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The actin droplet machine is a computer model of a three-
dimensional network of actin bundles developed in a droplet of
a physiological solution, which implements mappings of sets
of binary strings. The actin bundle network is conductive to
travelling excitations, i.e. impulses. The machine is interfaced
with an arbitrary selected set of k electrodes through which
stimuli, binary strings of length k represented by impulses
generated on the electrodes, are applied and responses are
recorded. The responses are recorded in a form of impulses and
then converted to binary strings. The machine’s state is a binary
string of length k: if there is an impulse recorded on the ith
electrode, there is a ‘1’ in the ith position of the string, and ‘0’
otherwise. We present a design of the machine and analyse its
state transition graphs. We envisage that actin droplet machines
could form an elementary processor of future massive parallel
computers made from biopolymers.
1. Introduction
Actin is a protein presented in forms of monomeric, globular
actin (G-actin) and filamentous actin (F-actin) [1–3]. G-actin
polymerizes into filamentous actin forming a double helical
structure [4–6]. The filaments can be further arranged into
bundles by various different mechanisms such as crowding
effects, cross-linking or counter-ion condensation [7–15]. The
bundles are conductive to travelling localizations—defects, ionic
waves, solitons [16–25]. By interpreting the presence or absence
of a travelling localization at a given site of the network at a
given time step, we can implement logical functions. This
approach was comprehensively developed and successfully
tested on chemical systems in the framework of collision-based
computing [26–31]. As actin networks can implement logical
functions, they can compute. So, in [32] we proposed a road map
to experimental implementation of cytoskeleton-based computing
devices. We proposed that collision-based cytoskeleton computers
implement logical gates via interactions between travelling
localization: voltage solitons on actin filaments or tubulin
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microtubules bundles. An architecture of cytoskeleton computers can be developed via programmable
polymerization of actin networks. Such cytoskeleton computers would take data via electrical and
optical means, the signals (solitons, conformational defects) initiated by the input stimuli will be
travelling along the network and the computational will be implemented via collisions of the signals at
the structural gates of the network.

Our approach—computing with excitation waves propagating on overall ‘density’ of the conductive
material—has previously been presented by us in [33]. As conductive material we looked at networks of
actin bundles which were arranged by crowding effects without the need of additional accessory proteins
[10,11]. We demonstrated how to discover logical gates on a two-dimensional slice of the actin bundle
network by representing Boolean inputs and outputs as spikes of the network activity. In a previous
paper [33], we demonstrated, using numerical integration of FitzHugh–Nagumo model, that a two-
dimensional actin network realized k-ary Boolean functions G : {0, 1}k→ {0, 1}, when k input electrodes
and one output electrodes are employed.

In the present paper, we develop a novel concept and computer modelling implementation of the actin
network machine, which implements a mapping F : {0, 1}k→ {0, 1}k, where k is a number of electrodes, and
‘1’ signifies the presence of an impulse on the electrode and ‘0’ the absence. At a higher level, the machine
acts as a finite-state machine, at the lower level, a structure of the mapping F is determined by interactions
of impulses propagating on the three-dimensional network of actin bundles.

We also offer an alternative to a numerical integration used in [33]: an automaton model of a three-
dimensional actin network. There is a substantial body of evidence confirming that automaton models
are sufficient and appropriate discrete tools for modelling dynamics of spatially extended nonlinear
excitable media [34–36], propagation [37], action potential [38,39], electrical pulses in the heart [40–42].
A major advantage of automata is that they require less computational resources than typical numerical
integration approaches.

Results presented in the paper give a rather ‘computer engineering’ view on a computation
implementable with travelling localizations on acting bundle networks. We do not speculate about
potential biological meanings of the phenomena described. That could be a scope of future studies.

