradeoff. As mentioned before, since the MR vs. FPPI curve

provides the possibility to set an upper limit of FPPI, it is often used in journal

articles in the field of Autonomous Driving.

2.4 Realistic defocus simulation

The link between Computer Vision and Autonomous Driving is already provided

with an introduction to Computer Vision in section 2.1 and the presentation

of some high-quality Autonomous Driving datasets in section 2.2. Finally, this

section links Computer Vision in the field of Autonomous Driving to optics. This

is important, given that self-driving cars are highly safety-critical. As shown in

section 2.1, Computer Vision systems try to reconstruct properties in images, so

the performance is obviously highly dependent on the quality of their inputs.

Therefore, they rely on optics or, more specifically, on the output of cameras

and thus the quality of the underlying optical systems. These systems, however,

suffer unavoidably from aberrations such as coma and astigmatism, leading to

blurred images that may influence the performance of object detection or instance

segmentation systems. Indeed, today it is possible to construct high-quality

spherical lenses whose imaging quality virtually only depends on diffraction

effects [40]. This doesn’t apply to mass production of lenses, though. Producing

lenses on a large scale (e.g. for potential self-driving cars) leads to production

tolerances on their aberrations, as individual adjustments for maximizing the

performance may not be feasible due to time and cost constraints [41].

The aberrations of optical systems are defined as the departure from the

ideal conditions in gaussian optics [40]. They can be described in terms of wave

(or wavefront) aberrations, which are the deviations of an actual (aberrated)

wavefront from the ideal spherical wavefront [40]. Here, the ideal spherical

wavefront describes light refracted through an optical system that results at the

position of the systems’ exit pupil in a spherical wave with the (gaussian) focus

point at its center [40]. Ideal spherical wavefronts that result in this kind of ideal

focus points are impossible, though. Instead, real lenses form spreaded point

sources with various geometrical patterns [40].

Using linear system theory, the effects of an imaging system on a captured

scenes with respect to these point sources can be predicted. More specifically,

with the point spread function (PSF), the response of an imaging system to an

ideal point source (observed on the image plane) can be estimated [3]. As its

name implies, the PSF basically predicts the degree of spreading at the respective

point on the image plane. Since this is an indicator of aberrations, it is commonly

44 Computer Vision and Optics

used to assess the quality of optical systems [42].

The question is now how to simulate these aberrations. To this end, commer-

cial softwares such as OpticStudio by Zemax provide the possibility to simulate

real lenses. These lens models allow the parametrization of Zernike-Coefficients,

which in turn describe the wavefront profile [43, 42]. Each Zernike coefficient

represents a different type of aberration [43]. Therefore, they can be used to

introduce a wavefront error [42]. Finally, with the wavefront error a spatially

variant PSF can be constructed by Fourier transformation [42].

45

3 The Spatial Recall Index

The most common evaluation methodologies for performance assessments of

object detection and instance segmentation systems are presented in section 2.3.

In summary, these evaluation metrics run through all detections from highest

to lowest score, classify them into TPs and FPs based on the "greedy" matching

algorithm (presented in algorithm 2.4) and finally compute Precision vs. Recall or

MR vs. FPPI values for each decreasing confidence threshold using the numbers

of TPs, FPs and (indirectly) FNs above the respective thresholds. Indeed, these

methodologies provide a clear presentation of the system’s performance for the

whole range of confidence thresholds. Additionally, they provide a numerical

performance assessment by summarizing the curves with the AP and LAMR,

respectively.

What these evaluation metrics lack, however, is an assessment of the object

detection or instance segmentation performance in dependency of the spatial

positions in the field of view, meaning that they don’t take into account where in

the images TPs, FPs and FNs occur. Again, these metrics just count the number

of TPs, FPs and (indirectly) FNs for varying confidence thresholds in order to

compute and plot the respective curves (i.e. Precision vs. Recall or the MR vs.

FPPI) as shown in section 2.3.2. The optics of camera systems, however, are always

spatially variable over the field of view. Therefore, the performance of Computer

Vision systems may vary based on the degree of aberration at the spatial positions

in the images. To this end, this section introduces a novel metric, called SRI,

which does take the spatial dependency of the performance into account in order

to evaluate (potential) performance differences of object detection and instance

segmentation systems at different positions in the input images.

The SRI basically supplements the Recall value introduced in section 2.3.2

with a spatial domain. As shown in equation 27, the Recall is the ratio of all

correctly detected (or segmented) objects and all actually positive objects in

a given dataset for a pre-set confidence threshold (i.e.
∑N

n TPn/
∑K

k Pk). By

computing the ratio of the number of TPs and the number of Ps in a pixel-wise

manner, the SRI provides a clear representation of the object detection or instance

segmentation performance in dependency on spatial positions in the input images.

Section 3.1 and 3.2 explain the SRI for object detection and instance segmentation,

respectively.

46 The Spatial Recall Index

3.1 Spatial Recall Index for Object Detection

The SRI presupposes that a given dataset contains images with the same height

h and width w in order to be able to assign a Recall value to each pixel x,y in

the dimension h×w. For a statistically reliable SRI computation, the number of

objects and their spatial distribution in the images are important aspects. The

ideal case is a dataset with a considerable amount of equally distributed objects

whose sizes don’t vary much, so that the number of objects and their dimensions

are roughly the same at each spatial position in the images. The statistical aspects,

however, are described in later sections. Here, the focus is on the metric itself.

Analogous to the common evaluation methodologies described in section 2.3.2,

the first step in the SRI computation is to run the "greedy" matching algorithm

on each image and category of the dataset and accumulate the results for all

images afterwards. Rather than simply assigning binary TP and FP labels to each

detection as it is done in section 2.3.2.2, however, the accumulation process for the

SRI requires to extract coordinates of ground truth bounding boxes and detection

bounding boxes for the computation of Recall values with for spatial positions in

the images.

The SRI algorithm is implemented based on the results of the per-image and

per-category evaluation of the COCO API and can thus be explained with the

arrays returned by the matching function in algorithm 2.4 [38]. Important in this

context are the arrays GTM, L, S, BBdt and BBgt. As shown in figure 2.10, the

array GTM represents all ground truth bounding boxes in BBgt and its elements

indicate with positive values from which detection bounding box in BBdt they

are matched, and with 0 that they aren’t matched by any detection bounding

box. Furthermore, the labels in L determine, which ground truth bounding boxes

are to be considered in the evaluation, and the array S contains the scores of

detection bounding boxes in BBdt. These per-image and per-category arrays are

accumulated to produce the arrays described in the following paragraph. For

reason of simplicity, only one category is considered.

The array GT ∈ R
K×4 contains all K regular ground truth bounding boxes in

the dataset. The array GTM ∈ R
K×1 (now referring to a vector for all K regular

ground truth bounding boxes in the dataset) contains corresponding indexes to

access the counterpart’s TPs if the respective ground truth bounding boxes are

matched, while its values are 0 for not detected ground truth bounding boxes.

The TPs may be accessed from a third array, TP ∈ R
M×4, where M denotes the

number of TPs. Finally, the last array S ∈ R
M×1 contains scores of the detection

bounding boxes in TP. These arrays along with a confidence threshold and the

dimension h×w of images in the dataset are passed to the SRI function presented

in algorithm 3.1. How the function computes the SRI is explained in the following

paragraph.

First, three arrays with the dimension h×w (equal to the size of images in

3.1 Spatial Recall Index for Object Detection 47

Algorithm 3.1 SRI (Spatial Recall Index for one category)

Input: thrc ⊲ pre-set confidence threshold for evaluation
Input: h,w ⊲ height h and width w of images in the dataset
Input: GT ∈ R

K×4
⊲ K ground truth bbox coordinates GTk of size 1× 4

Input: TP ∈ R
M×4

⊲ M true positive bbox coordinates TPm of size 1× 4

Input: S ∈ R
M×1

⊲ M scores Sm of TPs in TP

Input: GTM ∈ R
K×1

⊲ K indexes GTMk of TPs in TP that match ground truth
bboxes GTk in GT , while the elements GTMk are 0 for unmatched GTk

Output: SRI ∈ R
h×w

⊲ Spatial Recall Index for images of size h×w

function sri(GT ∈ R
K×4, TP ∈ R

M×4,GTM ∈ R
K×1,S ∈ R

M×1, thrc,h,w)
GTD← 0h×w ⊲ initialization of array for ground truth distribution
TPD← 0h×w ⊲ initialization of array for true positive distribution
SRI← 0h×w ⊲ initialization of array for SRI
for k = 1, ...,K do ⊲ number of iterations equals number of gt bboxes

GTD(x,y)← GTD(x,y) + 1 ∀ (x,y) ∈ GTk ⊲ increment pixels of GTk
if GTMk > 0 then ⊲ check for a matching TP

n← GTMk ⊲ k-th element is index of TP in TP that matches GTk
if Sn > thrc then ⊲ check if score exceeds confidence threshold

TPD(x,y)← TPD(x,y) + 1 ∀ (x,y) ∈ [TPn ∩GTk] ⊲ add intersec.
end if

end if

end for

SRIh×w(x,y)← TPDh×w(x,y)⊘GTDh×w(x,y) ∀ GTDh×w(x,y) > 0

return (SRI)

end function

the dataset) are initialized with zeros. The arrays GTD and TPD refer to the

Ground Truth Distribution and True Positive Distribution, respectively, and the

array SRI is the Spatial Recall Index returned by the function. A loop, whose

number of iterations equals the number of ground truth bounding boxes GTk,

increments in each iteration the pixels that belong to GTk by 1 in the Ground

Truth Distribution GTD. In other words, the pixels or elements in GTD that are

within the respective ground truth bounding box (x,y ∈ GTk) are incremented

by 1. Moreover, in each iteration, an if statement checks whether there is a

TP (if GTMk > 0) that matches the ground truth bounding box GTk. If this is

false, the function proceeds with the next iteration and thus the next ground

truth bounding box. If this is true, however, the detection’s score Sn (indexed

by n = GTMk) is accessed from S and another if-statement checks whether it

exceeds the pre-set confidence threshold (if Sn > thrc). If this is also true, the

respective detection TPn (also indexed by n = GTMk) is accessed from the array

TP in order to compute the intersection area TPn ∩GTk. Then, the pixels of this

particular area (i.e. all pixels that are within the intersection area) are incremented

48 The Spatial Recall Index

by 1 in the TPD (i.e. ∀ (x,y) ∈ [TPn ∩GTk]).

Finally, after the process is carried out for each regular ground truth bounding

box GTk, the array GTD(x,y)h×w represents for each pixel x,y (within h×w)

how often it is part of a ground truth bounding box in the given dataset, whereas

the array TPD(x,y)h×w represents for each pixel x,y how often it is located

within an overlap area TPn ∩GTn. The total number of valid TPs that flow into

the computation after suppressing the detections whose scores don’t exceed

the given confidence threshold may be denoted by N. Finally, an element-wise

devision GTD(x,y)h×w ⊘ TPD(x,y)h×w denoted by the Hadamard division ⊘

for pixels x,y that are larger than 0 in the denominator (i.e. pixels that belong

to at least one ground truth bounding box GTk) results in the SRI(x,y)h×w

returned by the function. Here, it is import to highlight again that the True

Positive Distribution in the numerator is based on the intersection area of the TPs

rather than the entire area of the TP bounding boxes. The purpose of this is to

penalize inaccurate detections regardless of the pre-defined IoU threshold used

for evaluation.

The SRI for one category on a dataset with images of size h×w may now be

defined in mathematical terms. To this end, all N TPs for one category accumu-

lated from the results of the "greedy" matching algorithm in the aforementioned

manner along with the respective Ps that they match are defined as N bounding

box pairs

(

(GT)n, (TP)n
)

∈

{

(GT ,BBdt)

∣

∣

∣

∣

∣

IoU
(

(GT)k, (BBdt)j
)

> thrIoU,

score(BBdt)j > thrconfidence

}

. (31)

As explained before in algorithm 2.4, these bounding box pairs are only valid if

they exceed a pre-defined IoU threshold thrIoU. Moreover, as shown in algorithm

3.1, the bounding box pairs are limited by considering only detection bounding

boxes (BBdt)j whose scores scr(BBdt)j exceed a pre-defined confidence threshold

thrc. As mentioned above, the total number of TPs without a lower limit of

acceptable scores, which is taken as input by the function in algorithm 3.1, is

denoted as M and the suppression of detections beyond the given threshold

(within the function) eventually results in N remaining TPs and thus in N valid

bounding box pairs defined by equation 31. With these N bounding box pairs

consisting of TPn ∈ 1× 4 and GTn ∈ 1× 4 along with all K (regular) ground truth

bounding boxes GTk ∈ 1× 4, the SRI in mathematical terms is defined as

SRI(x,y) =

[

N∑

n=1

{
1 (x,y) ∈ [TPn ∩GTn]

0 else

]

⊘

[

K∑

k=1

{
1 (x,y) ∈ GTk

0 else

]

, (32)

with (x,y) ∈ [TPn ∩GTn] denoting all pixels x,y in h×w that belong to the

intersection area of the n-th bounding box pair
(

(GT)n, (TP)n
)

and (x,y) ∈ GTk

3.2 Spatial Recall Index for Instance Segmentation 49

(GT)n

(TP)n

(

(GT)n, (TP)n
)

∈

{

(GT ,BBdt)

∣

∣

∣

∣

IoU
(

(GT)k, (BBdt)j
)

> thrIoU,
score(BBdt)j > thrconfidence

}

+1 +1
+1 +1
+1 +1

SRIh×w =

N∑

n=1

h×w

⊘

K∑

k=1

(GT)k

+1 +1 +1
+1 +1 +1
+1 +1 +1

h×w
GT distribution

Figure 3.1: Schematic formula of the Spatial Recall Index for Object Detection.

denoting all pixels x,y in h×w that belong to the k-th ground truth bounding

box. The element-wise division denoted by the Hadamard division ⊘ divides

all pixels in the numerator by the respective pixels in the denominator with the

sole exception of those pixels in the denominator whose values are equal to 0,

meaning that the element-wise division is performed only with pixels in h×w

that belong to at least one ground truth bounding box GTk. For the sake of clarity,

a schematic formula of the SRI is presented in figure 3.1. It highlights in red

that for each one of the N valid bounding box pairs
(

(GT)n, (TP)n
)

only pixels

within the intersection area are incremented by 1 to construct the True Positive

Distribution TPDh×w in the numerator, whereas the Ground Truth Distribution

GTDh×w in the denominator is straightforwardly constructed by incrementing

the pixels within the ground truth bounding boxes GTk by 1 for each one of the

K ground truth bounding boxes.

3.2 Spatial Recall Index for Instance Segmentation

The SRI for instance segmentation extends the spatial performance assessment

in terms of accuracy compared to the process outlined in section 3.1. Instead of

computing pixel-wise Recall values with bounding box coordinates, the SRI is

computed based on binary masks. The implementation of the algorithm, however,

is very similar to the implementation described in section 3.1.

First, the outputs from the "greedy" matching function in algorithm 2.4 must

be accumulated. The matching function is applied to instance segmentation

instead of object detection, so the function’s outputs and thus the accumulation

process differ regarding the instances. Rather than accumulating bounding boxes

of the size 1× 4, binary masks of the size h×w need to be accumulated. More

specifically, instead of concatenating bounding boxes coordinates to the arrays

GT ∈ R
K×4 and TP ∈ R

M×4, binary masks of the size h×w are concatenated

to the arrays GT ∈ R
K×h×w and TP ∈ R

M×h×w, while K and M still denote the

number of Ps and TPs, respectively.

