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Abstract
We present a novel metric Spatial Recall Index

to assess the performance of machine-learning (ML)
algorithms for automotive applications, focusing on
where in the image which performance occurs. Typical
metrics like intersection-over-union (IoU), precision-
recall-curves or average precision (AP) quantify the
performance over a whole database of images, neglect-
ing spatial performance variations. But as the optics
of camera systems are spatially variable over the field
of view, the performance of ML-based algorithms is
also a function of space, which we show in simula-
tion: A realistic objective lens based on a Cooke-triplet
that exhibits typical optical aberrations like astigma-
tism and chromatic aberration, all variable over field,
is modeled. The model is then applied to a subset of
the BDD100k dataset with spatially-varying kernels.
We then quantify local changes in the performance of
the pre-trained Mask R-CNN algorithm. Our examples
demonstrate the spatial dependence of the performance
of ML-based algorithms from the optical quality over
field, highlighting the need to take the spatial dimen-
sion into account when training ML-based algorithms,
especially when looking forward to autonomous driving
applications.

Introduction
The performance of vision-based machine learn-

ing algorithms for automotive applications strongly de-
pends on the image quality of the input images used
during training and validation. In our working group
we therefore research the influence of optical systems
on ML-based computer vision algorithms, trying to de-
velop a process that enables that link between image
quality and performance. Nonetheless, the topic of link-
ing image quality to algorithmic performance has only
started to gain academic and industrial traction within
the last few years: In [12] Saad and Schneider consider
the influence of vignetting on the performance of ob-
ject detectors on the KITTI database. They addition-
ally train a Deep Neural Network (DNN) on the aug-
mented VKITTI dataset including a vignetting model
and compare the distinct trained algorithms on real im-
ages from the KITTI database using mean Average Pre-

cision (mAP). They show a correlation between vi-
gnetting and the percentage of locally detected vehicles
relative to all detected vehicles with respect to the image
width. To describe the positional dependency they use
bounding box center of mass. Pezzementi et al. exam-
ine in [11] the robustness of different person detectors
to several image modifications assessed with common
metrics. They investigate the influence on person detec-
tion for “Simple Mutators” such as invariant Gaussian
blur and “Contextual Mutators” haze and defocus with
no specific lens model applied.

However, any optical system is spatially variant,
i.e. the optical quality in terms of aberrations varies
over the field of view. Therefore, as a first step to gauge
the spatial influence of the optical quality on the perfor-
mance of ML-based algorithms we present a novel met-
ric that spatially resolves the algorithmic performance.
Furthermore, this metric can be used for any situation
in which the content of the training images exhibits
any sort of spatial dependence. To demonstrate the use
of this new metric a large number of images from the
BDD100k database [15] is degraded with a physical-
realistic optical model based on Zernike-polynomials,
which can be parameterised. Using different established
detection algorithms [2, 6] the performance of these al-
gorithms is measured, both traditionally and with our
new approach. Finally, the spatially resolved metric
can then be compared to the optical performance of
the simulated lens, given as Full Width Half Maximum
(FWHM) map.

This article is structured as follows. First we in-
troduce the novel metric, followed by the application of
the physical-realistic lens model of a Cooke-triplet. For
this, we quantify the performance of the lens model in
terms of different optical metrics. A defocus parame-
ter is introduced in the model, as a technical parameter
against which the algorithmic performance degradation
may be compared.

Spatial recall index
The spatial recall index (SRI) quantifies the spa-

tially resolved performance of an object detector, such
as a pedestrian or car detection system. Similar to the
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Figure 1: Graphical representation defining the
SRIh×w distribution evaluated for a detection system
on a database with images of size h×w. Detected
bounding boxes BBdt matching aGTk passing the IoU
threshold and whose score exceed a predefined con-
fidence threshold are considered to be True Positive
TP bounding boxes. These tuples ((GT)n,(TP)n) are
passed to the SRI evaluation as in Eq. 2, where � de-
notes the element-wise division of the matrices.