The paper is structured as follows. Our modelling approach is described in detail in §2. This includes
a representation of a three-dimensional actin bundle network (§2.1), a structure of an automaton model
to simulate propagation of impulses on the actin bundle network (§2.2), and an interface with the
actin network (§2.3). In §2.4, we analyse dependencies of a number of Boolean gates implemented in
the network on an excitation threshold and refractory period. Thus, we justify the selection of these
parameters for the construction of the actin machine. The actin droplet machine is designed and
analysed in §3. Section 4 discusses the results in a context of cytoskeleton computing and outlines
directions for future research.
2. Methods
The overall approach is the following: we simulate the actin bundle network using three-dimensional
arrays of finite-state machines, cellular automata. We select several domains of the network and assign
them as inputs and outputs. We represent Boolean logic values with spikes of electrical activity, which
are schematically represented as a virtual experiment in figure 1. We stimulate the network with all
possible configurations of input strings and record spikes on the outputs. Based on the mapping of
configurations of input spikes to output spikes, we reconstruct logical functions implemented by the
network. In our design of the actin droplet machine, we consider outputs recorded on all electrodes at
a given time step as a binary string and then represent the actin droplet machine as a finite-state
machine whose states are binary strings of a given length.

2.1. Three-dimensional actin network
As a template for our actin droplet machine, we used an actual three-dimensional actin bundle network
produced in laboratory experiments with purified proteins (figure 2). The underlying experimental
method was shown to reliably produce regularly spaced bundle networks from homogeneous
filament solutions inside small isolated droplets in the absence of molecular motor-driven processes or
other accessory proteins [15]. These structures effectively form very stable and long-living three-
dimensional networks, which can be readily imaged with confocal microscopy resulting in stacks of
optical two-dimensional slices (figure 2). Dimensions of the network are the following: size along x
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Figure 1. A scheme of a virtual experiment. The actin bundle network is shown as a three-dimensional Delaunay triangulation.
Electrodes are shown by thick lines and labelled E1 to E5. Exemplary trains of spikes are shown near the electrodes.
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coordinate is 225 μm (width), along y coordinate is 222 μm (height), along z coordinate is 112 μm (depth),
voxel width is 0.22 μm, height 0.22 μm and depth 4 μm.

Original image: Az = (aijz)1≤i,j≤n,1≤z≤m, aijz ∈ {rijz, gijz, bijz}, where n = 1024, m = 30, rijz, gijz, bijz are
RGB values of the element at ijz, 1 ≤ rijz, gijz, bijz ≤ 255 was converted to a conductive matrix
C = (cijz)1≤i,j≤n,1≤z≤m as follows: cijz = 1 if rijz > 40, gijz > 19 and bijz > 19. The conductive matrices are
shown in figure 3. The three-dimensional conductive matrix is compressed along the z-axis to reduce
consumption of computational resources, scenario of the non-compressed matrix will be considered
in future papers.

2.2. Automaton model
To model activity of an actin bundle network we represent it as an automaton A ¼ hC, Q, r, h, u, di. C, Z3

is a set of voxels, or a conductive matrix C defined in §2.1. Each voxel p∈C takes states from the set
Q ¼ {w , †, �}, excited (w), refractory (†), resting (°) and is complemented by a counter hp to handle the
temporal decay of the refractory state. Following discrete time steps, each voxel p updates its state
depending on its current state and the states of its neighbourhood u(p) = {q∈C : d(p, q)≤ r}, where d(p, q)
is an Euclidean distance between voxels p and q; r∈N is a neighbourhood radius. θ∈N is an excitation
threshold and δ∈N is refractory delay. All voxels update their states in parallel and by the same rule:

ptþ1
w , if (pt ¼ �) and (s(p)t . u)
†, if (pt ¼w ) or ((pt ¼ †) and (htp . 0))
�, otherwise

8<
:

and

htþ1
p ¼

d, if (ptþ1 ¼ †) and (pt ¼w)
htp � 1, if (ptþ1 ¼ †) and (htp . 0)
0, otherwise:

8<
:

Every resting (°) voxel of C excites (w) at the moment t + 1 if a number of its excited neighbours at the
moment t, s(p)t ¼ j{q [ u(p) : qt ¼w}j, exceeds a threshold θ. An excited voxel pt ¼w takes the refractory



(a) (b) (c) (d)

(e) ( f ) (g) (h)

(i) ( j) (k) (l)

(m) (n) (o) (p)

Figure 2. Exemplary z-slices of a three-dimensional actin bundle network reconstructed as described in [15]. (a) z = 1, (b) z = 2,
(c) z = 3, (d ) z = 4, (e) z = 5, ( f ) z = 6, (g) z = 7, (h) z = 8, (i) z = 9, ( j ) z = 10, (k) z = 11, (l ) z = 12, (m) z = 13, (n) z = 14,
(o) z = 15 and ( p) z = 16.
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state † at the next time step t + 1 and at the same moment a counter of refractory state hp is set to the
refractory delay δ. The counter is decremented, htþ1

p ¼ htp � 1 at each iteration until it becomes
0. When the counter hp becomes zero the voxel p returns to the resting state °. For all results shown in
this manuscript, the neighbourhood radius was set to r = 3. Choices of θ and δ are considered in §2.4.