The SRI function for instance segmentation is conceptually similar to the SRI

50 The Spatial Recall Index

(a) Ground truth instance (b) True Positive instance

Figure 3.2: Example pair of a (a) ground truth instance and a (b) corresponding
True Positive instance located at the left side of an input image. It can
be seen that the segmentation (with a fairly high score of 0.9913) in (b)
is pretty precise with the exception of some minor inaccuracies such
as the segmentation of the right sight mirror. The IoU of this example
pair is 0.965.

function for object detection in algorithm 3.1. It loops through all K ground truth

masks GTk ∈ R
h×w in GT ∈ R

K×h×w and adds in each iteration the binary mask

to the Ground Truth Distribution GTDh×w. The binary masks have the same

dimension as the input images with values equal to 1 for pixels that belong to the

segmented object and values equal to 0 for the remaining pixels. Consequently,

by adding the binary mask to the GTD, the pixels that belong to the object are

incremented by 1. In each iteration the algorithm also checks whether or not

there is a TP mask that matches the ground truth mask with a score exceeding

the pre-defined confidence threshold. If this is false, the algorithm proceeds with

the next iteration. If this true, however, the intersection of the ground truth mask

GTk and the corresponding TP mask TPn is incremented by 1 in the True Positive

Distribution TPD. To this end, a binary mask of size h×w with values equal to

1 for all pixels that are 1 in both GTk and TPn and 0 for all remaining pixels is

added to the TPD. Finally, after the loop, the SRI is computed by an element wise

division of the TPD and GTD just like in algorithm 3.1.

In order to illustrate the SRI computation for instance segmentation, figure

3.2 shows exemplary a proper pair of a ground truth instance and corresponding

TP instance with an IoU of 0.965. The ground truth instance in figure 3.2 a is

located at the left side of an input image. The pixels that are equal to 1 in the

respective binary mask are colored in green. Analogously, the pixels that are

equal to 1 in the binary mask for the corresponding TP instance in figure 3.2 b

(outputted by the instance segmentation system) are colored in blue. It can be

seen that the segmentation is pretty precise with the exception of some minor

inaccuracies such as the segmentation of the right sight mirror.

The example instances in 3.2 a and 3.2 b are used to visualize the SRI com-

3.2 Spatial Recall Index for Instance Segmentation 51

Union

Intersection

(

(GT)n, (TP)n
)

∈

{

(GT ,BMdt)

∣

∣

∣

∣

IoU
(

(GT)k, (BMdt)j
)

> thrIoU,
score(BMdt)j > thrconfidence

}

+1 +1 +1
+1 +1 +1 +1
+1 +1 +1

SRIh×w =

N∑

n=1

h×w

⊘

K∑

k=1

(GT)k

+1 +1 +1
+1 +1 +1 +1
+1 +1 +1

h×w
GT distribution

Figure 3.3: Schematic formula of the Spatial Recall Index for Instance Segmenta-
tion.

putation schematically in figure 3.3. The numerator shows the union area (gray)

overlapped by the intersection area (red) of both instances. In order to increment

only pixels within the intersection area, a binary mask of the size h×w with

values equal to 1 in the intersection area and equal to 0 beyond the intersection

area is added to the TPDh×w. In the denominator, the binary mask of the ground

truth instance in figure 3.2 a is added to the GTDh×w, which obviously incre-

ments all pixels that belong to the object. Finally, the process is repeated with all

N pairs
(

(GT)n, (TP)n
)

in the numerator and all K ground truth instances in the

denominator before an element wise division of the resulting TPD and GTD is

performed to compute the SRIh×w.

In summary, the SRI proposed in this section is a metric for the performance

assessment of object detection and instance segmentation systems. It can be used

to evaluate the system’s performance in dependency of the spatial positions of

objects in the input images. To this end, the SRI evaluates the performance of an

object detection or instance segmentation system on a dataset with images of the

size h×w by assigning a Recall value to each pixel of a two dimensional matrix

with the same size as the dataset’s images. Inaccuracies are penalized by taking

only intersection areas rather than entire TP areas into account. FPs, on the other

hand, are not directly penalized. However, a reasonable confidence threshold for

a potential deployment of the object detection or instance segmentation system

may be set based on the common evaluation metrics such as the MR vs. FPPI

introduced in section 2.3. All detections or instance segmentations with a score

beyond the pre-set confidence threshold don’t flow into the SRI computation.

53

4 Evaluating defocus conditions

This section describes the evaluation of Computer Vision systems in the field

of Autonomous Driving under simulated effects of defocus. The objectives are

to make the defocus conditions physically realistic and to evaluate the impact

they may have on the performance of Computer Vision systems as accurately

as possible. Since optics of cameras are always spatial variable in the field of

view, simulating realistic defocus conditions leads to varying effects of defocus at

different spatial positions. Hence, the performance of Computer Vision systems

must be assessed by taking the spatial dimension into account. To this end, the

performance is evaluated not only with standard evaluation metrics described in

section 2.3.2 but also with the SRI introduced in section 3.

First, it must be addressed how to simulate real-world driving scenes in

order to evaluate the performance of state-of-the-art Computer Vision systems

in the field of Autonomous Driving. This is a challenging task in and of itself as

it requires to reproduce all kinds of scenes, weather conditions, surroundings,

etc. that a Computer Vision system might encounter. Moreover, the scenes

must be labeled in order to be able to evaluate the performance of Computer

Vision systems that operate in these scenes. The most feasible option is to

rely on professionally developed Autonomous Driving datasets such as those

presented in table 2.1. The approach in this work is to select datasets that contain

appropriately labeled data and whose specifications fit the statistical requirements

of the evaluation. Section 4.1 describes the considerations in selecting the datasets.

Thereafter, section 4.2 presents state-of-the-art Computer Vision systems

that are used for evaluation. Object detection and instance segmentation are

considered and the focus is on pedestrians and cars. The overall aim here is to

provide a solid baseline performance on the selected datasets in these tasks.

Then, section 4.3 shows how images of the selected datasets are manipulated

in order to provide degraded datasets with spatially different defocus conditions

for the evaluation. Several degraded datasets are produced in order to compare

the performance under different effects of defocus with the baseline performance

evaluated on the original datasets.

Finally, section 4.4 presents the experimental setup with which the perfor-

mances of object detection and instance segmentation systems under effects of

defocus are evaluated both with standard metrics and the SRI.

54 Evaluating defocus conditions

4.1 Selection of datasets

With the growing research interest in self-driving cars, Autonomous Driving

datasets have received increasing research attention in the recent decade. Various

widely used datasets are listed in table 2.1. While many of these datasets such as

CityPersons and EuroCity Persons are solely person detection datasets, others like

CityScapes and BDD100K contain multiple labeled objects besides persons such

as vehicles, traffic signs and traffic lights [33, 34, 32, 36]. This work focusses on

pedestrians and cars, so one selection criterium is the availability of labeled data

for these two categories. Moreover, object detection and instance segmentation are

subjects of this work, so labeled data must come with bounding box coordinates

and more complicated annotations for instance segmentation.

Further selection criteria are the number of pedestrians and cars as well as

the diversity of scenes. These statistical aspects play an important role in the

performance evaluation under effects of defocus, especially with regards to spatial

performance assessments. For object detection, the Berkeley Deep Drive dataset

(BDD100K) is chosen as it scores high in the two aforementioned criteria. It

contains 100k images that are extracted from 100k different video scenes captured

in various cities throughout the United States [36]. The dataset contains more

than 1M cars and 135,732 persons (pedestrians and riders), which even surpasses

the number of persons that are labeled in person detection datasets such as KITTI

and CityPersons [36]. Only the average number of persons per image is with

approximately 1.2 lower than CityScapes and KITTI because the BDD100k dataset

also contains non-city scenes such as highways [36]. However, on the other hand

non-city scenes contribute to the scene diversity.

In fact, the diversity is besides the scale a distinct feature of the BDD100K

dataset [36]. Each image in the dataset is tagged with three labels specifying the

weather, time of the day, and scene type, respectively. The diversity of scenes

ranges from city streets over tunnels, residential areas and parking lots to gas

stations. Various weather conditions occur during these scenes, which are labeled

by "clear", "rainy", "snowy", "cloudy", "foggy" and "overcast". Finally, images

are collected in three distinct times of day labeled by "daytime", "night" and

"dawn/dusk".

The individual objects are flagged with two boolean labels "occluded" and

"truncated", indicating the object’s visibility. The former, "occluded", indicates

whether or not an object is partly covered by other parts in the image, whereas

the latter, "truncated", indicates whether the entire object is within the image

or only parts of it. Table 4.1 presents the instance statistics for pedestrians and

cars in the BDD100K training and validation set with respect to the times of day

and the object’s visibilities. The percentage of instances that are occluded and

truncated indicate how challenging the dataset is. Roughly 58% of pedestrians

and roughly 68% of cars are occluded in the training and validation set. Moreover,

4.1 Selection of datasets 55

Subset Time of day # Images # Pedestrians (o/t/f) # Cars (o/t/f)

Train all 69, 863 92, 159 (58% / 3% / 40%) 700, 703 (68% / 9% / 25%)

Train daytime 36, 728 66, 724 (60% / 3% / 38%) 402, 222 (71% / 9% / 23%)

Train night 27, 971 19, 015 (54% / 3% / 44%) 242, 241 (63% / 9% / 29%)

Train dawn/dusk 5, 027 6, 352 (54% / 3% / 43%) 55, 443 (70% / 9% / 24%)

Train undefined 137 68 (63% / 4% / 32%) 797 (65% / 13% / 28%)

Val all 10, 000 13, 425 (58% / 3% / 39%) 102, 837 (69% / 9% / 25%)

Val daytime 5, 258 9, 476 (59% / 3% / 39%) 58, 283 (71% / 9% / 23%)

Val night 3, 929 2, 882 (56% / 3% / 42%) 35, 751 (65% / 9% / 28%)

Val dawn/dusk 778 1, 060 (57% / 3% / 40%) 8, 649 (69% / 9% / 25%)

Val undefined 35 7 (57% / 14% / 29%) 154 (59% / 8% / 34%)

Table 4.1: Statistics for pedestrians and cars in the BDD100K train and val
set with respect to the times of day and the object’s visibility (oc-
cluded/truncated/fully visible).

the percentage of pedestrians and cars that are truncated are approximately 3

and 9, respectively. Only about 25% of cars and roughly 40% of pedestrians are

neither occluded nor truncated and thus fully visible.

In summary, the large-scale BDD100K dataset with its scene diversity is chosen

for object detection as statistical aspects such as the number of instances and

the object’s spatial distribution in the images play important roles in this work.

Labels for instance segmentation, however, were during the practical work on

this thesis not yet released by the BDD100K dataset, so the evaluation is extended

to the CityScapes datasets. It is captured in various cities in Germany and

Switzerland during daytime and provides fine-grained instance-level semantic

labels for persons, cars and six additional categories. Table 4.2 shows its instance

statistics with regards to pedestrians and cars. Note, just like the BDD100K

dataset, CityScapes makes a distinction between pedestrians and riders. The

number of pedestrians in table 4.2 only refers to the former.

Subset # Images # Pedestrians # Cars

Train 2, 975 17, 395 26, 180

Val 500 3, 278 4, 524

Table 4.2: Statistics for pedestrians and cars in the CityScapes train and val set.

56 Evaluating defocus conditions

4.2 Selection of Computer Vision Algorithms

The overall goal in the selection of Computer Vision algorithms is to provide a

solid baseline performance in object detection and instance segmentation on the

selected datasets for the respective tasks. Moreover, the selection is based on two

criteria, namely (1) that the selected systems are trained on different datasets than

the datasets used for evaluation, and that (2) the systems can be applied on the

selected datasets without any modifications. The reasons for that are described

in the following paragraph.

A statistically reliable evaluation in dependency of spatial positions in the

input images by the SRI metric requires large amounts of data. However, datasets

usually don’t release ground truth labels for test sets due to Computer Vision

challenges, so only labeled data for training and validation sets are available.

This applies also to the BDD100K and CityScapes datasets. This means according

to the explanation in section 2.2 that for a system trained with the training and

validation set of, say, the BDD100K dataset, a performance evaluation that is

representative of the performance on unseen data with this dataset is due to the

lack of annotations in the test set not possible. Finally, a Computer Vision system

with a solid baseline performance on a given dataset on which it is not trained

ensures that it doesn’t overfit the idiosyncrasies of the selected dataset. This, in

turn, makes the evaluation under effects of defocus more reliable, because for

a Computer Vision system trained on a different dataset, the original dataset

(for baseline evaluation) as well as the degraded datasets (for evaluations under

effects of defocus) are completely new, unseen data.

Two Computer Vision systems are used for evaluation: HTC and Cascade

Mask R-CNN. Their architecture are explained in section 2.1.5. The former, HTC,

is used for pedestrian detection on the BDD100K dataset and the latter, Cascade

Mask R-CNN, is used for object detection and instance segmentation for the

category "car" on BDD100K and CityScapes, respectively.

4.2.1 Hybrid Task Cascade

As shown in table 2.1, pedestrian detection received widespread research attention

in recent decades with many Autonomous Driving datasets focussing solely on

pedestrians. To provide a solid baseline performance in pedestrian detection,

it is thus reasonable to rely on a system trained specifically for the detection

of pedestrians. On the Papers with Code website, an open source community

project lead by Facebook AI Research, the Pedestron repository is ranked number

1 on two of the pedestrian detection datasets listed in table 2.1: Caltech and

CityPersons [44, 45]. It provides multiple detection systems trained on various

pedestrian detection datasets and is thus well suited for the evaluation in this

work. With the Precision vs. Recall metric explained in section 2.3.2, Pedestron’s

4.2 Selection of Computer Vision Algorithms 57

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Detection System w/ backbone CNN (trained on)

Hybrid Task Cascade w/ ResNeXt (CityPersons)

RetinaNet w/ ResNeXt (CityPersons)

Cascade Mask R-CNN w/ HRNet (CrowdHuman)

RetinaNet w/ guided anchoring w/ ResNeXt (CityPersons)

Cascade Mask R-CNN w/ HRNet (CityPersons)

Cascade Mask R-CNN w/ MobileNet (CityPersons)

Cascade Mask R-CNN w/ HRNet (EuroCity Persons)

Faster R-CNN w/ HRNet (CityPersons)

Faster R-CNN w/ HRNet (EuroCity Persons)

Average Precision

0.57979

0.54004

0.53403

0.49841

0.49772

0.49149

0.48894

0.4879

0.464

Figure 4.1: Evaluation of systems from the Pedestron repository [44] on the
BDD100k validation set. The IoU threshold for the computation of
the Precision vs. Recall curves is set to 0.5.

detection systems are evaluated on all 10k images of the BDD100K validation set,

which according to table 4.1 consists of 13, 425 pedestrians. The IoU threshold

for the Precision vs. Recall computation is set to 0.5.

Figure 4.1 shows that HTC performs best on the BDD100K dataset. It is

important to note, though, that HTC is trained on CityPersons, a dataset that

consists only of images during daytime. Moreover, it labels pedestrians differently

than the BDD100K dataset. Instead of drawing bounding boxes around the

visible parts of pedestrians, which is the approach in the BDD100K dataset, the

CityPersons dataset includes also occluded parts of pedestrians in the scope of

bounding boxes. This may lead to FPs for occluded pedestrians in the BDD100K

dataset, which by CityPersons’ standatds are actually correctly detected.