definition of the recall value [3] defined as

Recall =
∑N
n TPn∑

kTPk+FNk
=

∑N
n TPn∑K
k GTk

(1)

where TP and FN are the True Positives and False Neg-
atives for a particular database and the denominator rep-
resents the number of all ground truth objects GT, we
present a local performance index, the SRI:

SRI(x,y) =

∑N
n

{
1 (x,y) ∈ [TPn∩GTn]
0 else[∑K

k

{
1 (x,y) ∈ GTk
0 else

]
(x,y)∈GT

(2)

In Eq. 2 the pixel location in the image is (x,y),
GTn,TPn represent the n-th bounding box of the
ground truth and as True Positive labeled predicted
bounding box, respectively. To apply the spatial re-
call index bounding boxes below a certain IoU thresh-
old and score based on miss rate vs. False Positives per
Image (FPPI) are eliminated to get True Positives TP
from the set of all predicted bounding boxes. The in-
dex can now be evaluated from the remaining subset of
predicted bounding boxes labeled as True Positives as
defined in Eq. 2: To get the SRI at pixel (x,y) for each
True Positive TPn, the intersection of the bounding box
with the corresponding ground truth bounding box GTn
is evaluated. Note that we take the intersection instead
of the full bounding box to define a valid set of pixels.
If the pixel (x,y) is inside the intersection it is counted
to the index, otherwise nothing is added. The so ac-
quired nominator value is weighted by the total number
of ground truth bounding boxes overlapping at the pixel.
This yields the spatial recall index at location (x,y) , the
“probability” to locate an object correctly in a certain

0 200 400 600 800 1000 1200
Width [px]

110

210

310

410

510He
ig

ht
 [p

x] SRIDrop= 12.9

heatmaps_degraded.npy_fppi2_IoUthresh0_k1__1p25_perfomance_drop
mean: 12.9

0

5

10

15

20

25

Figure 2: SRI performance drop as defined in Eq. 3
for the pre-trained Hybrid Task Cascade (HTC) [2] ob-
ject detector for the class “person”, where FPPI = 0.1,
IoU = 0.5. A subset of the BDD100k validation dataset
and the optical model Z∆ =+1.25 were used.
image region. The index fulfills some basic properties:
An ideal detector would have the index SRI(x,y) = 1
at each pixel and SRI(x,y) = 0, if nothing has been de-
tected. Further, to compare different SRI-distributions
we define the SRI performance drop as:

SRIDrop(x,y) = SRIBase(x,y)−SRIZ∆(x,y) (3)

Note that the SRI distribution for a particular dataset
and detector is defined only, if the database consists of
images with same size, and if at least one ground truth
bounding box is at the corresponding pixel (x,y).

Spatially variant image degradation
and optical model

The effect of defocussing of a simple objective
lens is gained by the application of a parameterised
space-variant optical model. The model is based on the
Zernike polynomials [13], from which we calculate a
l1-normed point-spread function (PSF) for each image
pixel and color channel. The output is then used to de-
grade an image by a pixel-wise varying filter kernel.

We use a simple three-element lens configuration,
a Cooke-Triplet, with basic ability to correct for chro-
matic aberration and astigmatism. The lens is simu-
lated in the commercial software OpticStudio by Ze-
max [16], from which we export the first 20 Fringe-
Zernike coefficients [13] to allow for parameterisation
of the model. This is done for multiple positions over
the imaging field and three wavelengths. For simplic-
ity, we consider a rotationally symmetric system. We
assume a setup with f#2.8, focal length 12.5mm, res-
olution [1280× 720], pixel size 4.46µm and diagonal
FoV = 50°. To get a pixel-resolved PSF over the imag-
ing field, we linearly interpolate the imported coeffi-
cients in Zernike space between all samples for a par-
ticular wavelength and output a physical intensity PSF
as outlined in [1, 5, 13]. The PSF is then rotated with re-
spect to the corresponding off-axis position, scaled and
cropped to match the physical pixel size of the assumed
imager. Note that the model does not include a color
filter array and thus no (de-) mosaicing effects are visi-
ble. The PSFs are validated by comparison with the PSF
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export from Zemax. With these PSFs available in a self-
developed Python framework, images are degraded by
a pixel-wise, per-color varying convolution kernel. This
is similar to superposition with limited support and the
limiting case for isoplanar patches as in [10, 9]. Since,
the presented performance metric for object detectors
is based on IoU and thus sensitive to pixel shifts, Tilt
should be taken into account. For the current optical
model the Tilty is less than 0.57λ and Tiltx is zero.