2.3. Interfacing with the network
To stimulate the network and to record activity of the network, we assigned several domains of C as
electrodes. We calculated a potential ptx at an electrode location c∈C as pc ¼ jz : d(c, z) , re and zt ¼wj,
where d(c, z) is an Euclidean distance between sites x and z in three-dimensional space. We have
chosen an electrode radius of re = 4 voxels and conducted two families of experiments with two
configurations of electrodes.

In the first family of experiments E1, we studied frequencies of two-input-one-output Boolean functions
implementable in the network. We used 10 electrodes, their coordinates are listed in table 1 and a
configuration is shown in figure 4a. Electrodes E0 representing input x and E9 representing input y are
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Figure 3. Exemplary z-slices of ‘conductive’ geometries C selected from the three-dimensional actin bundle network shown in figure 2,
which were reconstructed as described in [15]. (a) z = 1, (b) z = 2, (c) z = 3, (d ) z = 4, (e) z = 5, ( f ) z = 6, (g) z = 7, (h) z = 8,
(i) z = 9, ( j ) z = 10, (k) z = 11, (l ) z = 12, (m) z = 13, (n) z = 14, (o) z = 15 and ( p) z = 16.
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the input electrodes, all others are output electrodes representing outputs z1,…, z8. Results are presented in
§2.4. In the second family of experiments E2, we used six electrodes (table 2 and figure 4b). All electrodes
were considered as inputs during stimulation and outputs during recording of the network activity.

Exemplary snapshots of excitation dynamics on the network are shown in figure 5. Domains
corresponding to the two electrodes e0 and e9 (table 1 and figure 4a) have been excited (figure 5a). The
excitation wave fronts propagates away from e0 and e9 (figure 5b). The fronts traverse the whole
breadth of the network (figure 5c). Due to the presence of circular conductive paths in the network,
the repetitive patterns of activity emerge (figure 5d ). Recordings of potential and videos of
experiments are available within the Zenodo repository [43].

2.4. Selecting excitation threshold and refractory delay to maximize a number of logical gates
To design an actin droplet machine with complex behaviour, we need to find values of refractory delay
and excitation threshold for which the actin bundles network executes a maximum of Boolean gates. To
map dynamics of the network onto sets of gates, we undertook the following trials of stimulation:



(a) (b)

Figure 4. Configurations of electrodes in the three-dimensional network of actin bundles used in (a) E1 and (b) E2. Depth of the
network is shown by level of grey. Sizes of the electrodes are shown in perspective.

Table 1. Coordinates of electrodes in experiments family E1.

e i j z

1 369 567 6

2 509 580 10

3 631 590 10

4 382 322 12

5 533 331 23

6 626 463 7

7 358 676 22

8 369 424 7

9 572 691 17

10 705 394 17
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1. fixed refractory delay δ = 20 and excitation threshold θ = 4, 5,…, 12,
2. fixed excitation threshold θ = 7, and refractory delay δ = 10, 15, 17,…, 24, 30.
An example of the network spiking activity as a response to stimulation is shown in figure 1. We
stimulated the network with all possible configurations of inputs, recorded the network’s electrical
dynamics and then extracted logical gates as follows. For each possible combination (i, j, k), 1≤ i, j,
k≤ 6, i≠ j, i≠ k, j≠ k, we considered electrodes Ei and E j to be inputs, representing Boolean variables x
and y, respectively, and electrode Ek as output electrode, representing the result of a Boolean function.
To input x =TRUE, we applied a current to electrode Ei, to input y =TRUE to electrode E j. Then we
recorded the potential at electrode Ek. Two-input-one-output logical functions were extracted from the
spiking events as follows. Assume each spike represents logical TRUE and that spikes being less than
six iterations closer to each other happen at the same moment. Then a representation of gates by
spikes and their combination will be as shown in figure 6.