Therefore, the baseline performance of HTC shown in figure 4.2 is evaluated

only on fully visible pedestrians in daytime images of the BDD100K training set

by ignoring pedestrians with the flag "occluded" or "truncated". According to

table 4.1 fully visible pedestrians account for approximately 40% of pedestrians

in the dataset. Figure 4.2 a presents the Precision vs. Recall curves for various

bounding box area ranges evaluated with an IoU threshold of 0.5 and figure 4.2 b

shows additional Precision vs. Recall curves evaluated for all bounding box area

ranges with different IoU thresholds.

With an average precision of 72.9% on all fully visible pedestrians of daytime

images in the BDD100K training set computed with an IoU threshold of 0.5, HTC

serves as solid benchmark for the evaluation in this work. Figure 4.2 a shows also

that the performance for large and medium-sized bounding boxes are very high

and that the slope of the curve for the overall performance is mostly due to small

bounding boxes.

58 Evaluating defocus conditions

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

Area Range

large

medium

all

small

Average Precision

0.95205

0.88109

0.72887

0.46481

(a) Area Ranges (IoU threshold = 0.5)

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

IoU threshold

0.5

0.6

0.7

0.8

0.9

Average Precision

0.72887

0.65929

0.48191

0.19736

0.01983

(b) IoU thresholds (all area ranges)

Figure 4.2: Baseline object detection performance of HTC with backbone ResNeXt
(trained on CityPersons) evaluated for the category "pedestrian" with
the Precision vs. Recall curve on a subset (images with the flag
"daytime") of the BDD100k training set. Only fully visible "pedestrian"
bounding boxes are considered by ignoring instances with the flag
"occluded" or "truncated". Bounding box area ranges in (a) are defined
as small = [0, 322]px, medium = [322, 962]px and large = [962,∞]px.

4.2.2 Cascade Mask R-CNN

Similar to pedestrian detection, car detection received widespread research at-

tention. However, none of the most widely used Autonomous Driving datasets

focusses solely on cars. Instead, labels for cars in Autonomous Driving datasets

are usually among labels for various other objects such as pedestrians, traffic

signs and other vehicles, so publicly released Computer Vision are rarely trained

solely for car detection (see table 2.1).

In this work, Cascade Mask R-CNN X152 from Facebook’s Detectron2 repos-

itory is chosen [2, 6]. It is trained on COCO for object detection and instance

segmentation and meets all criteria applied before: Firstly, it is neither trained

on BDD100K nor on CityScapes and, secondly, it is capable of detecting and

segmenting cars [6, 38]. Finally, it generalizes well, which can be seen on the

evaluation results for car detection on daytime images of the BDD100K training

set in figure 4.3. The baseline evaluation follows that of HTC in figure 4.2 with

the sole exception that all objects are considered instead of only fully visible ones,

which makes a total of 402, 222 car instances in 36, 728 images (see table 4.1).

Just like HTC, Cascade Mask R-CNN performs well for medium-sized and

large bounding boxes, while the overall performance is mostly impaired by small

bounding boxes. Still, the overall performance in the evaluation with an IoU

threshold of 0.5 is with 78.7% very high, considering that in daytime images of

the BDD100K dataset 71% of cars are occluded and 23% of cars are truncated (see

4.2 Selection of Computer Vision Algorithms 59

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

Area Range

large

medium

all

small

Average Precision

0.95837

0.9115

0.78795

0.59015

(a) Area Ranges (IoU threshold = 0.5)

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

IoU threshold

0.5

0.6

0.7

0.8

0.9

Average Precision

0.78795

0.70999

0.58653

0.41068

0.16806

(b) IoU thresholds (all area ranges)

Figure 4.3: Baseline object detection performance of Cascade Mask R-CNN
(trained on COCO) evaluated with the Precision vs. Recall curve on a
subset of the BDD100k training set (images with the flag "daytime").
Bounding box area ranges in (a) are defined as small = [0, 322]px,
medium = [322, 962]px and large = [962,∞]px.

table 4.1). The average precision for medium-sized and large car bounding boxes

computed with an IoU threshold of 0.5 is 91.1% and 95.8%, respectively.

For the sake of completeness, the baseline performance of Cascade Mask

R-CNN is also shown for instance segmentation in figure 4.4. The Precision vs.

Recall curves are evaluated for the category "car" on the CityScapes training

and validation set, which according to table 4.2 consists in total of 2, 975+ 500 =

3, 475 images with 26, 180+ 4, 524 = 30, 704 labeled cars. The overall instance

segmentation performance of Cascade Mask R-CNN evaluated with an IoU

threshold of 0.5 is with an Average Precision of 68.8% about 10% below the

Average Precision computed with the same IoU threshold for object detection

before (cf. figure 4.3 and 4.4). To provide additionally a comparison between

the object detection and instance segmentation performance on the same data,

the dashed lines in figure 4.4 represent the object detection performances of

Cascade Mask R-CNN on the CityScapes dataset. Dashed and continuous lines

with the same colors indicate that the respective Precision vs. Recall curves

for object detection and instance segmentation result from the same evaluation

settings in terms of the IoU threshold and area ranges. The object detection

performances exceed the corresponding instance segmentation performances in

all cases, while the largest performance differences can be observed for small

instances in figure 4.4 a.

60 Evaluating defocus conditions

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

Area Range

large

medium

all

small

Average Precision

0.96464

0.81113

0.68854

0.31414

(a) Area Ranges (IoU threshold = 0.5)

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

IoU threshold

0.5

0.6

0.7

0.8

0.9

Average Precision

0.68854

0.62629

0.54076

0.41699

0.20104

(b) IoU thresholds (all area ranges)

Figure 4.4: Baseline instance segmentation performance of Cascade Mask R-CNN
X152 (trained on COCO) evaluated for the category "car" with the
Precision vs. Recall curve on a the CityScapes training and validation
set. As a comparison, the corresponding curves for object detection
are plotted with the same colors in dashed lines. Area ranges of
instance level semantic labels (and bounding boxes) in (a) are defined
as small = [0, 322]px, medium = [322, 962]px and large = [962,∞]px.

4.3 Image Degradation

With the selection of datasets and Computer Vision algorithms in section 4.1

and 4.2, respectively, the ground work for the evaluation in this thesis is done.

A solid baseline performance for object detection and instance segmentation

on a large number of challenging driving scenes is provided. The main topic,

however, is to examine if and how the performance of these Computer Vision

systems in real world driving scenes changes under realistic defocus conditions.

More specifically, the goal is to evaluate the performance in object detection and

instance segmentation under different effects of defocus in comparison with the

respective baseline performance. To this end, the chosen datasets are degraded

with the use of an optical model that simulates a realistic optical lens and which

allows for parameterization to simulate different effects of defocus. On the basis

of section 2.4, the optical model is briefly explained in section 4.3.1 and the image

degradation is presented under the name "Defocus Study" in section 4.3.2.

4.3.1 Optical Model

With the commercial software OpticStudio by Zemax, a so-called Cooke-Triplet,

which is a three-element lens configuration, is simulated. For images of the

BDD100K dataset, whose resolution is 1280× 720, a setup with f#2.8, focal length

12.5mm, pixel size 4.46µm and diagonal FOV= ±25◦ is applied. For images

4.3 Image Degradation 61

of the CityScape dataset, whose resolution is 1024× 2048, a setup with f#2.2,

focal length 25mm, pixel size 4.84µm and FOV= ±25◦ is established. Section

4.3.2 describes how these optical models are used to simulate different defocus

conditions and degrade images of the BDD100K and the CityScapes accordingly.

4.3.2 Defocus Study

As mentioned in section 2.4, the simulated lens models allow the parametrization

of Zernike-Coefficients. These Zernike-Coefficients describe the wavefront profile

with every individual coefficient representing a different type of aberration [43].

One of these coefficients is the defocus coefficient Z0
2 [43]. In order to simulate

different defocus conditions, this particular coefficient is parameterized by adding

a constant offsets ranging from −1.25 to +1.25. More specifically, the offsets Z∆

are added to the defocus coefficient Z0
2 in Zernike space by

Z̃0
2 = Z0

2 +Z∆ , Z∆ ∈ {−1.25,−0.75,−0.5, 0,+0.5,+0.75,+1.25} ,

where Z∆ = 0 refers to the nominal position with no offset being added. It is im-

portant to note, though, that even without offset, i.e. with Z∆ = 0, the simulated

lens already shows a spatially dependent defocus Z0
2 due to the field curvature.

The offset then adds or cancels the original contribution that the field curvature of

the lens (with Z̃ = Z0
2 + 0) has on the wavefront error, leading to different results

with regards to the optical performance and basically simulating the effect that

may be observed on real lenses in mass production where production tolerances

cannot be prevented.

From the different parameterizations, which result in different wavefront

errors, different sets of PSFs are derived via Fourier transformation. Finally, the

PSFs are used to degrade the images of the datasets, which ultimately leads to

seven degraded datasets for the nominal position as well as six different offsets

Z∆ between the extrema Z∆ = ±1.25 as shown above. To be precise, the daytime

images of the BDD100K validation set are degraded for the whole range of offsets,

whereas the degradation of daytime images of the BDD100K training set as well

as the images of the CityScapes training and validation set are only done for the

nominal positions and the extrema Z∆ = ±1.25. The purpose is to first show

the defocus study in its entirety on small data with the BDD100K validation

subset, then improve statistics in the evaluation for object detection on larger data

with the BDD100K training subset but only for selected Z∆ ∈ {−1.25, 0,+1.25},

and finally extend the evaluation to instance segmentation with the CityScapes

dataset for the same selected offsets.

To compare the performance of Computer Vision systems on the degraded

datasets with the optical performance of the lens model and thus the spatially

varying quality of images, the underlying PSFs are displayed as Full Width Half

62 Evaluating defocus conditions

Maximum (FWHM) maps. To this end, the directional components x and y of the

two-dimensional metric are reduced to one component by taking the magnitude

of both components and compute the total FWHM of a spatial position in h×w

by

FWHMtotal =

√

FWHM2
x + FWHM2

y .

Larger FWHM numbers for a spatial position in h×w indicate, simply put, that

the degree of spreading in the spatially varying PSF at this point is more intense,

which in turn refers to more aberration and less optical performance (see section

2.4). Figure 4.5 shows the FWHM maps from the PSFs of the optical model used

to degrade images from the BDD100K dataset with parametrization Z̃0
2 = Z0

2+Z∆

for three offsets Z∆ ∈ {−1.25, 0,+1.25} and presents in comparison one of the

images in the dataset that is degraded with the respective PSF.

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

FWHM_mean=0.0108

heat_map_from_1D
defocus_-1p25_rgb.PSF.npy FWHM_total0p1

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

12.0

10.0

8.0

6.0

4.0

2.0

0.0

Width [px]

H
ei

g
h

t
[p

x
]

F
u

ll
W

id
th

H
alf

M
ax

im
u

m

(a) FWHM map: Z∆ = −1.25 (b) Degraded image: Z∆ = −1.25

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

FWHM_mean=0.007

heat_map_from_1D
defocus_nominal_new_rgb.PSF.npy FWHM_total0p1

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

12.0

10.0

8.0

6.0

4.0

2.0

0.0

Width [px]

H
ei

g
h

t
[p

x
]

F
u

ll
W

id
th

H
alf

M
ax

im
u

m

(c) FWHM map: nominal position (d) Degraded image: nominal position

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

FWHM_mean=0.0069

heat_map_from_1D
defocus_1p25_rgb.PSF.npy FWHM_total0p1

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

12.0

10.0

8.0

6.0

4.0

2.0

0.0

Width [px]

H
ei

g
h

t
[p

x
]

F
u

ll
W

id
th

H
alf

M
ax

im
u

m

(e) FWHM map: Z∆ = +1.25 (f) Degraded image: Z∆ = +1.25

Figure 4.5: Comparison of FWHM maps and degraded images of the BDD100K
dataset for defocus with offsets Z∆ ∈ {−1.25, 0,+1.25}.

The FWHM maps in figure 4.5 are a clear indication of how the optical

performance of the lens model differs spatially and where in the images the

4.3 Image Degradation 63

(a) Original (b) Z∆ = −1.25 (c) Z∆ = 0 (d) Z∆ = +1.25

(e) Original (f) Z∆ = −1.25 (g) Z∆ = 0 (h) Z∆ = +1.25

Figure 4.6: Regions of interest in degraded images of the BDD100K dataset for
defocus with offsets Z∆ ∈ {−1.25, 0,+1.25} in figure 4.5 b, d, and f,
respectively, in comparison with the respective region in the original
image. The person in (a-d) is located at the center and the person in
(e-h) is located at the right side of the images in figure 4.5.

quality is most impaired after applying the model on a given dataset. Again,

larger FWHM values refer to more aberration, so warmer colors correspond to

lesser optical performance. For the nominal position in figure 4.5 c (i.e. for

Z∆ = 0), almost exclusively edge locations of the images are affected by the

degradation. The degradation with defocus offset Z∆ = +1.25, on the other hand,

affects mostly the center of the images, while the overall optical performance of

the model with this parameterization is much worse compared to the nominal

position, which therefore also affects edge locations. Finally, the degradation with

offset Z∆ = −1.25 results in more aberration at the edges while also affecting

central positions of the images.

These effects are clearly visible in the regions of interest in figure 4.6. Figure

4.6 a-d shows the person at the center and figure 4.6 f-h shows the person at the

right side of the images in figure 4.5 b, d, and f, respectively. In short, the person

at the center is most blurred for defocus with offset Z∆ = +1.25, whereas the

quality of this region is only little affected by the model in nominal position. The

person in the right corner of the image is blurred in all degraded images, but

most heavily for offset Z∆ = −1.25.

In summary, the image degradation sketched in this section leads to images

with spatially varying image quality. By parameterizing the optical model de-

scribed in section 4.3.1 in the aforementioned way, images become, simply put,

more blurred towards the edges for negative (see figure 4.5 a) and more blurred

towards the center for positive (see figure 4.5 e) defocus offsets Z∆, while the

model’s nominal position basically only affects edge locations of the images.

It goes without saying that increasing positive and decreasing negative offsets

towards the extrema Z∆ = ±1.25 gradually decreases the optical performance of

64 Evaluating defocus conditions

the model and thus the quality of degraded images. FWHM maps are therefore

only shown for Z∆ ∈ {−1.25, 0,+1.25}, from which the nominal position Z∆ = 0

represents the PSF of the optical model without manipulating Z0
2.

Note that the image degradation of the CityScape dataset differs with respect

to the image size but shows similar results in terms of the optical performance.

Therefore, it is not necessary to show further FWHM maps for the underlying

PSFs used to degrade images from the CityScapes dataset.

4.4 Experimental Setup

The following sections describe the experimental setup for performance evalua-

tions of Computer Vision systems selected in section 4.2 on datasets chosen in

section 4.1 in comparison with respective degraded datasets produced in section

4.3. First, in section 4.4.1, the test of object detection and instance segmentation

systems on the given datasets is described. Then, in section 4.2.2, the standard

performance evaluation is shown. Here, the results from the test in the first stage

are used to evaluate the overall performance for different defocus conditions in

comparison with the baseline performance using the Precision vs. Recall and MR

vs FPPI metrics explained in section 2.3. Finally, in section 4.4.3, spatial perfor-

mance evaluations with the SRI metric proposed in section 3 are described. The

focus here is on statistical considerations with regards to performance evaluations

in dependency of spatial positions in the input images.