Defocus study
The defocussing parameter Z∆ repositions the

Cooke Triplet model between two extreme positions
and serves as exemplary parameter to test the SRI.
Defocussing of a objective happens in real situations,
when e.g. materials expand due to heat. A constant
offset Z∆ is added to the defocus coefficient Z02 in
Zernike space, such that Z̃02 = Z02+Z∆, where Z∆ ∈
[−1.25,−0.75,−0.5,0,+0.5,+0.75,+1.F25]λ. From
this parameterisation different sets of PSFs are derived
as described above. Note that the nominal position at
Z∆ = 0 already contains a spatially dependent defocus
Z02 according to the field curvature of the exported ob-
jective lens. Thus, the offset Z∆ adds to or cancels the
original contribution to the wavefront errorW from the
field curvature of the lens, and the positive and negative
values of Z∆ yield different results, as in any real lens.
The impact of varying defocus is visualized in Fig. 3
displaying details from images of the BDD100k dataset:
The left rear light from a central ROI in 3(a-c) appears
most blurred for Z∆ =+1.25 followed by Z∆ =−1.25
and the nominal position. Contrary, the person taken
from an edge ROI in Fig. 3(d-f) appears to be more
blurred for Z∆ =−1.25, followed by the nominal posi-
tion and Z∆ =+1.25 with noticeable astigmatism, visi-
ble at the person’s face. Fig. 3(g-i) show different levels
of chromatic aberration for another edge ROI.

Results
In this article, we examine the influence of the op-

tical model on a car detection task. For this an image
database is degraded with the optical model at differ-
ent defocus offsets Z∆, resulting in seven additional
databases. Subsequently, the results of the detectors for
the unmodified database - the baseline - are compared
with the results for the seven degraded databases, simi-
lar to [11].

We choose a subset from the diverse and huge
Berkeley Deep Drive database (BDD100k) [15] with
the tag “day”. All images have the same resolution
of 1280x720x3 pixels[15]. Table 1 lists the statistics
of the chosen subset. To investigate a possible cor-
relation between the performance of object detection

(a) Z∆ =−1.25 (b) nominal position (c) Z∆ =+1.25

(d) Z∆ =−1.25 (e) nominal position (f) Z∆ =+1.25

(g) Z∆ =−1.25 (h) nominal position (i) Z∆ =+1.25

Figure 3: Example scenes from [15] with varying defo-
cus from a central (a-c) and edge (d-i) locations.

BDD100k subset Selection # Images # Persons #Cars
Training Day, all bbox sizes 36728 25450 (fully visible) 402222
Validation Day, all bbox sizes 5258 3651 (fully visible) 58283

Validation Day, medium size 5258 1908 (fully visible) 21041

Table 1: Number of bounding boxes (bbox) for differ-
ent classes and selections from the BDD100k database
using the tags from [15], where Medium[322,962]px2.

algorithms and the optical performance, two different
pre-trained detectors for the classes “person” and “car”
on the BDD100k database are considered. In this ar-
ticle however, we discuss only results for the “car”
detector, which we take from the Detectron2 project
[14] the Mask R-CNN [6] algorithm, pre-trained on the
COCO dataset [8] with state-of-the-art performance at
the COCO dataset.