For each combination (ρ, θ), we counted the numbers of gates OR (x + y), AND (xy), XOR (x�), NOT-AND

(xy), AND-NOT (xy) and SELECT (x, y). We found that overall the total number of gates ν(θ) realized by the
network decreases with increase of θ (figure 7a). The function ν(θ) is nonlinear and could be adequately
described by a five degree polynomial. The function reaches its maximal value at θ = 7 (figure 7a). OR

gates are most commonly realized at θ = 11, AND gates at θ = 6 and xor gates at θ = 5 as well as θ = 7



(a) (b)

(c) (d)

Figure 5. Snapshots of excitation dynamics on the network. The excitation wavefront is red and the refractory tail is magenta. The
excitation threshold is θ = 7 and the refractory delay is δ = 20, (a) t = 13, (b) t = 50, (c) t = 200 and (d ) t = 500.

Table 2. Coordinates of electrodes in experiments family E2.

e i j z

1 369 567 6

2 509 580 10

3 631 590 10

4 382 322 12

5 533 331 23

6 369 424 7

7 572 691 17

8 705 394 17
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(figure 7b). A number of AND-NOT gates implemented by the network reaches its highest value at θ = 6
then drops sharply after θ8 (figure 7c). NOT-AND gates are more common at θ = 5, 7, 9, 11, while
SELECT(x) has its peak at θ = 7 and SELECT(y) at θ = 8, 9 (figure 7c). A total number of gates realized in
the network with the excitability threshold fixed to θ = 7 decreases with the increase of δ. Oscillations
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Figure 6. Representation of two-inputs-one-output Boolean gates by combinations of spikes. Black dotted line shows the potential
at an output electrode when the network was stimulated by input pair (x, y) =(FALSE, TRUE), red solid by (TRUE, FALSE) and green
dashed by (x, y) =(TRUE, TRUE).
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of ν(δ) are visible at 15≤ δ≤ 25 (figure 7d ). The three highest values of ν(δ) are achieved at δ = 10, 17 and
20. Let us look now at the dependence of the numbers of OR, AND and XOR gates of the refractory delay δ in
figure 7e. The number of OR gates increases with δ increasing from 10 to 15, but then drops substantially at
δ = 18 to reach its maximum at δ = 19. Numbers of gates AND and XOR behave similarly to each other. They
both have a pronounced peak at δ = 20 (figure 7e).

The gate frequency analysis presented in this section allows us to choose θ = 7 and δ = 20 for an actin
droplet machine constructed in the next section.
3. Actin droplet machine
An actin droplet machine is defined as a tuple M ¼ hA, k, E, S, Fi, where A is an actin network
automaton, defined in §2.2, k is a number of electrodes, E is a configuration of electrodes, S = {0, 1}k, F
is a state-transition function F : S→ S that implements a mapping between sets of all possible
configurations of binary strings of length k. In the experiments reported here k = 6.

In our experiments, we have chosen six electrodes, their locations are shown in figure 4b and exact
coordinates in table 2. Thus, F : {0, 1}6→ {0, 1}6 and the machine M has 64 states. We represent the
inputs and the machine states in decimal encoding. Spikes detected in response to every input from
{0, 1}6 are shown in figure 8.

Global transition graphs ofM for selected inputs are shown in figure 9. Nodes of the graphs are states
of M, edges show transitions between the states. These directed graphs are defined as follows. There is
an edge from node a to node b if there is such 1≤ t≤ 1000 that Mt ¼ a and Mtþ1 ¼ b.

Let us now define a weighted global transition graph G ¼ hQ, E, wi, where Q is a set of nodes
(isomorphic to the {0, 1}6), and E is a set of edges, and weighting function w : E→ [0, 1] assigning a
number of a unit interval to each edge. Let a, b∈Q and e(a, b)∈ E then a normalized weight is

calculated as w(e(a, b)) ¼ P
i[Q,t[T x(s

t ¼ a and stþ1 ¼ b)
� �

=
P

d[Q,t[T
P

Q,t[T x(s
t ¼ a and stþ1 ¼ d)

� �
,

with χ takes value ‘1’ when the conditions are true and ‘0’ otherwise. In words, w(e(a, b)) is a number
of transitions from a to b observed in the evolution of M for all possible inputs from Q during time
interval T normalized by a total number of transition from a to all other nodes. The graph G is
visualized in figure 10a. Nodes which have predecessors are 1–6, 8–10, 12, 16–21, 24, 25, 28, 32–34,
36–38, 40, 41, 44, 48–50, 52, 53, 56. Nodes without predecessors are 7, 11, 13–15, 22, 23, 26, 27, 29–31,
35, 39, 42, 43, 45–47, 51, 54, 55, 57–63.