4.4.1 Test on Datasets

The approach to test a Computer Vision system on a given dataset is to first

convert the dataset’s ground truth data into a JSON file in COCO annotation

format, then run through all image names listed in the formatted JSON file and

perform object detection or instance segmentation on these images while also

producing an additional JSON file with results [38]. The confidence threshold

of the respective system must be decreased to 0 in order not to suppress any

output, so that subsequent evaluations with the Precision vs. Recall and MR vs

FPPI metrics take into account the whole range of confidence thresholds (see

section 2.3).

The ground truth data in COCO annotation format are listed in three different

sections: "images", "categories", and "annotations". The former is a list of all image

names in the dataset, which are assigned individual image IDs. For the BDD100K

dataset, each image name may additionally be accompanied by labels regarding

the driving scene, time of day and whether (see section 4.1). The second section,

"categories", is a list of all categories labeled in the dataset. Just like the image

names, the category names are assigned individual IDs, which must be done

in accordance with the category IDs outputted by the Computer Vision system.

4.4 Experimental Setup 65

Finally, the last section, "annotations", is a list of ground truth data for individual

objects in the dataset. Each individual object in the list "annotations" is assigned

to an image ID representing the image name in "images" in which the object

occurs, a category ID representing the category of the object in "categories", an

individual annotation ID as well as bounding box coordinates and/or an instance

level semantic label for object detection and instance segmentation, respectively.

For the BDD100K dataset, each object may additionally be assigned a binary label

for "occluded" and "truncated" in order to be able to later evaluate only specific

objects with regards to their visibility.

The test on a given dataset basically runs through all image names in the

ground truth data’s "images" section, performs object detection and/or instance

segmentation on each image, and outputs the results in a JSON file, where each

output represents depending on the task either bounding box coordinates or a

binary mask (or both) and comes with a score, an image ID and a category ID

from which the IDs correspond to the assignments in the ground truth data.

The JSON files for ground truth data and associated object detection or

instance segmentation results contain all information required to evaluate indi-

vidual images and categories as shown in algorithm 2.4 and accumulate these

results for further evaluations with standard metrics and the SRI.

4.4.2 Standard performance evaluation

The performance evaluation sketched here is based on the standard evaluation

metrics described in section 2.3. The basic idea is as follows: First, the baseline

performance on original images of a selected dataset is evaluated, next the

performance evaluation is performed on the degraded datasets produced by

applying the optical model with different parameterizations on these same images,

and finally the performance differences between all test cases, i.e. the differences

between the baseline performance and the performance on all degraded datasets,

are observed. Here, the degraded datasets are differentiated by the defocus offset

Z∆ used to parameterize the underlying optical model for the image degradation.

In order to accurately monitor potential performance differences between all

test cases, the concepts described in section 2.3 are used to run the evaluate for

all instances as well as separately for various instance area ranges (by ignoring

instances with sizes beyond the given area range). This is useful to verify, for ex-

ample, if performance differences occur only for small instances. Following usual

benchmarks for object detection and instance segmentation, an IoU threshold of

0.5 is used for the evaluation.

HTC with backbone ResNeXt trained on CityPersons is used for the evaluation

of pedestrian detection on imaged of the BDD100K dataset. Cascade Mask R-CNN

X152 trained on COCO is used for car detection and segmentation on images

of the BDD100K and CityScapes dataset, respectively. For reasons mentioned

66 Evaluating defocus conditions

BDD100K
Subset

Fully visible pedestrians # Cars

all small medium large all small medium large

Train, daytime 25, 450 10, 524 13, 098 1, 828 402, 222 183, 163 145, 243 73, 816

Val, daytime 3, 651 1, 455 1, 908 288 58, 283 26, 717 21, 081 10, 485

Table 4.3: Selection of data from the BDD100K train and val set and correspond-
ing statistics about fully visible pedestrians and cars with respect to
bounding box area ranges. Bounding box area ranges are defined as
small = [0, 322]px, medium = [322, 962]px and large = [962,∞]px. The
total number of daytime images in the train and val set are 36, 728 and
5, 258, respectively (see table 4.1).

in section 4.2.1, only fully visible pedestrians are considered for the evaluation

of HTC, while all car instances are taken into account for the evaluation of

Cascade Mask R-CNN. This setup results in a solid baseline performance for

both pedestrian and car detection as shown in figure 4.2 and 4.3, respectively.

First, the overall object detection performance of both systems is evaluated

with the Precision vs. Recall curve on daytime images from the BDD100K

validation set for the whole range of defocus offsets. Then, to improve statistics,

the object detection performance is evaluated on daytime images of the BDD100K

training set, but only for selected defocus offsets Z∆ ∈ {−1.25, 0,+1.25} (i.e.

extrema and nominal position). Here, the evaluation is extended to the MR

vs. FPPI metric by considering the following situation: In practice, a system

is deployed with a confidence threshold, whose choice in terms of the MR

vs. FPPI metric is essentially a trade-off between an acceptable FP rate and a

sufficiently low MR (see section 2.3.2). Simply put, the confidence threshold set for

deployment refers to the choice of sensitivity for how high the score needs to be to

produce a detection. It is based on the performance evaluated on certain images

of datasets, but the quality of images may change with production tolerances

of lenses, which is essentially what is simulated with the image degradation in

section 4.3. Consequently, to evaluate the performance differences for specific

choices of confidence thresholds, which, again, simulate operating points for

a potential deployment, the thresholds must be based on FP rates evaluated

on the original dataset. And the same confidence thresholds must be used in

the evaluation on degraded images to monitor how the performance changes

under effects of defocus for these particular operating points. Therefore, the

choices of confidence thresholds are based on specific FPPI values from the

baseline performance. For safety-critical automotive applications, the FP rate per

image must be sufficiently low, so FPPI ∈ {10−3, 10−2, 10−1} are considered (cf.

Pezzementi et al. [39]).

Finally, the evaluation with the standard metrics is also performed for instance

4.4 Experimental Setup 67

CityScapes
Subset

Pedestrians # Cars

all small medium large all small medium large

Train 17, 395 8, 980 6, 770 1, 640 26, 180 9, 228 10, 226 6, 718

Val 3, 278 1, 607 1, 379 291 4, 524 1, 679 1, 738 1, 105

Table 4.4: Statistics about pedestrians and cars in the CityScapes training and
validation set with respect to instance area ranges. Instance area ranges
are defined as small = [0, 322]px, medium = [322, 962]px and large
= [962,∞]px. The total number of images in the train and val set are
2, 975 and 500, respectively (see table 4.2).

segmentation. To this end, the CityScapes training and validation sets are used,

which provide fine grained annotations for segmentation. The performance is

evaluate with Cascade Mask R-CNN for the category "car". As mentioned in

section 2.3, the evaluation between object detection and instance segmentation

basically only differs with respect to the IoU computation. The only additional

difference here is that the sizes of instances for partitioning them into different

area ranges is computed on a pixel-by-pixel basis rather than by multiplying the

width and height of bounding boxes.

Table 4.3 shows the statistics of instances in the BDD100K dataset that flow into

the evaluation for object detection. Moreover, table 4.4 shows the instance statistics

of pedestrians and cars in the CityScapes dataset. The baseline pedestrian

detection performance of HTC and car detection performance of Cascade Mask

R-CNN evaluated on daytime images of the BDD100K training set with the

Precision vs. Recall are shown in figure 4.2 and 4.3, respectively. The instance

segmentation performance of Cascade Mask R-CNN on the CityScapes training

and validation set for the category "car" is shown in figure 4.4. How the overall

performances with respect to the Precision vs. Recall curve and the performance

for specific choices of confidence thresholds with respect to the MR vs FPPI curve

change under effects of defocus is presented in section 5. The choices of confidence

thresholds are in fact also important aspects for the spatial evaluation, as the SRI

metric requires a threshold to suppress weak detections or segmentations. The

choice of a proper confidence threshold as well as considerations for a statistically

reliable SRI computation are described in section 4.4.3.

4.4.3 Spatial evaluation

In section 4.4.2, the performance evaluation of Computer Vision systems under

simulated effects of defocus is based on the standard evaluation metrics. Since the

effects of defocus (for these simulated defocus conditions) vary at different spatial

positions in the images, the evaluation described here takes the spatial domain of

68 Evaluating defocus conditions

the object detection and instance segmentation performance into account. Using

the SRI metric proposed in section 3, the performance is evaluated in dependency

of spatial positions in the input images. Just like before in section 4.4.2, the goal is

to monitor the performance differences between different test cases, which in turn

are differentiated by the defocus offset Z∆ used to parameterize the underlying

optical model (see section 4.3). First, the SRI is computed for test results on

original images of the datasets. Then, the SRI computation is performed for

test results on degraded datasets that are produced by applying the optical

model with different parameterizations in terms of Z∆ on these same images.

And finally, in order to compare the baseline performance SRIBase with the

performance for different defocus offsets SRIZ∆
, the spatial performance drop

SRIDrop is computed by

SRIDrop(x,y) = SRIBase(x,y) − SRIZ∆
(x,y) (33)

where x,y denote the pixels in the matrix of size h×w. As shown in section

3, detections and segmentations that match a ground truth bounding box with

respect to the pre-defined IoU threshold only flow into the SRI computation if they

exceed a pre-defined confidence threshold. In other words, the SRI represents

the performance of a Computer Vision system for a specific confidence threshold.

Section 4.4.2 describes how the performance for specific operation points is

evaluated with the MR vs. FPPI metric by basing the confidence threshold on

FPPI values of the baseline evaluation and comparing them with performances

on degraded datasets for the same thresholds. A similar approach is applied

for the spatial evaluation, but instead of comparing multiple operating points as

it is suggested in section 4.4.2, the evaluation with the SRI metric is performed

for one specific confidence threshold, which is considered to be the threshold

that best represents the overall performance of the Computer Vision system. The

following paragraph describes how the threshold is chosen.

As formulated with equation 30 in section 2.3, the MR vs. FPPI curve can

be summarized to a single value by averaging the MR at nine FPPI rates evenly

spaced in log-space in the range 10−2 to 100, i.e. at FPPI= 10−2+ x
4 , x ∈ {0, ..., 8}.

The result is called LAMR and gives a stable assessment of the performance

analogous to the AP derived from the Precision vs. Recall curve. Since MR vs.

FPPI curves are usually linear in the FPPI range from 10−2 to 100, the LAMR

is similar to the performance at the central point between 10−2 to 100, i.e. at

FPPI=10−1 [44]. Indeed, averaging the MR in the aforementioned way is a more

stable assessment of the overall performance than simply picking the MR at

FPPI=10−1. However, since the LAMR is generally almost equal to the MR at

FPPI=10−1, the overall performance is best represented by the performance at

the confidence threshold that corresponds to FPPI=10−1.

Consequently, the choice of an appropriate confidence threshold for the SRI

4.4 Experimental Setup 69

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

2000

4000

6000

8000

10000

N
u

m
b

er
o

f
G

T
in

stan
ces

(a) All instances

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

0

200

400

600

800

1000 N
u

m
b

er
o

f
G

T
in

stan
ces

(b) Small instances

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

0

500

1000

1500

2000

2500

3000

N
u

m
b

er
o

f
G

T
in

stan
ces

(c) Medium-sized instances

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

2000

4000

6000

8000

10000 N
u

m
b

er
o

f
G

T
in

stan
ces

(d) Large instances

Figure 4.7: Ground truth bounding box distribution of car instances in the
BDD100k training subset (images with the flag "daytime") for (a) all
instances and (b-d) different bounding box area ranges. Bounding box
area ranges are defined as small = [0, 322]px, medium = [322, 962]px
and large = [962,∞]px.

computation is based on the threshold that corresponds to FPPI=10−1 in the base-

line evaluation. Based on the considerations in section 4.4.2, the same confidence

threshold is then used to compute the SRI for the performance evaluation on

degraded data rather than fixing it to FPPI=10−1 on that data. In other words, the

chosen confidence threshold corresponds FPPI=10−1 in the baseline evaluation

and is used to compute not only the baseline SRI but also the SRI for the de-

graded data. As described in section 4.4.2, this emulates a realistic scenario where

a Computer Vision system is deployed with a specific choice of a confidence

threshold and later subject to different optical performances of lenses, which in

turn are simulated by the image degradations in section 4.3.

In summary, the confidence threshold to compute the SRI for all test cases

(i.e. for the baseline performance and the performance on all degraded datasets)

is based on FPPI=10−1 in the baseline evaluation. Besides the IoU threshold,

it defines which detections are considered as TPs. Just like for the standard

performance evaluation in section 4.4.2, the IoU threshold for the SRI computation

is set to 0.5, which basically completes the setup for the spatial evaluation.

However, there are some additional statistical aspects that need to be considered.

They are discussed in the following paragraphs.

In order to be able to reliably assess the object detection or instance segmen-

tation performance in dependency of the spatially varying optical performance,

70 Evaluating defocus conditions

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

0

100

200

300

400

500 N
u

m
b

er
o

f
G

T
in

stan
ces

(a) All instances

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

0

10

20

30

40

50

60

70

N
u

m
b

er
o

f
G

T
in

stan
ces

(b) Small instances

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

0

50

100

150

200

250 N
u

m
b

er
o

f
G

T
in

stan
ces

(c) Medium-sized instances

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

0

50

100

150

200

250 N
u

m
b

er
o

f
G

T
in

stan
ces

(d) Large instances

Figure 4.8: Ground truth bounding box distribution of fully visible pedestrian
instances (i.e. instances without the flag "occluded" or "truncated") in
the BDD100k training subset (images with the flag "daytime") for (a) all
instances and (b-d) different bounding box area ranges. Bounding box
area ranges are defined as small = [0, 322]px, medium = [322, 962]px
and large = [962,∞]px.

the number of objects must obviously be similar and sufficiently high at different

locations. Furthermore, the objects’ sizes must be similar at different spatial posi-

tions, because it depends largely on the size of an object how much it contributes

to the SRI. This is demonstrated with the ground truth bounding box distribution

of car instances in daytime images of the BDD100K training set for all, small,

medium-sized and large bounding boxes in figure 4.7.

As described in section 3.1, the ground truth bounding box distribution for

one category represents for each pixel x,y how often it is part of a ground

truth bounding box in the given dataset. When looking at the ground truth

distribution for all car instances in figure 4.7 a, the bounding boxes seem to be

well distributed over the entire width of the images. Partitioning the ground truth

distribution into distributions for different bounding box area ranges, however,

indicates that small objects (representing distant cars) tend to be more often at

the center of images (see figure 4.7 b) while larger objects (representing close cars)

occur rather at the edges (see figure 4.7 d). The total number of large bounding

boxes, however, is at each spatial position higher than that for small bounding

boxes, which even applies to central positions where the number of large and

small ground truth instance is approximately 6000 and 1000, respectively. These

statistics are misleading, since according to table 4.3 there are in total 183, 163

4.4 Experimental Setup 71

0 250 500 750 1000 1250 1500 1750 2000

Width [px]

0

200

400

600

800

1000

H
ei

g
h

t
[p

x
]

0

200

400

600

800

1000

N
u

m
b

er
o

f
G

T
in

stan
ces

(a) All instances

0 250 500 750 1000 1250 1500 1750 2000

Width [px]

0

200

400

600

800

1000

H
ei

g
h

t
[p

x
]

0

20

40

60

80

100

120 N
u

m
b

er
o

f
G

T
in

stan
ces

(b) Small instances

0 250 500 750 1000 1250 1500 1750 2000

Width [px]

0

200

400

600

800

1000

H
ei

g
h

t
[p

x
]

0

100

200

300

400

500

N
u

m
b

er
o

f
G

T
in

stan
ces

(c) Medium-sized instances

0 250 500 750 1000 1250 1500 1750 2000

Width [px]

0

200

400

600

800

1000
H

ei
g

h
t

[p
x

]
0

200

400

600

800

N
u

m
b

er
o

f
G

T
in

stan
ces

(d) Large instances

Figure 4.9: Ground truth distribution of instance-level semantic labels of car
instances in the CityScapes training and validation set for (a) all
instances and (b-d) different instance area ranges. Instance area
ranges are defined as small = [0, 322]px, medium = [322, 962]px and
large = [962,∞]px.

small instances but only 73, 816 large instances in the BDD100K training subset.