Standard performance evaluation
The performance of object detectors is often

judged by their corresponding Miss Rate vs. FPPI or
Precision-Recall curves.[3, 4] Fig. 4a displays the Miss
Rate vs. FPPI curve for the car detector, where the log
average miss rate for the “car” detector is 0.56. Note,
that the Miss Rate depends on bounding box size and is
higher for smaller bounding boxes. From this, we count
bounding boxes above the confidence score threshold as
listed in Fig. 4a, and IoU > 0.5 as True Positive. Fig.
4b shows the precision-recall curve for the car detector.
The AP drops by 1.5% for the medium bounding boxes
and the optical model in nominal position. It contin-
ues to fall, if we increase the defocus offset Z∆: The
AP drops by 7.0% for Z∆ = −1.25 and by 5.4% for
Z∆ = +1.25 as visualized in Fig. 4b. Note that the AP
for all bounding boxes drops by 2.8% as we apply the
optical model. If we add different defocus offsets Z∆,
the AP decreases by 10.5% and 11.1% for Z∆ =±1.25.
Thus, the AP is a function of bounding box size.
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Figure 4: Standard performance metrics for car detec-
tion [6]. (a) Miss Rate vs. FPPI. (b) Precision vs. Re-
call for medium bounding boxes and different defocus
parameter settings. These values correlate with the APs.

Spatially variant performance evaluation
We examine the SRI distribution for different de-

focus parameter settings on the validation subset of the
BDD100k at daytime for the class “car”. For each de-
tector we choose in the linear part of the Miss Rate vs.
FPPI curve the central point FPPI = 0.1 in Fig. 4a.

First the SRI, as defined in Eq. 2, is evaluated at
each available pixel (x,y) for the particular class and
detector system, which yields a baseline distribution for
the undisturbed dataset. Second, SRI-distributions are
evaluated for the different defocus degradations of the
dataset. The optical performance is given by maps of
the Full Width Half Maximum (FWHM) evaluated for
each PSF, where the two-dimensional distribution is re-
duced to FWHMtotal =

√
FWHM2x+FWHM

2
y.

Comparing optical and detector perfor-
mance metrics

Fig. 5(a,c) visualize the FWHM maps for differ-
ent defocus offset values and Fig. 5(b,d) show the SRI
performance drop for the “car” detector and medium
bounding box sizes. For this subset the resulting ground
truth distribution is more equal than for small bound-
ing boxes, which are mainly located at the center as
they represent distant cars - cf. the optical flow. Large
bounding boxes refer to parking cars or cars close to the
observer and are easily detected. Because of their large
bounding box size, local effects are masked and local
effects are smoothed.

Fig. 5d shows good detection results for the
optical model applied at nominal position, recap the
1.5% points loss in AP. However, the performance
drop is spatially dependend and increases towards the
edge. This spatial dependence is readily visible for the
FWHM map in 5c. Introducing a strong defocus offset
Z∆ = −1.25, Fig. 5a, results in a drop of 7.0% points
in AP. Now, Fig. 5b indicates a clear performance drop
close to the edge, while the central region is less af-
fected. Also, the performance drop follows the rota-
tional symmetric field dependence as in 5a.
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(a) FWHM map for Z∆ =−1.25
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(b) SRI performance drop for Z∆ =−1.25
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(c) FWHM map for nominal position
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(d) SRI performance drop for nominal position
Figure 5: FWHM maps and SRI performance drop
for medium sized car bounding boxes, FPPI = 0.1,
IoU = 0.5 and selected defocus offsets Z∆ ∈ [−1.25,0].
Higher values indicate lower performance.
Conclusion

In this article, we present the Spatial Recall Index
(SRI), which can be evaluated for an object detector
system and a sufficient large and properly distributed
image database. We applied a parameterised optical
model based on Zernike Polynomials to a subset of the
BDD100k database. We have shown a local correlation
between the optical performance and the object detec-
tor’s performance, measured as local SRI distribution.

Although, SRI is highly sensitive to pixel shifts
and bounding box size, for which future work should
account for, necessary properties of the examined
database, such as required scene versatility and its in-
fluence on the metric need to be investigated, spatial
performance metrics for ML may be crucial for indus-
try pipelines and improve the development process of
advanced driver assistance systems (ADAS). Moreover,
future work extends the research to instance and panop-
tic segmentation and other optical models such as [7].
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