Let us convert G to an acyclic non-weighted graph of more likely transitions G�hQ, E�i, where e(a, b)∈E*
if w(e(a, b)) =max{w(e(a, c))|e(a, c)∈ E}. That is for each node we select an outgoing edge with maximum
weight. The graph is a tree, see figure 10b. Most states apart from 1, 2, 4, 8, 16, 20, 32 are Garden-of-Eden
configurations, which have no predecessors. Indegrees ν() of not-Garden-of-Eden nodes are ν(20) = 1,
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Figure 8. All spikes recorded at each electrode for input binary strings from 1 to 63. The representation is implemented as follows.
We stimulate the M with strings from {0, 1}6 and represent a spike detected at time t by a black pixel at position t along
horizontal axis. A plot of each electrode ei represents a binary matrix S = (szt), where 1≤ z≤ 63 and 1≤ t≤ 1000: szt = 1 if
the input configuration was z and a spike was detected at moment t, and szt = 1 otherwise.
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ν(32) = 2, ν(2) = 3, ν(4) = 4, ν(1) = 5, ν(16) = 6, ν(8) = 12. There is one fixed point, the state 1, corresponding
to the situation when a spike is recorded only on electrode e5; it has no successors.

By analysing G we can characterize a richness of M’s responses to input stimuli. We define a richness
as a number of different states over all inputs, as shown in table 3, and distribution in figure 11a. A
number of states produced increases from under five for beginning of M evolution and then reaches
circa seven states on average. Oscillations around this value are seen in (figure 11a). Figure 11b shows
a number of different nodes, generated in evolution of M, stimulated by a given input. There are
below 15 different states found in the evolution in responses to inputs 1 to 21 (21 corresponds to
binary input string 010101); then a number of different nodes stay around 25. The diagram figure 11c
shows how many inputs might lead to a given state/node of M. Some of the states/nodes are seen to
be Garden-of-Eden configurations E (nodes without predecessors) and thus could not be generated by
stimulating M by sequences from Q− E.

Assume T is a set of temporal moments when the machine responded at least to one input string with
a non-zero state. Configurations at each transition t can be considered as outputs representing the
function g : {0,1}6→ {0,1}6. As we can see in table 3, transitions at t = 41 and t = 53 correspond to the
highest number of different binary strings (e1,…, e6). The graph corresponding to g(41) at t = 41 is
shown in figure 12 and is not connected. The small component consists of fixed point 40 (string
‘101000’) with two leafs 39 (‘100111’) and 38 (‘100110’). The largest component has a tree structure at
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large, with cycle 2 (‘000010’)–1 (‘000001’) as a root. Other nodes with most predecessors are 8 (‘001000’),
16 (‘010000’), and 18 (‘010010’).

From the transitions g(41), we can reconstruct Boolean functions realized at each of six electrodes (the
functions are minimized and represented in a disjunctive normal form):
e0 : f0(x0, . . . , x5) ¼ x0 � x1 � x2 � x3 þ x0 � x1 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 þ x0 � x2 � x3 � x4 � x5 þ
x0 � x1 � x2 � x3 � x4 þ x1 � x2 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 � x5

e1 : f1(x0, . . . , x5) ¼ x0 � x1 � x2 � x3 þ x0 � x1 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 þ x0 � x2 � x3 � x4 � x5 þ
x0 � x1 � x2 � x3 � x4 þ x1 � x2 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 � x5

e2 : f2(x0, . . . , x5) ¼ x0 � x1 � x2 � x3 þ x0 � x1 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 þ x0 � x2 � x3 � x4 � x5 þ
x0 � x1 � x2 � x3 � x4 þ x1 � x2 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 � x5

e3 : f3(x0, . . . , x5) ¼ x0 � x1 � x2 � x3 þ x0 � x1 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 þ x0 � x2 � x3 � x4 � x5 þ
x0 � x1 � x2 � x3 � x4 þ x1 � x2 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 � x5