Simply put, larger bounding boxes extend over more pixels and thus contribute

more to the overall ground truth distribution and subsequently to the SRI.

If, based on the considerations above, all instances were considered for the

SRI computation, large instances would overshadow the results of the remain-

ing instances even though they account for only only 73, 816 of all 402, 222 car

instances in the subset. Therefore, the evaluation with the SRI is narrowed down

to medium-sized car instances, which according to figure 4.7 c are relatively well

distributed with approximately 3, 000 instances at central locations and about

1, 500 instances at the edge locations.

As shown in figure 4.8, the ground truth bounding box distribution for fully

visible pedestrians in the dataset is similar to that for cars in the sense that small

instances occur more often at the center while larger instances are rather found

at the edges. The overall distribution, however, is shifted more towards the

edges, indicating that pedestrians obviously rather occur on the sidewalks than

on the streets. The phenomenon that larger instances overshadow the remaining

ones is also represented, although not as dramatic as for cars. According to

table 4.3, large instances account only for 1, 828 of all 25, 450 instances in the

dataset, but contribute largely to the overall ground truth distribution. Medium-

sized instances are again relatively well distributed with approximately 150

bounding boxes at central locations and 250 at edge locations. Consequently, the

72 Evaluating defocus conditions

spatial evaluation for pedestrians is, just like for cars, done by restricting the SRI

computation to medium-sized instances.

For the sake of completeness, figure 4.9 shows the ground truth distribution of

instance-level semantic labels of car instances in the CityScapes dataset. Just like

car instances in the BDD100K dataset, small instances occur almost exclusively

at the center, whereas large instances appear rather at the edges. However, in

general, the cars in the CityScapes dataset are not as well distributed as cars

in the BDD100K dataset. This is probably due to the large scene diversity of

the BDD100K dataset, which is the reason why it is chosen in the first place.

Nevertheless, the SRI computation for instance segmentation is, for the same

reasons as outlined above for object detection, narrowed down to medium-sized

instances.

73

5 Performance under effects of defocus

This section presents the results of the experiments outlined in section 4 by

comparing the baseline performance of Computer Vision systems with the per-

formance under effects of defocus. Results for object detection are presented in

section 5.1 and instance segmentation results are shown in section 5.2. Moreover,

in section 5.3, examples of images that show the largest change in object detection

and instance segmentation performance under effects of defocus are shown.

The overall performances under effects of defocus for object detection an

instance segmentation in section 5.1 and 5.2, respectively, are first visualized

with standard metrics such as the Precision vs. Recall and MR vs. FPPI curves.

In each plot, the baseline performance, i.e. the performance evaluated on the

original data, is shown in blue, and the performances evaluated on the respective

degraded datasets are assigned individual colors for different defocus offsets Z∆.

Each plot is equipped with two legends. The legends of the Precision vs. Recall

charts show the test cases (i.e. baseline, nominal, Z∆ = −1.25, etc.) and their

achieved Average Precision, respectively. The items in both legends are arranged

in descending order in accordance with the overall performances of the test cases,

i.e. based on how well the curves approach the upper right corner of the chart

or, in numeric terms, how close the Average Precision is to 1. The legends of the

MR vs. FPPI curves show the test cases and confidence thresholds for specific

operating points, respectively. Contrary to the Precision vs. Recall curves, lower

MR vs. FPPI curves indicate better performance, so the legends are sorted in

reverse order from lowest to highest overall performance.

The spatial performances under effects of defocus are displayed as heat maps.

For each test case, a heat map shows the SRI difference between the baseline

performance and the performance on the degraded dataset (see equation 33) with

warmer colors indicating larger drop in performance. These heat maps may thus

be compared with the FWHM maps presented in section 4.4.3, where warmer

colors correspond to lesser optical performance of the applied lens model.

5.1 Object Detection Performance

This section presents the results for object detection. First, object detection results

evaluated with standard evaluation metrics are presented in section 5.1.1. Then,

results from the spatial evaluation with the SRI metric are shown in section 5.1.2.

74 Performance under effects of defocus

5.1.1 Overall Performance

The results in this section are from the standard performance evaluation described

in section 4.4.2. For the sake of clarity, the evaluation setup is summarized below:

• IoU threshold: 0.5

• Test cases: Original datasets (i.e. baseline) and datasets degraded with

defocus offsets Z∆ ∈ {−1.25,−0.75,−0.5, 0,+0.5,+0.75,+1.25}

• Data: For the performance evaluation with all defocus offsets, daytime

images of the BDD100K validation set are used. This subset accounts for

5, 258 images in the validation set. For the evaluation of the selected offsets

Z∆ ∈ {−1.25, 0,+1.25}, daytime images of the BDD100K training set are

used to improve statistics. This subset accounts for 36, 728 images in the

training set.

• Detection systems: Cascade Mask R-CNN X152 [2, 6] (trained on COCO

dataset) is used for car detection and HTC [1] with backbone ResNeXt is

used for pedestrian detection.

• Instances: For pedestrian detection, only fully visible instances, i.e. pedes-

trians with "occluded"=False and "truncated"=False, are considered. The

number of pedestrian instances in daytime images of the training and

validation sets are 25, 450 and 3, 651, respectively. For car detection, all

instances are considered. This makes a total of 402, 222 instances in the

training subset and 58, 283 instances in the validation subset.

Figure 5.1 and 5.2 compare the baseline object detection performance with

the performance under effects of defocus on the BDD100K validation set for all

defocus offsets using the Precision vs. Recall metric. The former, figure 5.1, shows

the car detection performance and the latter, figure 5.2, presents the pedestrian

detection performance. Then, figure 5.3 and 5.4 show the baseline object detection

performance in comparison with the performances for Z∆ ∈ {−1.25, 0,+1.25}

evaluated with the Precision vs. Recall metric for different bounding box area

ranges on the BDD100K training set. Here, figure 5.3 presents the results for car

detection and 5.4 shows the results for pedestrian detection. Finally, with the MR

vs. FPPI metric, figure 5.5 and 5.6 compare the baseline performance for specific

operating points (i.e. choices of confidence thresholds) of object detection systems

with the performance at the same operating points under effects of defocus for

Z∆ ∈ {−1.25, 0,+1.25}. The MR vs. FPPI curves are from the evaluation on the

BDD100K training set. Figure 5.5 presents the results for car detection and figure

5.6 shows the results for pedestrian detection.

5.1 Object Detection Performance 75

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

Performance

baseline

nominal

Z∆ − 0.5

Z∆ + 0.5

Z∆ − 0.75

Z∆ + 0.75

Z∆ − 1.25

Z∆ + 1.25

Average Precision

0.78819

0.7599

0.74993

0.74553

0.73315

0.72901

0.68293

0.67627

Figure 5.1: Baseline car detection performance in comparison with car de-
tection performance under effects of defocus for offsets Z∆ ∈
{−1.25,−0.75,−0.5, 0,+0.5,+0.75,+1.25} evaluated with Cascade
Mask R-CNN X152 [2, 6] (trained on COCO dataset) on daytime
images of the BDD100K validation set using the Precision vs. Recall
metric.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

Performance

baseline

nominal

Z∆ − 0.5

Z∆ + 0.5

Z∆ − 0.75

Z∆ + 0.75

Z∆ − 1.25

Z∆ + 1.25

Average Precision

0.7311

0.64268

0.6312

0.61038

0.60675

0.57594

0.53621

0.47638

Figure 5.2: Baseline pedestrian detection performance in comparison with pedes-
trian detection performance under effects of defocus for offsets
Z∆ ∈ {−1.25,−0.75,−0.5, 0,+0.5,+0.75,+1.25} evaluated with HTC
[1] with backbone ResNeXt (trained on CityPersons dataset) on day-
time images of the BDD100K validation set using the Precision vs.
Recall metric.

76 Performance under effects of defocus

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

Performance

baseline

nominal

Z∆ − 1.25

Z∆ + 1.25

Average Precision

0.78795

0.75964

0.68277

0.67553

(a) All instances

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

Performance

baseline

nominal

Z∆ − 1.25

Z∆ + 1.25

Average Precision

0.59015

0.5407

0.41062

0.39045

(b) Small instances

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

Performance

baseline

nominal

Z∆ + 1.25

Z∆ − 1.25

Average Precision

0.9115

0.89646

0.85596

0.84083

(c) Medium-sized instances

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

Performance

Z∆ + 1.25

nominal

baseline

Z∆ − 1.25

Average Precision

0.96086

0.95951

0.95837

0.95432

(d) Large instances

Figure 5.3: Baseline car detection performance in comparison with car detection
performance under effects of defocus for offsets Z∆ ∈ {−1.25, 0,+1.25}
evaluated with Cascade Mask R-CNN X152 [2, 6] (trained on COCO
dataset) on daytime images of the BDD100K training set for different
bounding box area ranges using the Precision vs. Recall metric.
Bounding box area ranges in are defined as (a) all = [0,∞]px, (b)
small = [0, 322]px, medium = [322, 962]px and large = [962,∞]px.

5.1 Object Detection Performance 77

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

Performance

baseline

nominal

Z∆ − 1.25

Z∆ + 1.25

Average Precision

0.72887

0.64369

0.53121

0.47183

(a) All instances

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

Performance

baseline

nominal

Z∆ − 1.25

Z∆ + 1.25

Average Precision

0.46481

0.37092

0.30608

0.24029

(b) Small instances

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

Performance

baseline

nominal

Z∆ − 1.25

Z∆ + 1.25

Average Precision

0.88109

0.83745

0.77962

0.72069

(c) Medium-sized instances

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

Performance

baseline

nominal

Z∆ − 1.25

Z∆ + 1.25

Average Precision

0.95205

0.95043

0.94001

0.93887

(d) Large instances

Figure 5.4: Baseline pedestrian detection performance in comparison with pedes-
trian detection performance under effects of defocus for offsets
Z∆ ∈ {−1.25, 0,+1.25} evaluated with HTC [1] with backbone ResNeXt
(trained on CityPersons dataset) on daytime images of the BDD100K
training set for different bounding box area ranges using the Precision
vs. Recall metric. Bounding box area ranges in are defined as (a) all
= [0,∞]px, (b) small = [0, 322]px, medium = [322, 962]px and large
= [962,∞]px.

78 Performance under effects of defocus

10
−4

10
−3

10
−2

10
−1

10
0

False Positives per Image

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

at
e

Performance

Z∆ + 1.25

Z∆ − 1.25

nominal

baseline

Threshold (score)

0.99449

0.96497

0.83598

Figure 5.5: Baseline car detection performance in comparison with car detection
performance under effects of defocus for offsets Z∆ ∈ {−1.25, 0,+1.25}
evaluated with Cascade Mask R-CNN X152 [2, 6] (trained on COCO
dataset) on daytime images of the BDD100K training set using the
MR vs. FPPI metric. Specific operating points in terms of confidence
thresholds that correspond in the baseline evaluation to FP rates of
one every 10 images (rectangle), every 100 images (circle), every 1000

images (triangle) are compared.

10
−4

10
−3

10
−2

10
−1

10
0

False Positives per Image

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

at
e

Performance

Z∆ + 1.25

Z∆ − 1.25

nominal

baseline

Threshold (score)

0.99528

0.97863

0.86597

Figure 5.6: Baseline pedestrian detection performance in comparison with pedes-
trian detection performance under effects of defocus for offsets
Z∆ ∈ {−1.25, 0,+1.25} evaluated with HTC [1] with backbone ResNeXt
(trained on CityPersons dataset) on daytime images of the BDD100K
training set using the MR vs. FPPI metric. Specific operating points
in terms of confidence thresholds that correspond in the baseline
evaluation to FP rates of one every 10 images (rectangle), every 100

images (circle), every 1000 images (triangle) are compared.

5.1 Object Detection Performance 79

5.1.2 Spatial Performance

The results in this section are from the spatial performance evaluation described

in section 4.4.3. The evaluation setup is summarized below:

• IoU threshold: 0.5

• Confidence threshold: The choices of confidence thresholds for HTC and

Cascade Mask R-CNN are based on the MR vs. FPPI curves shown in

figure 5.7. The confidence threshold for pedestrian detection is set to

0.87597 and threshold for car detection is set to 0.83598.

• Test cases: Original dataset (i.e. baseline) and datasets degraded with

defocus offsets Z∆ ∈ {−1.25, 0,+1.25}

• Data: Daytime images of the BDD100K training set. This subset accounts

for 36, 728 images in the training set.

• Detection systems: Cascade Mask R-CNN X152 [2, 6] (trained on COCO

dataset) is used for car detection and HTC [1] with backbone ResNeXt is

used for pedestrian detection.

• Instances: Only medium-sized bounding boxes, i.e. bounding boxes with

sizes in the range = [322, 962]px, are considered. Pedestrian instances are,

just like in the standard evaluation, further narrowed down by considering

only fully visible instances, i.e. pedestrians with "occluded"=False and

"truncated"=False. In total, there are 13, 098 fully visible medium-sized

pedestrian instances and 145, 243 medium-sized car instances in daytime

images of the BDD100K training set

Figure 5.8 depicts the approach in this section. It shows exemplary the

computation of the SRI for baseline car detection in comparison with the SRI for

car detection under defocus with offset Z∆ = −1.25, as well as the performance

drop that results from the element-wise subtraction of both SRI matrices based

on equation 33. Moreover, it compares one image of the original dataset with the

respective image of the degraded dataset to show on which spatial locations the

image quality is most degraded.

Then, figure 5.9 and 5.10 compare for each defocus offset Z∆ ∈

{−1.25, 0,+1.25} the spatial performance drop in object detection with the re-

spective optical performance of the parameterized lens model. More specifically,

for each test case, the FWHM map presented in section 4.3.2 is compared with

the corresponding heat maps of the SRI performance drop. The colors in the heat

maps for the SRI performance drop and the FWHM maps are consistent in the

sense that warmer colors correspond to larger drop in object detection and lesser

80 Performance under effects of defocus

10
−2

10
−1

10
0

False Positives per Image

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

at
e

Log Average Miss Rate

0.52895

Threshold (score)

0.96497

0.94344

0.91554

0.88177

0.83598

0.77826

0.7037

0.60999

0.49414

(a) Car detection

10
−2

10
−1

10
0

False Positives per Image

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

at
e

Log Average Miss Rate

0.36698

Threshold (score)

0.97863

0.96674

0.94951

0.91966

0.86597

0.77476

0.6357

0.45859

0.2817

(b) Pedestrian detection

Figure 5.7: Selection of confidence thresholds with the help of the MR vs. FPPI
metric evaluated with an IoU of 0.5 on daytime images of the
BDD100K training set. The selected confidence thresholds for (a)
car detection with Cascade Mask R-CNN X152 [2, 6] (trained on COCO
dataset) and (b) pedestrian detection with HTC [1] with backbone
ResNeXt (trained on CityPersons dataset) correspond to FPPI = 10−1,
which is the central point in the range 10−2 to 100 where the MR vs.
FPPI curves are somewhat linear. The operating point at FPPI = 10−1

and the associated confidence threshold in the upper right legend are
marked in red. The MR at this point is similar to the Log Average Miss
Rate shown in the lower left legend, which, in turn, is computed by
averaging the MR at all nine marked points with equation 30. Accord-
ing to the explanation in section 4.4.3, the confidence threshold that
corresponds to FPPI = 10−1 is considered to be most representative
of the overall performance of the detection systems. These particular
operating points for pedestrian detection and car detection are also
marked (blue rectangle) in figure 5.5 and 5.6, respectively.

optical performance of the lens model, respectively. Figure 5.9 depicts the results

for car detection and figure 5.10 shows the results for pedestrian detection.

5.1 Object Detection Performance 81

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
p

atial
R

ecall

(a) Spatial Recall Index: Baseline (b) Example image

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
p

atial
R

ecall
(c) Spatial Recall Index: Z∆ = −1.25 (d) Degraded image: Z∆ = −1.25

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

P
erfo

rm
an

ce
d

ro
p

[%
]

(e) Performance drop: Z∆ = −1.25

Figure 5.8: Example (a) SRI for baseline car detection with Cascade Mask R-CNN
X152 [2, 6] (trained on COCO dataset) in comparison with the (c) SRI
for car detection under defocus with offset Z∆ = −1.25, as well as the
(e) performance drop that results from the element-wise subtraction
of the SRI matrices based on equation 33. The spatial evaluation
is carried out with an IoU threshold of 0.5 for medium-sized car
instances on daytime images of the BDD100k training set. The chosen
confidence threshold corresponds to FPPI = 10−1 and is defined based
on the baseline evaluation in order to simulate a realistic configuration
for deployment (see selection of confidence threshold in figure 5.7 a).
In order to additionally show on which spatial locations the image
quality is most degraded, an (b) example image of the original dataset
is compared with the respective (d) image of the degraded dataset.
While the entire image is blurred, the regions at the edges are most
affected by the degradation, which, in turn, is also reflected in the (c)
SRI and in the (e) performance drop.

82 Performance under effects of defocus

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

FWHM_mean=0.0108

heat_map_from_1D
defocus_-1p25_rgb.PSF.npy FWHM_total0p1

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

12.0

10.0

8.0

6.0

4.0

2.0

0.0

Width [px]

H
ei

g
h

t
[p

x
]

F
u

ll
W

id
th

H
alf

M
ax

im
u

m

(a) FWHM map: Z∆ = −1.25

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

P
erfo

rm
an

ce
d

ro
p

[%
]

(b) SRI performance drop: Z∆ = −1.25

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

FWHM_mean=0.007

heat_map_from_1D
defocus_nominal_new_rgb.PSF.npy FWHM_total0p1

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

12.0

10.0

8.0

6.0

4.0

2.0

0.0

Width [px]

H
ei

g
h

t
[p

x
]

F
u

ll
W

id
th

H
alf

M
ax

im
u

m

(c) FWHM map: nominal position

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

P
erfo

rm
an

ce
d

ro
p

[%
]

(d) SRI performance drop: nominal position

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

FWHM_mean=0.0069

heat_map_from_1D
defocus_1p25_rgb.PSF.npy FWHM_total0p1

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

12.0

10.0

8.0

6.0

4.0

2.0

0.0

Width [px]

H
ei

g
h

t
[p

x
]

F
u

ll
W

id
th

H
alf

M
ax

im
u

m

(e) FWHM map: Z∆ = +1.25

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

P
erfo

rm
an

ce
d

ro
p

[%
]

(f) SRI performance drop: Z∆ = +1.25

Figure 5.9: Comparison of FWHM maps and SRI performance drop for car de-
tection with Cascade Mask R-CNN X152 [2, 6] (trained on COCO
dataset) under defocus with offsets Z∆ ∈ {−1.25, 0,+1.25}. FWHM
maps on the left indicate the optical performance of the applied lens
model parameterized with the respective defocus offsets Z∆ at spatial
positions of the images. The SRI performance drop on the right is
calculated by subtracting the SRI computed on the dataset that is
degraded by the model with respective parameterization in regards
to Z∆ from the baseline SRI computed on the original dataset (see
equation 33). Warmer colors indicate lesser optical performance and
larger drop in object detection performance, respectively. The spatial
evaluation is carried out with an IoU threshold of 0.5 for medium-
sized car instances on daytime images of the BDD100k training set.
The chosen confidence threshold corresponds to FPPI = 10−1 and
is defined based on the baseline evaluation in order to simulate a
realistic configuration for deployment (see selection of confidence
threshold in figure 5.7 a).

5.1 Object Detection Performance 83

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

FWHM_mean=0.0108

heat_map_from_1D
defocus_-1p25_rgb.PSF.npy FWHM_total0p1

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

12.0

10.0

8.0

6.0

4.0

2.0

0.0

Width [px]

H
ei

g
h

t
[p

x
]

F
u

ll
W

id
th

H
alf

M
ax

im
u

m

(a) FWHM map: Z∆ = −1.25

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

0

5

10

15

20

25

30

35

P
erfo

rm
an

ce
d

ro
p

[%
]

(b) SRI performance drop: Z∆ = −1.25

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

FWHM_mean=0.007

heat_map_from_1D
defocus_nominal_new_rgb.PSF.npy FWHM_total0p1

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

12.0

10.0

8.0

6.0

4.0

2.0

0.0

Width [px]

H
ei

g
h

t
[p

x
]

F
u

ll
W

id
th

H
alf

M
ax

im
u

m

(c) FWHM map: nominal position

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

0

5

10

15

20

25

30

35

P
erfo

rm
an

ce
d

ro
p

[%
]

(d) SRI performance drop: nominal position

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

FWHM_mean=0.0069

heat_map_from_1D
defocus_1p25_rgb.PSF.npy FWHM_total0p1

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

12.0

10.0

8.0

6.0

4.0

2.0

0.0

Width [px]

H
ei

g
h

t
[p

x
]

F
u

ll
W

id
th

H
alf

M
ax

im
u

m

(e) FWHM map: Z∆ = +1.25

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

0

5

10

15

20

25

30

35

P
erfo

rm
an

ce
d

ro
p

[%
]

(f) SRI performance drop: Z∆ = +1.25

Figure 5.10: Comparison of FWHM maps and SRI performance drop for pedes-
trian detection with HTC [1] with backbone ResNeXt (trained
on CityPersons dataset) under defocus with offsets Z∆ ∈
{−1.25, 0,+1.25}. FWHM maps on the left indicate the optical perfor-
mance of the applied lens model parameterized with the respective
defocus offsets Z∆ at spatial positions of the images. The SRI per-
formance drop on the right is calculated by subtracting the SRI
computed on the dataset that is degraded by the model with re-
spective parameterization in regards to Z∆ from the baseline SRI
computed on the original dataset (see equation 33). Warmer col-
ors indicate lesser optical performance and larger drop in object
detection performance, respectively. The spatial evaluation is car-
ried out with an IoU threshold of 0.5 for medium-sized fully visible
pedestrian instances on daytime images of the BDD100k training set.
The chosen confidence threshold corresponds to FPPI = 10−1 and
is defined based on the baseline evaluation in order to simulate a
realistic configuration for deployment (see selection of confidence
threshold in figure 5.7 b).

84 Performance under effects of defocus

5.2 Instance Segmentation Performance

This section presents the results for instance segmentation. First, in section 5.2.1,

the overall performance evaluated with the Precision vs. Recall metric is shown.

Then, the spatial performance is shown in section 5.2.2.

5.2.1 Overall Performance

The evaluation setup for instance segmentation leading to the results in this

section is based on the description in section 4.4.2 and can be briefly summarized

as follows:

• IoU threshold: 0.5

• Test cases: Original datasets (i.e. baseline) and datasets degraded with

defocus offsets Z∆ ∈ {−1.25, 0,+1.25}

• Data: Combination of CityScapes training and validation set (i.e. 3, 475

images according to table 4.2)

• Detection systems: Cascade Mask R-CNN X152 [2, 6] (trained on COCO

dataset)

• Instances: All car instances in the dataset (i.e. 30, 704 instances according to

table 4.2)

Figure 5.11 compares the baseline instance segmentation performance in com-

parison with the performance under effects of defocus evaluated with Cascade

Mask R-CNN X152 [2, 6] (trained on COCO dataset) for the category car for

different instance area ranges on a combination of the CityScapes training and

validation sets using the Precision vs. Recall metric.

5.2 Instance Segmentation Performance 85

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

Performance

baseline

nominal

Z∆ + 1.25

Z∆ − 1.25

Average Precision

0.68854

0.65687

0.5911

0.5891

(a) All instances

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

Performance

baseline

nominal

Z∆ + 1.25

Z∆ − 1.25

Average Precision

0.31414

0.26574

0.17567

0.17072

(b) Small instances

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

Performance

baseline

nominal

Z∆ + 1.25

Z∆ − 1.25

Average Precision

0.81113

0.77783

0.70606

0.69778

(c) Medium instances

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is

io
n

Performance

baseline

nominal

Z∆ − 1.25

Z∆ + 1.25

Average Precision

0.96464

0.963

0.95963

0.95951

(d) Large instances

Figure 5.11: Baseline instance segmentation performance for the category car in
comparison with the instance segmentation performance under ef-
fects of defocus for offsets Z∆ ∈ {−1.25, 0,+1.25} evaluated with
Cascade Mask R-CNN X152 [2, 6] (trained on COCO dataset) on the
CityScapes training and validation sets for different instance area
ranges using the Precision vs. Recall metric. Instance area ranges
in are defined as (a) all = [0,∞]px, (b) small = [0, 322]px, medium
= [322, 962]px and large = [962,∞]px.

86 Performance under effects of defocus

5.2.2 Spatial Performance

The evaluation setup for the spatial performance evaluation for instance segmen-

tation on a combination of the CityScapes training and validation sets (i.e. 3, 475

images) from the description in section 4.4.3 is as follows: The confidence thresh-

old corresponds to FPPI = 10−1 in the baseline evaluation, the IoU threshold is

set to 0.5, test cases consist of the original dataset and degraded datasets with

defocus offsets Z∆ ∈ {−1.25, 0,+1.25}, and only medium-sized car instances are

considered (i.e. 11, 964 instances according to table 4.4). According to this, figure

5.12 shows the spatial performance drop for Z∆ ∈ {−1.25, 0,+1.25}.

0 250 500 750 1000 1250 1500 1750 2000

Width [px]

0

200

400

600

800

1000

H
ei

g
h

t
[p

x
]

0

5

10

15

20

25

30

P
erfo

rm
an

ce
d

ro
p

[%
]

(a) SRI performance drop: Z∆ = −1.25

0 250 500 750 1000 1250 1500 1750 2000

Width [px]

0

200

400

600

800

1000

H
ei

g
h

t
[p

x
]

0

5

10

15

20

25

30

P
erfo

rm
an

ce
d

ro
p

[%
]

(b) SRI performance drop: nominal position

0 250 500 750 1000 1250 1500 1750 2000

Width [px]

0

200

400

600

800

1000

H
ei

g
h

t
[p

x
]

0

5

10

15

20

25

30

P
erfo

rm
an

ce
d

ro
p

[%
]

(c) SRI performance drop: Z∆ = +1.25

Figure 5.12: SRI performance drop for instance segmentation for the category car
with Cascade Mask R-CNN X152 [2, 6] (trained on COCO dataset)
under defocus with offsets Z∆ ∈ {−1.25, 0,+1.25}. The SRI perfor-
mance drop is calculated by subtracting the SRI computed on the
dataset that is degraded by the model with respective parameter-
ization in regards to Z∆ from the baseline SRI computed on the
original dataset (see equation 33). The spatial evaluation is carried
out with an IoU threshold of 0.5 for medium-sized car instances on
the CityScapes training and validation sets. The chosen confidence
threshold corresponds to FPPI = 10−1 and is defined based on the
baseline evaluation in order to simulate a realistic configuration for
deployment.

5.3 Examples with largest performance drop 87

5.3 Examples with largest performance drop

After presenting the results for object detection and instance segmentation in

section 5.1 and 5.2, respectively, this section shows some concrete examples for

both Computer Vision tasks. The examples basically link the results from the

overall evaluation with the results from the spatial evaluation by showing objects

in images with the largest performance drop in the overall evaluation under

defocus with offsets Z∆ ∈ {−1.25, 0,+1.25} along with its locations in the images

(cf. Pezzementi et al. [39]).

Figure 5.13 presents examples extracted from the overall evaluation with an

IoU of 0.5 on fully-visible pedestrians of the BDD100K training set. In other

words, the examples are extracted from the evaluation whose results are shown

in figure 5.4 a and 5.6. For each test case (i.e. Z∆ ∈ {−1.25, 0,+1.25}), the example

with the largest performance drop in terms of the score or FPPI under defocus

along with the location in the image is shown.

Analogously, figure 5.14 presents car instances with the largest performance

drop under defocus with offsets Z∆ ∈ {−1.25, 0,+1.25} from the overall evaluation

for instance segmentation on the CityScape training and validation set. Conse-

quently, the examples are extracted from the evaluation whose results are shown

in figure 5.11 a. Just like before, for each test case (i.e. Z∆ ∈ {−1.25, 0,+1.25}),

the example with the largest performance drop in terms of the score or FPPI is

shown, while also presenting the location of the object in the image.

88 Performance under effects of defocus

(a) GT instance (b) DT (baseline) (c) DT (defocus Z∆ = −1.25)

(d) GT instance (e) DT (baseline) (f) DT (nominal)

(g) GT instance (h) DT (baseline) (i) DT (defocus Z∆ = +1.25)

0 200 400 600 800 1000 1200

Width [px]

0

100

200

300

400

500

600

700

H
ei

g
h

t
[p

x
]

(j) Locations of GT instances in (a), (d), and (g)

Figure 5.13: Examples of fully visible pedestrian instances (i.e. instances with-
out the flag "occluded" or "truncated") in the BDD100k train subset
(images with the flag "daytime") that show the largest performance
drop for object detection with HTC (with backbone ResNeXt) under
defocus with offsets Z∆ ∈ {−1.25, 0,+1.25} evaluated with an IoU
threshold of 0.5. While detected very reliably with scores correspond-
ing to FPPI rates below 0.004 in the baseline evaluation, the number
of FPs per image required to still correctly detect the instances un-
der effects of defocus ranges from approximately 3 to 14. The GT
instances are located at positions where the degree of aberration is
particularly extreme, i.e. for Z∆ ∈ {−1.25, 0} at the edges and for
Z∆ = +1.25 at the center of the image (see figure 5.10).