Table 3. Fifty-four state transitions of M over all possible inputs: t is a transition step, μ(t) is a number of different states
appeared over all possible inputs, P(t) is a set of nodes appeared at t.

t μ(t) P(t)

1 3 8, 9, 1,

2 3 16, 32, 8,

3 3 1, 16, 32,

4 3 8, 1, 16,

5 3 1, 8, 16,

6 3 16, 8, 1,

7 4 8, 1, 16, 4,

8 4 1, 16, 8, 5,

9 5 16, 1, 8, 4, 5,

10 4 16, 1, 8, 4,

11 5 8, 1, 16, 20, 4,

12 4 1, 16, 8, 20,

13 6 16, 8, 1, 17, 4, 20,

14 8 8, 16, 17, 4, 20, 1, 32, 2,

15 8 1, 16, 8, 4, 2, 10, 20, 32,

16 6 16, 4, 8, 1, 10, 32,

17 5 16, 1, 4, 8, 9,

18 7 8, 16, 4, 1, 17, 10, 9,

19 6 1, 8, 16, 17, 4, 10,

20 8 16, 1, 8, 17, 4, 24, 10, 2,

21 9 8, 16, 1, 17, 32, 24, 9, 4, 10,

22 6 16, 1, 8, 32, 9, 4,

23 7 8, 1, 16, 4, 32, 9, 17,

24 6 1, 16, 17, 4, 32, 8,

25 7 16, 1, 8, 4, 17, 32, 9,

26 6 8, 16, 4, 12, 1, 17,

27 6 1, 8, 16, 4, 17, 32,

28 6 16, 8, 4, 1, 24, 32,

29 7 8, 1, 4, 16, 12, 24, 32,

30 7 16, 1, 8, 4, 17, 2, 32,

31 9 8, 1, 24, 16, 12, 4, 2, 17, 32,

32 7 1, 16, 8, 24, 17, 2, 40,

33 9 16, 8, 1, 4, 40, 17, 24, 32, 2,

34 7 8, 1, 16, 24, 40, 4, 32,

35 6 1, 16, 8, 4, 24, 2,

36 6 16, 8, 1, 17, 4, 32,

37 7 8, 16, 17, 4, 1, 40, 2,

38 7 1, 8, 16, 17, 4, 24, 2,

39 7 16, 1, 8, 17, 9, 4, 2,

40 7 8, 16, 4, 1, 24, 40, 2,

41 10 1, 8, 16, 9, 17, 4, 18, 24, 40, 2,

(Continued.)
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Table 3. (Continued.)

t μ(t) P(t)

42 8 16, 1, 8, 4, 18, 33, 40, 24,

43 9 8, 1, 16, 4, 24, 33, 18, 32, 34,

44 9 1, 16, 8, 4, 17, 33, 24, 32, 40,

45 7 16, 8, 4, 1, 12, 24, 34,

46 7 8, 1, 16, 4, 24, 18, 34,

47 5 1, 16, 8, 4, 33,

48 5 16, 8, 1, 4, 17,

49 8 8, 1, 16, 4, 20, 32, 24, 19,

50 6 1, 16, 8, 4, 17, 32,

51 8 16, 8, 1, 4, 17, 32, 41, 19,

52 9 8, 16, 4, 1, 32, 33, 41, 2, 19,

53 10 1, 8, 16, 4, 20, 10, 2, 41, 32, 19,

54 9 16, 1, 8, 5, 17, 4, 2, 32, 19,
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Figure 11. Distributions characterizing richness of M’s responses. (a) Different states per transitions over all inputs. Horizontal axis
shows steps of M transitions. Vertical axis is a number of different states. (b) Nodes per input. Horizontal axis shows decimal
values of input strings. Horizon axis shows a number of different states/nodes generates in the evolution ofM. (c) Inputs per node.
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e4 : f4(x0, . . . , x5) ¼ x0 � x1 � x2 � x3 þ x0 � x1 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 þ x0 � x2 � x3 � x4 � x5 þ
x0 � x1 � x2 � x3 � x4 þ x1 � x2 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 � x5

e5 : f5(x0, . . . , x5) ¼ x0 � x1 � x2 � x3 þ x0 � x1 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 þ x0 � x2 � x3 � x4 � x5 þ
x0 � x1 � x2 � x3 � x4 þ x1 � x2 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 � x5 þ x0 � x1 � x2 � x3 � x4 � x5:

4. Discussion
Early concepts of sub-cellular computing on cytoskeleton networks as microtubule automata [44–46] and
information processing in actin-tubulin networks [47] did not specify what type of ‘computation’ or
‘information processing’ the cytoskeleton networks could execute and how exactly they do this. We
implemented several concrete implementations of logical gates and functions on a single actin
filament [48] and on an intersection of several actin filaments [49] via collisions between solitons. We
also used a reservoir-computing-like approach to discover functions on a single actin unit [50] and
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filament [51]. Later, we realized that it might be unrealistic to expect someone to initiate and record
travelling localizations (solitons, impulses) on a single actin filament. Therefore, we developed a
numerical model of spikes propagating on a network of actin filament bundles and demonstrated that
such a network can implement Boolean gates [33].

In the present paper, we reconsidered the whole idea of the information processing on actin networks
and designed an actin droplet machine. The machine is a model of a three-dimensional network, based
on an experimental network developed in a droplet, which executes mapping F of a space of binary
strings of length k on itself. The machine acts as a finite state machine, which behaviour at a low level
is governed by localizations travelling along the networks and interacting with each other. By
focusing on a single element of a string, i.e. a single location of an electrode, we can reconstruct k
functions with k arguments, as we have exemplified at the end of the §3. The exact structure of each
k-ary function is determined by F, which, in turn, is determined by the exact architecture of a three-
dimensional actin network and a configuration of electrodes.

Thus, potential future directions could be in detailed analysis of possible architectures of actin
networks developed in laboratory experiments and evaluation on how far an exact configuration of
electrodes affects the structure of mapping F and corresponding distribution of functions implementable
by the actin droplet machine. The ultimate goal would be to implement actin droplet machines in
laboratory experiments and to cascade several machines into a multi-processors computing architecture.

Conventional hardware is static. Actin networks reconfigure dynamically: some filaments disappear
by depolymerization, new filaments appear by polymerization. This is not a disadvantage of the actin
network computers because: (1) they operate with the speed several orders more than actin
treadmilling rate, (2) actin networks can be stabilized, (3) we can employ dynamic reconfigurablity in
the computation.

A computation in actin bundle networks is implemented with travelling mechanical or electrical
signals. Thus, we could estimate the speed of the signals propagation would be 106 μm s−1, for sound
solitons, or 105–108 μm s−1, for action potential speed [52]. Let us take the lowest estimate 105 μm s−1.
Assuming maximum linear size of an actin droplet machine is ca 250 μm, the machine can process
about 400 parallel inputs per second, thus operating at 0.4 kHz frequency. Commonly, actin
polymerization speed is estimated to be 4 × 10−1 μm s−1 [53]. An acting bundle has up to 500 actin
filaments, which will not fail simultaneously. In fact, we have seen that the networks, once formed,
could remain stable over hours without major rearrangements. In contrast with cells, no actin
accessory proteins were used and no energy in the form of ATP was provided. The structures self-
assembled solely driven by thermodynamic arguments into a stable, frozen state. If we would neglect
these experimental findings and would assume an active network with high treadmilling rates, we
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can consider the network being fixed for at least 10 s, which allows us to execute up to 4 × 103 cycles of
computation.

The life-time of the fixed network can be even substantially changed by using accessory proteins such
as purely synthetic actin crosslinkers from DNA and peptides [54], increasing a ratio of integrine [55] and
drebrin [56] peptides in the matrix solution, hardening the filaments with α-actinin [57] and stabilizing
the filament with synthetic mini-nebuline [58,59]. Using accessory proteins such as gelsolin, cofilin,
formin and myosins would even allow us to speed up potential reconfiguration effects, enabling us to
build up a dynamic computing system [6].

Dynamical reconfiguration of actin network computers can be used as an advantage for accelerating
Boolean satisfiability solvers [60], reconfigurable data flow machine for implementing atomic functional
programming languages [61], dynamical genetic programming on evolvable Boolean networks [62,63],
and cryptographic applications [64].
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