5.3 Examples with largest performance drop 89

(a) GT instance (b) DT (baseline) (c) DT (defocus Z∆ = −1.25)

(d) GT instance (e) DT (baseline) (f) DT (nominal)

(g) GT instance (h) DT (baseline) (i) DT (defocus Z∆ = +1.25)

0 250 500 750 1000 1250 1500 1750 2000

Width [px]

0

200

400

600

800

1000

H
ei

g
h

t
[p

x
]

(j) Locations of GT instances in (a), (d), and (g)

Figure 5.14: Examples of car instances in the CityScapes train-val set that show
the largest performance drop for instance segmentation with Cascade
Mask R-CNN X152 under defocus with offsets Z∆ ∈ {−1.25, 0,+1.25}
evaluated with an IoU threshold of 0.5. While detected very reliably
with scores corresponding to FPPI rates below 0.07 in the baseline
evaluation, the number of FPs per image required to still correctly
segment the instances under effects of defocus ranges from approxi-
mately 15 to 21. The GT instances are located at positions where the
degree of aberration is particularly extreme, i.e. for Z∆ ∈ {−1.25, 0}
at the edges and for Z∆ = +1.25 at the center of the image.

91

6 Discussion and conclusion

After an introduction into the fields of Computer Vision and Optics, this work

has linked both research areas by evaluating the spatial dependency of the

performances of object detection and instance segmentation systems on the

spatially varying performance of optical systems. To this end, a newly proposed

evaluation metric called Spatial Recall Index was presented, which assesses

the performance of these Computer Vision systems in dependency on spatial

positions in input images. Briefly summarized, the link between Computer Vision

and Optics was provided by first simulating a real lens that shows spatially

varying optical performance, then applying the underlying optical model on

large-scale Autonomous Driving datasets to simulate real-world driving scenes

under naturally occurring effects of defocus, and finally comparing the overall

and spatial performance drop of Computer Vision systems under these effects

with the spatially varying optical performance of the simulated lens. Given the

results presented in section 5, section 6.1 discusses them in detail. Finally, based

on the experiments and results, the conclusion is given in section 6.2.

6.1 Discussion

First, on a small subset of the BDD100K validation set consisting of 5, 258 images

with driving scenes at daytime, the overall pedestrian detection and car detection

performance are contrasted under effects of defocus for small changes in the

parametrization of the applied optical model and thus small changes in the

quality of the degraded images towards the extrema. The changes in optical

performance are represented by different defocus parameters of the optical model

with Z∆ = 0 denoting the unparameterized model (i.e. nominal position) and

Z∆ = ±1.25 indicating the extrema. While car detection with Cascade Mask

R-CNN happens to be more robust to the defocus conditions than pedestrian

detection with HTC, it can be seen that even moderate image mutations result

in a drop in performance for both detection tasks (cf. figure 5.1 and 5.2). The

AP for car and pedestrian detection drops by 3.59% and 12.09%, respectively,

when applying the unparameterized optical model and the performance drop

concerning the AP goes up to 14.2% and 13.35% for car detection and 34.8%

and 26.66% for pedestrian detection when changing the defocus parameter to

Z∆ = ±1.25.

Then, the pedestrian and car detection performance under effects of defocus

are assessed more detailed on larger data using a subset of the BDD100K training

set with 36, 728 images at daytime, while limiting the evaluation to selected test

92 Discussion and conclusion

cases consisting of the nominal position and the extrema Z∆ = ±1.25. Statisti-

cally, this subset contains enough labeled objects to partition the evaluation into

different instance area ranges, which shows that the largest performance drop

in both tasks occur for small and thus more distant instances (cf. figure 5.3 and

5.4). Applying the unparameterized optical model on the given training subset

and increasing the offset to Z∆ = +1.25 reduces the AP for the detection of small

car and pedestrian instances by 8, 38%− 33, 84% and 20, 2%− 48, 3%, respectively,

whereas the detection of large objects is not affected by the image degradation.

The performance drop for medium-sized objects lies somewhere in between with

a decrease in the AP of 1.65% − 7.75% for car detection and 4.95% − 18.2% for

pedestrian detection.

With the MR vs. FPPI metric, the object detection performance of specific

operating points are evaluated by standardizing the confidence threshold on

expected FP rates per image (cf. figure 5.5 and 5.6). The baseline MR for

pedestrian detection is at each operating point smaller than for car detection,

which is probably because the number of cars in the dataset is more than an

order of magnitude higher than the number of pedestrians (see table 4.3). The

tendency that car detection is more robust to image perturbations, however, is

also found in this metric, especially for a confidence threshold that corresponds

to FPPI = 10−1 in the baseline evaluation (cf. blue rectangle in figure 5.5 and 5.6).

This particular confidence threshold is used for the spatial evaluation of the

car and pedestrian detection performance, where the computations are limited

to medium-sized instances to remove the size-dependency of objects on the SRI.

With enough well distributed objects, the resulting spatial performance drop in

object detection shows a strong correlation with the optical performance of the

underlying optical model and thus the spatially varying image quality, which is

especially visible for car detection in figure 5.9 where 145, 243 instances flow into

the evaluation. When comparing the FWHM maps with the SRI performance

drop, it can be seen that for each test case, the axially symmetric behavior of

the simulated lens with the respective defocus offsets is reflected on the spatial

performance drop of the car detection. The nominal position of the optical model

affects the detection performance virtually only at the edges of images at regions

where the lens shows lesser optical performance (cf. figure 5.9 c and d). Similarly,

applying the optical model with a defocus offset Z∆ = −1.25 mostly impairs the

object detection performance at the edges with a gradually decreasing intensity

towards the center, which is similarly reflected in the optical performance of

the lens represented by the respective FWHM map (cf. figure 5.9 a and b).

Finally, with a defocus offset Z∆ = +1.25, the object detection performance

drops symmetrically around center of the images, which is comparable with the

pattern in the respective FWHM map representing the optical performance of the

simulated lens with the respective parametrization (cf. figure 5.9 e and f).

6.2 Conclusion 93

Analogously, the pedestrian detection performance is compared with the

optical performance of the applied lens model in figure 5.10. Just like the

standard metrics before, the spatial evaluation shows that pedestrian detection

with HTC is less robust to the simulated defocus conditions than car detection

with Cascade Mask R-CNN. Since the number of considered pedestrians instances

in the dataset is with 13, 098 much lower than the number of car instances, the

SRI and thus the spatial performance drop can not be assessed as accurately as

that of car detection. However, a similar effect of the defocus conditions on the

object detection performance can be observed for the nominal position, where

the performance drop occurs mostly at the edges (cf. figure 5.10 c and d), and for

Z∆ = +1.25, where the performance drop occurs mostly around the center (cf.

5.10 e and f). Note that, in general, most of the medium-sized car and pedestrian

instances occur between the height 200px and 500px of images, so the results in

this area are statistically most reliable (cf. figure 4.7 and 4.8).

Finally, with the CityScapes dataset, the evaluation is extended to instance

segmentation for the category car. The overall performances evaluated with the

Precision vs. Recall curves are in virtually all test cases worse than the associated

car detection performance (cf. figure 5.3 and 5.11). A reason for this could be that

instance segmentation is a more challenging task than object detection (see figure

4.4). For the spatial evaluation, the number of medium-sized car instances is with

10, 226 not sufficient for a reliable SRI computation, especially considering their

spatial distribution in the dataset (see figure 4.9). However, the tendency that

the optical model in nominal position and with defocus offset Z∆ = −1.25 affects

the system’s performance rather at the edges of images and applying the optical

model with defocus offset Z∆ = +1.25 impairs the performance more around the

center can also be observed for instance segmentation (see figure 5.12).

The same observation can be made in figure 5.13 and 5.14, where examples

with the largest drop in performance are shown for object detection and instance

segmentation, respectively. The examples represent TP instances with largest

score differences between baseline and evaluation under defocus. All of these

instances occur at spatial positions of images where the optical performance of

the applied lens model with the respective parameterizations are especially poor.

For most of these instances, the number of FPs per image required to still detect

(or segment) them under effects of defocus increases by approximately three

orders of magnitude.

6.2 Conclusion

In this work, a thorough evaluation of the dependency of Computer Vision

systems on the optical performance of optical systems was provided. To this end,

a newly proposed evaluation metric called Spatial Recall Index was presented,

94 Discussion and conclusion

which evaluates the object detection and instance segmentation performance

in dependency on spatial locations in input images. By simulating spatially

varying effects of defocus with a lens model and evaluating Computer Vision

systems under these effects with both the newly proposed metric and standard

evaluation metrics, a strong correlation between the performance of Computer

Vision systems and the optical performance of the applied lens model and thus

the optical quality of input images could be observed. More specifically, a

parameterized optical model based on Zernike Polynomials was applied on

the BDD100K and CityScapes datasets to simulate different effects of defocus

and two Computer Vision systems were used to evaluate the performance in

object detection and instance segmentation under these simulated effects. While

the overall performance evaluated with standard evaluation metrics gradually

decreases with small degradations in the optical quality of images, the results

from the spatial evaluation show that these performance drops are reflected quite

precisely by the spatially varying optical performance of the underlying optical

model.

This applies to all considered Computer Vision tasks consisting of car and

pedestrian detection as well as for instance segmentation. However, the clearest

indication of a correlation between the spatially varying optical performance

of the simulated lens with different defocus parameterizations and the spatial

performance drop of Computer Vision systems was found by evaluating the car

detection performance on driving scenes of the BDD100K dataset with 145, 243

spatially relatively well distributed and almost equally sized car instances. With

this evaluation setup, the size dependency of the instances on the SRI compu-

tation was almost completely removed while also providing enough data for a

statistically reliable evaluation under different defocus conditions. The axially

symmetric optical performances of the underlying, physically realistic, lens model

with different defocus parameterizations (shown with FWHM maps) are for all

test cases comparable with the spatial performance drops evaluated with the

object detection system after applying the model on the given dataset (shown

with heat maps of the SRI performance drop).

For different simulated defocus conditions, cases could be shown where the

object detection and instance segmentation performance under effects of defocus

drops dramatically, even under moderate image perturbations. This underlines

the importance of taking into account the spatial domain when developing and

evaluating Computer Vision systems, especially for safety-critical applications

such as self-driving cars. To this end, section 7 describes possible future work in

linking the image quality to the performance of Computer Vision algorithms.

95

7 Future work

This work has shown that there is a clear correlation between the performance of

object detection and instance segmentation systems and the quality of images.

The performance of two pre-trained systems, HTC and Cascade Mask R-CNN,

dropped under simulated effects of defocus, and the performance drop correlates

spatially with the spatially varying optical performance of the applied lens

model. This highlights the need for further research in linking the performance

of Computer Vision systems and the image quality of their inputs by taking

into account the spatial domain. Moreover, it underlines the significance to

evaluate not only the performance of Computer Vision systems but also their

robustness to naturally occurring phenomena such as effects of defocus, especially

for safety-critical applications such as self-driving cars.

The performance under effects of defocus was evaluated for two systems that

are trained on two different datasets for different tasks. However, it would also

be desirable to include more state-of-the-art Computer Vision systems, train them

on the same datasets, and evaluate their performance in the same task under

effects of defocus, as this would allow a statistically reliable comparison of their

robustness to naturally occurring effects of defocus.

More importantly, further research should focus on improving the robustness

of Computer Vision systems to defocus conditions. One approach may be to

include degraded images into the training process and evaluate the change in

robustness that the modified training yields.

Finally, the evaluation of Computer Vision systems in dependency of optical

parameters should be extended to more tasks. This work focussed on object

detection and instance segmentation, which involve an assignment of class-

specific bounding boxes and instance-level semantic labels to objects in images.

The newly proposed SRI metric may be extended to panoptic segmentation,

which involves not only the assignment of instance-level semantic labels to all

foreground objects but also the classification of background, i.e. stuff, on a

per-pixel level [3].

97

A Appendix

Forward pass in matrix form

Layer 2Layer 1 Layer 3

w2

1,1

w2

1,2

w2

1,3

w2

1,4

a
(1)

1

a
(1)

2

a
(1)

3

a
(1)

4

a
(2)

1

a
(2)

2

a
(2)

3

a
(3)

1

a
(3)

2

Figure A.1: Fully-connected Neural Network.

Computing the weighted sums of neurons in the first hidden layer:

z(l) = W(l)a(l−1) +b(l) (34)

z(2) = W(2)a(1) +b(2) (35)











z
(2)
1

z
(2)
2

z
(2)
3











=











w
(2)
1,1 w

(2)
1,2 w

(2)
1,3 w

(2)
1,4

w
(2)
2,1 w

(2)
2,2 w

(2)
2,3 w

(2)
2,4

w
(2)
3,1 w

(2)
3,2 w

(2)
3,3 w

(2)
3,4











·

















a
(1)
1

a
(1)
2

a
(1)
3

a
(l)
4

















+











b
(2)
1

b
(2)
2

b
(2)
3











(36)

Applying the non-linear activation function to compute the activations in the first

hidden layer:

a(l) = h
(

z(l)
)

(37)

a(2) = h
(

z(2)
)

(38)











a
(2)
1

a
(2)
2

a
(2)
3











= h





















z
(2)
1

z
(2)
2

z
(2)
3





















(39)

98 Appendix

Demonstration of the SRI metric

This section demonstrates the SRI metric on extremely degraded images. Figure

A.2 compares one original image with the degraded image and figure A.3 presents

the SRI of Cascade Mask R-CNN for car detection and HTC for pedestrian

detection. Evaluation setup: Daytime images of the BDD100K validation set

(5, 258 images), IoU threshold = 0.5, confidence threshold standardized to FPPI

= 10−1, medium-sized car instances, medium-sized fully visible pedestrian

instances.

(a) Original (b) Degraded

Figure A.2: Comparison of an original image and an extremely degraded image
of the BDD100K validation set for test purposes.

0 200 400 600 800 1000 1200

Width [px]

200

300

400

500

H
ei

g
h

t
[p

x
]

0.0

0.2

0.4

0.6

0.8

1.0 S
p

atial
R

ecall

(a) Pedestrian detection: SRIBaseline

0 200 400 600 800 1000 1200

Width [px]

200

300

400

500

H
ei

g
h

t
[p

x
]

0.0

0.2

0.4

0.6

0.8

1.0 S
p

atial
R

ecall

(b) Car detection: SRIBaseline

0 200 400 600 800 1000 1200

Width [px]

200

300

400

500

H
ei

g
h

t
[p

x
]

0.0

0.2

0.4

0.6

0.8

1.0 S
p

atial
R

ecall

(c) Pedestrian detection: SRIDegraded

0 200 400 600 800 1000 1200

Width [px]

200

300

400

500

H
ei

g
h

t
[p

x
]

0.0

0.2

0.4

0.6

0.8

1.0 S
p

atial
R

ecall

(d) Car detection: SRIDegraded

0 200 400 600 800 1000 1200

Width [px]

200

300

400

500

H
ei

g
h

t
[p

x
]

0

10

20

30

40

P
erfo

rm
an

ce
d

ro
p

[%
]

(e) Pedestrian detection: SRIDrop

0 200 400 600 800 1000 1200

Width [px]

200

300

400

500

H
ei

g
h

t
[p

x
]

0

5

10

15

20

P
erfo

rm
an

ce
d

ro
p

[%
]

(f) Car detection: SRIDrop

Figure A.3: Test of the SRI metric with extremely degraded images of the
BDD100K validation set.

99

References

[1] Kai Chen et al. “Hybrid Task Cascade for Instance Segmentation.” In: 2019

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

ISSN: 2575-7075. June 2019, pp. 4969–4978. doi: 10.1109/CVPR.2019.00511.

[2] Zhaowei Cai and Nuno Vasconcelos. “Cascade R-CNN: High Quality Object

Detection and Instance Segmentation.” In: IEEE Transactions on Pattern

Analysis and Machine Intelligence 43.5 (Nov. 2019). Conference Name: IEEE

Transactions on Pattern Analysis and Machine Intelligence, pp. 1483–1498.

issn: 1939-3539. doi: 10.1109/TPAMI.2019.2956516.

[3] Richard Szeliski. Computer Vision. Texts in Computer Science. London:

Springer London, 2021. isbn: 978-1-84882-934-3 978-1-84882-935-0. doi:

10.1007/978-1-84882-935-0. url: http://link.springer.com/10.1007/

978-1-84882-935-0 (visited on 06/06/2021).

[4] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. url: https : / / www . deeplearningbook . org/ (visited on

06/06/2021).

[5] Marius Cordts. “Understanding Cityscapes: Efficient Urban Semantic Scene

Understanding.” en. PhD thesis. Darmstadt: Technische Universität Darm-

stadt, 2017.

[6] Yuxin Wu et al. Detectron2. https://github.com/facebookresearch/

detectron2. 2019.

[7] Michael A. Nielsen. Neural Networks and Deep Learning. en. Publisher: Deter-

mination Press. 2015. url: http://neuralnetworksanddeeplearning.com

(visited on 06/06/2021).

[8] Keiron O’Shea and Ryan Nash. “An Introduction to Convolutional Neural

Networks.” In: ArXiv e-prints (Nov. 2015).

[9] Vinod Nair and Geoffrey E Hinton. “Rectified Linear Units Improve Re-

stricted Boltzmann Machines.” en. In: ICML (2010), p. 8.

[10] Andrej Karpathy. “Connecting Images and Natual Language.” en. PhD

thesis. Stanford University, 2016.

[11] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-

mization.” In: arXiv:1412.6980 [cs] (Jan. 2017). arXiv: 1412.6980. url: http:

//arxiv.org/abs/1412.6980 (visited on 06/23/2021).

[12] Fei-Fei Li and Kevin Zakka. CS231n Convolutional Neural Networks for Visual

Recognition. url: https://cs231n.github.io/convolutional-networks/

(visited on 06/06/2021).

https://doi.org/10.1109/CVPR.2019.00511
https://doi.org/10.1109/TPAMI.2019.2956516
https://doi.org/10.1007/978-1-84882-935-0
http://link.springer.com/10.1007/978-1-84882-935-0
http://link.springer.com/10.1007/978-1-84882-935-0
https://www.deeplearningbook.org/
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
http://neuralnetworksanddeeplearning.com
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://cs231n.github.io/convolutional-networks/

100 References

[13] Vincent Dumoulin and Francesco Visin. “A guide to convolution arith-

metic for deep learning.” In: arXiv:1603.07285 [cs, stat] (Jan. 2018). arXiv:

1603.07285. url: http : / / arxiv . org / abs / 1603 . 07285 (visited on

06/25/2021).

[14] Zhong-Qiu Zhao et al. “Object Detection With Deep Learning: A Review.”

In: IEEE Transactions on Neural Networks and Learning Systems 30.11 (Nov.

2019). Conference Name: IEEE Transactions on Neural Networks and Learn-

ing Systems, pp. 3212–3232. issn: 2162-2388. doi: 10.1109/TNNLS.2018.

2876865.

[15] Afzal Godil et al. “Performance Metrics for Evaluating Object and Human

Detection and Tracking Systems.” en. In: NIST (), p. 16.

[16] Licheng Jiao et al. “A Survey of Deep Learning-Based Object Detection.” In:

IEEE Access 7 (2019). Conference Name: IEEE Access, pp. 128837–128868.

issn: 2169-3536. doi: 10.1109/ACCESS.2019.2939201.

[17] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection

with Region Proposal Networks.” en. In: IEEE Transactions on Pattern Analy-

sis and Machine Intelligence 39.6 (June 2017), pp. 1137–1149. issn: 0162-8828,

2160-9292. doi: 10.1109/TPAMI.2016.2577031. url: http://ieeexplore.

ieee.org/document/7485869/ (visited on 06/06/2021).

[18] Kaiming He et al. “Mask R-CNN.” In: 2017 IEEE International Conference

on Computer Vision (ICCV). ISSN: 2380-7504. Oct. 2017, pp. 2980–2988. doi:

10.1109/ICCV.2017.322.

[19] Ross Girshick et al. “Rich Feature Hierarchies for Accurate Object Detection

and Semantic Segmentation.” In: 2014 IEEE Conference on Computer Vision

and Pattern Recognition. ISSN: 1063-6919. June 2014, pp. 580–587. doi: 10.

1109/CVPR.2014.81.

[20] Jasper Uijlings et al. “Selective Search for Object Recognition.” In: In-

ternational Journal of Computer Vision 104 (Sept. 2013), pp. 154–171. doi:

10.1007/s11263-013-0620-5.

[21] Ross Girshick. “Fast R-CNN.” In: 2015 IEEE International Conference on

Computer Vision (ICCV). ISSN: 2380-7504. Dec. 2015, pp. 1440–1448. doi:

10.1109/ICCV.2015.169.

[22] Kaiming He et al. “Spatial Pyramid Pooling in Deep Convolutional Net-

works for Visual Recognition.” en. In: Computer Vision – ECCV 2014. Ed. by

David Fleet et al. Lecture Notes in Computer Science. Cham: Springer

International Publishing, 2014, pp. 346–361. isbn: 978-3-319-10578-9. doi:

10.1007/978-3-319-10578-9_23.

http://arxiv.org/abs/1603.07285
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1109/ACCESS.2019.2939201
https://doi.org/10.1109/TPAMI.2016.2577031
http://ieeexplore.ieee.org/document/7485869/
http://ieeexplore.ieee.org/document/7485869/
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1007/978-3-319-10578-9_23

References 101

[23] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-

works for Large-Scale Image Recognition.” en. In: ICLR (Apr. 2015). arXiv:

1409.1556. url: http://arxiv.org/abs/1409.1556 (visited on 06/30/2021).

[24] Kaiming He et al. “Deep Residual Learning for Image Recognition.” In:

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

ISSN: 1063-6919. June 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[25] Ross Girshick. rbgirshick/py-faster-rcnn. original-date: 2015-09-25T21:04:08Z.

July 2021. url: https://github.com/rbgirshick/py-faster-rcnn (visited

on 07/07/2021).

[26] Li Fei-Fei and Justin Johnson. CS231n Lecture 8 - Localization and Detection.

2016. url: https://www.youtube.com/watch?v=_GfPYLNQank&t=3126s

(visited on 07/07/2021).

[27] Zhaowei Cai and Nuno Vasconcelos. “Cascade R-CNN: Delving Into High

Quality Object Detection.” en. In: 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition. Salt Lake City, UT: IEEE, June 2018, pp. 6154–

6162. isbn: 978-1-5386-6420-9. doi: 10.1109/CVPR.2018.00644. url: https:

//ieeexplore.ieee.org/document/8578742/ (visited on 06/08/2021).

[28] Zachary Pezzementi et al. “Comparing Apples and Oranges: Off-Road

Pedestrian Detection on the NREC Agricultural Person-Detection Dataset.”

In: (July 2017).

[29] Li Fei-Fei, Justin Johnson, and Serena Yeung. Lecture 2 | Image Classification.

2017. url: https://www.youtube.com/watch?v=OoUX-nOEjG0 (visited on

07/13/2021).

[30] P. Dollar et al. “Pedestrian Detection: An Evaluation of the State of the

Art.” en. In: IEEE Transactions on Pattern Analysis and Machine Intelligence

34.4 (Apr. 2012), pp. 743–761. issn: 0162-8828, 2160-9292. doi: 10.1109/

TPAMI.2011.155. url: http://ieeexplore.ieee.org/document/5975165/

(visited on 06/06/2021).

[31] A Geiger et al. “Vision meets robotics: The KITTI dataset.” en. In: The

International Journal of Robotics Research 32.11 (Sept. 2013), pp. 1231–1237.

issn: 0278-3649, 1741-3176. doi: 10.1177/0278364913491297. url: http:

//journals.sagepub.com/doi/10.1177/0278364913491297 (visited on

07/10/2021).

[32] Marius Cordts et al. “The Cityscapes Dataset for Semantic Urban Scene

Understanding.” en. In: 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). Las Vegas, NV, USA: IEEE, June 2016, pp. 3213–3223.

isbn: 978-1-4673-8851-1. doi: 10 . 1109 / CVPR . 2016 . 350. url: http : / /

ieeexplore.ieee.org/document/7780719/ (visited on 06/01/2021).

http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2016.90
https://github.com/rbgirshick/py-faster-rcnn
https://www.youtube.com/watch?v=_GfPYLNQank&t=3126s
https://doi.org/10.1109/CVPR.2018.00644
https://ieeexplore.ieee.org/document/8578742/
https://ieeexplore.ieee.org/document/8578742/
https://www.youtube.com/watch?v=OoUX-nOEjG0
https://doi.org/10.1109/TPAMI.2011.155
https://doi.org/10.1109/TPAMI.2011.155
http://ieeexplore.ieee.org/document/5975165/
https://doi.org/10.1177/0278364913491297
http://journals.sagepub.com/doi/10.1177/0278364913491297
http://journals.sagepub.com/doi/10.1177/0278364913491297
https://doi.org/10.1109/CVPR.2016.350
http://ieeexplore.ieee.org/document/7780719/
http://ieeexplore.ieee.org/document/7780719/

102 References

[33] Shanshan Zhang, Rodrigo Benenson, and Bernt Schiele. “CityPersons: A

Diverse Dataset for Pedestrian Detection.” In: 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). ISSN: 1063-6919. July 2017,

pp. 4457–4465. doi: 10.1109/CVPR.2017.474.

[34] Markus Braun et al. “EuroCity Persons: A Novel Benchmark for Person

Detection in Traffic Scenes.” In: IEEE Transactions on Pattern Analysis and

Machine Intelligence 41.8 (Aug. 2019). Conference Name: IEEE Transactions

on Pattern Analysis and Machine Intelligence, pp. 1844–1861. issn: 1939-

3539. doi: 10.1109/TPAMI.2019.2897684.

[35] Pei Sun et al. “Scalability in Perception for Autonomous Driving: Waymo

Open Dataset.” In: arXiv:1912.04838 [cs, stat] (May 2020). arXiv: 1912.04838.

url: http://arxiv.org/abs/1912.04838 (visited on 07/13/2021).

[36] Fisher Yu et al. “BDD100K: A Diverse Driving Dataset for Heterogeneous

Multitask Learning.” In: 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR). ISSN: 2575-7075. June 2020, pp. 2633–2642. doi:

10.1109/CVPR42600.2020.00271.

[37] Mark Everingham et al. “The Pascal Visual Object Classes (VOC) Challenge.”

en. In: International Journal of Computer Vision 88.2 (June 2010), pp. 303–

338. issn: 1573-1405. doi: 10.1007/s11263- 009- 0275- 4. url: https:

//doi.org/10.1007/s11263-009-0275-4 (visited on 06/27/2021).

[38] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context.” In:

arXiv:1405.0312 [cs] (Feb. 2015). arXiv: 1405.0312. url: http://arxiv.org/

abs/1405.0312 (visited on 06/01/2021).

[39] Zachary Pezzementi et al. “Putting Image Manipulations in Context: Robust-

ness Testing for Safe Perception.” en. In: 2018 IEEE International Symposium

on Safety, Security, and Rescue Robotics (SSRR). Philadelphia, PA: IEEE, Aug.

2018, pp. 1–8. isbn: 978-1-5386-5572-6. doi: 10.1109/SSRR.2018.8468619.

url: https://ieeexplore.ieee.org/document/8468619/ (visited on

06/06/2021).

[40] Eugene Hecht. Optik. de. Publication Title: Optik. De Gruyter, Mar. 2018.

isbn: 978-3-11-052665-3. url: https://www.degruyter.com/document/doi/

10.1515/9783110526653/html (visited on 07/14/2021).

[41] José Sasián. “Control of Linear Astigmatism Aberration in a Perturbed

Axially Symmetric Optical System and Tolerancing.” en. In: Applied Sciences

11.9 (Jan. 2021). Number: 9 Publisher: Multidisciplinary Digital Publishing

Institute, p. 3928. doi: 10.3390/app11093928. url: https://www.mdpi.com/

2076-3417/11/9/3928 (visited on 07/15/2021).

[42] Patrick Müller, Matthias Lehmann, and Alexander Braun. “Optical quality

metrics for image restoration.” en. In: SPIE Digital Optical Technologies (2019).

https://doi.org/10.1109/CVPR.2017.474
https://doi.org/10.1109/TPAMI.2019.2897684
http://arxiv.org/abs/1912.04838
https://doi.org/10.1109/CVPR42600.2020.00271
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://doi.org/10.1109/SSRR.2018.8468619
https://ieeexplore.ieee.org/document/8468619/
https://www.degruyter.com/document/doi/10.1515/9783110526653/html
https://www.degruyter.com/document/doi/10.1515/9783110526653/html
https://doi.org/10.3390/app11093928
https://www.mdpi.com/2076-3417/11/9/3928
https://www.mdpi.com/2076-3417/11/9/3928

References 103

[43] Olga Kalinkina, Tatyana Ivanova, and Julia Kushtyseva. “Wavefront Pa-

rameters Recovering by Using Point Spread Function.” en. In: Proceedings

of the 30th International Conference on Computer Graphics and Machine Vision

(GraphiCon 2020). Part 2 (Dec. 2020), short47–1–short47–7. doi: 10.51130/

graphicon-2020-2-4-47. url: http://ceur-ws.org/Vol-2744/short47.

pdf (visited on 07/15/2021).

[44] Irtiza Hasan et al. “Generalizable Pedestrian Detection: The Elephant In

The Room.” In: arXiv:2003.08799 [cs] (Dec. 2020). arXiv: 2003.08799. url:

http://arxiv.org/abs/2003.08799 (visited on 06/05/2021).

[45] Robert Stojnic et al. Papers with Code - Pedestrian Detection. en. url:

https://paperswithcode.com/task/pedestrian-detection (visited on

08/09/2021).

https://doi.org/10.51130/graphicon-2020-2-4-47
https://doi.org/10.51130/graphicon-2020-2-4-47
http://ceur-ws.org/Vol-2744/short47.pdf
http://ceur-ws.org/Vol-2744/short47.pdf
http://arxiv.org/abs/2003.08799
https://paperswithcode.com/task/pedestrian-detection

	Introduction
	Computer Vision and Optics
	Computer Vision
	Deep Learning
	Convolutional Neural Networks
	Object Detection
	Instance Segmentation
	State-of-the-art Architectures

	Autonomous Driving Datasets
	Evaluation Methodology
	Overlap Criterion
	Standard Evaluation Metrics

	Realistic defocus simulation

	The Spatial Recall Index
	Spatial Recall Index for Object Detection
	Spatial Recall Index for Instance Segmentation

	Evaluating defocus conditions
	Selection of datasets
	Selection of Computer Vision Algorithms
	Hybrid Task Cascade
	Cascade Mask R-CNN

	Image Degradation
	Optical Model
	Defocus Study

	Experimental Setup
	Test on Datasets
	Standard performance evaluation
	Spatial evaluation

	Performance under effects of defocus
	Object Detection Performance
	Overall Performance
	Spatial Performance

	Instance Segmentation Performance
	Overall Performance
	Spatial Performance

	Examples with largest performance drop

	Discussion and conclusion
	Discussion
	Conclusion

	Future work
	Appendix
	References

