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Abstract: Innovative heating networks with a hybrid generation park can make an important
contribution to the energy turnaround. By integrating heat from several heat generators and a high
proportion of different renewable energies, they also have a high degree of flexibility. Optimizing
the operation of such systems is a complex task due to the diversity of producers, the use of storage
systems with stratified charging and continuous changes in system properties. Besides, it is necessary
to consider conflicting economic and ecological targets. Operational optimization of district heating
systems using nonlinear models is underrepresented in practice and science. Considering ecological
and economic targets, the current work focuses on developing a procedure for an operational
optimization, which ensures a continuous optimal operation of the heat and power generators of a
local heating network. The approach presented uses machine learning methods, including Gaussian
process regressions for a repeatedly updated multi-stage approximation of the nonlinear system
behavior. For the formation of the approximation models, a selection algorithm is utilized to choose
only essential and current process data. By using a global optimization algorithm, a multi-objective
optimal setting of the controllable variables of the system can be found in feasible time. Implemented in
the control system of a dynamic simulation, significant improvements of the target variables (operating
costs, CO2 emissions) can be seen in comparison with a standard control system. The investigation
of different scenarios illustrates the high relevance of the presented methodology.

Keywords: model predictive control; machine learning; simulation; district heating system; Gaussian
process regression

1. Introduction

The German government-driven turnaround towards the increased use of renewable energy
sources has far-reaching effects on the structure of the national energy supply [1]. In addition to effects
on the electricity sector, this naturally also affects the heating market to achieve the energy policy
objectives at the global, European and national level. To this end, it is necessary to further develop
heat supply concepts and adapt them to the requirements of a holistic energy turnaround. Systems of
the future, both centralized and decentralized, will be characterized by a high proportion of renewable
energy with low primary energy use and low CO2 emissions, as well as a high degree of flexibility due
to the fluctuation of renewable energies. Energy industry conditions that change over time, e.g., on the
electricity exchange, are also experiencing increasing relevance [2].

In a district in Germany with around 100 residential units the opportunity is offered to develop an
innovative method for optimizing the use of heat and power generation. The heat supply of the hybrid
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district heating network consists of a solar thermal plant, an electrically driven heat pump, a natural
gas-powered cogeneration unit (also called combined heat and power, abbreviated with CHP), a natural
gas boiler and a heat storage with internally stratified charge lances. As shown by Pater [2], the use of
such a hybrid installation can be very beneficial for increasing the renewable energy share, even though
the operation is very complex and more advanced algorithms are required to fully exploit the potential.
The challenges in operating such a system are the need to continuously consider changing boundary
conditions and system properties and to decide in a practical time for optimal use of the controllable heat
suppliers regarding divergent operational targets (e.g., operating costs, CO2 emissions). Model-based
approaches, which learn from historical data and map the prospective nonlinear system behavior,
are a promising solution. However, multi-objective optimization, which involves predicting the
complex future trends, places very high demands on the prediction quality of these models and their
computational effort. A difficult tension exists between accuracy and speed, leading to the research
questions of which target shall be addressed in this work:

• How can a multivariate prognosis of the nonlinear system behavior be created, enabling the target
variables to be optimized as well as approximated with sufficient accuracy and in a sufficiently
short time?

• What is the advantage of an operational optimization concept compared to a standard control?

The structure of this work is as follows: After a literature review on the topic of operational
optimization of local heating networks and the presentation of the research gap in Section 2,
Section 3 describes the dynamic simulation of the local heating supply under construction. Section 4
presents the approach to model predictive control (MPC) through a multi-stage approximation, which is
implemented in the dynamic simulation and sets an optimal operation in a time-discrete manner.
Since the optimization depends to a large extent on the regulatory framework, Section 5 considers
three different scenarios that are relevant in Germany and differ, for example, in the design of state
incentives. A discussion of the results of the optimization in the simulation environment is provided
in Section 6 for the considered scenarios as well as for different optimization goals. Section 7 finally
concludes this work with a summary and an outlook on future work, also taking into account the grid
stabilization and sector coupling.

2. Literature Review

Standard controls, as used in practice for hybrid local heating systems with storage solutions,
prioritize the heat generators depending on their economic efficiency and have one or more control
variables, for example, the storage tanks charge state or the temperature in the local heating network.
This ensures that the heat demand is covered in line with the costs. However, future changes are
not considered.

For many years, however, methods have been developed with which future influences and
developments can be considered for the planning of operation. These are based on a system modelling
via energy balances, which are solved using the formulation of (mixed-)integer linear programs (MILP).
The result is the optimal switch-on sequence of the available devices concerning a target value such as
the operating costs at discrete time intervals, considering boundaries such as the minimum switch-on
time of individual devices. A great advantage of linearization is the guarantee of finding a global
optimum or a statement about the proximity to it. Verrilli et al. [3] developed a method for online
operational optimization of a local heating supply with a fluctuating load to reduce the operating and
maintenance costs considering the predicted heat load. The system was modeled using energy balances
and optimized using mixed-integer programs. Stange et al. [4] also describe such an operational
optimization, which has been developed over several decades. Guzek et al. [5] also use linearized
models for optimization with integer programming, whereby the linearization is partly data-based,
i.e., partly based on historical measurement data from the plant. However, the procedure is not used
for online optimization, i.e., continuous tracking of the optimization based on current information.
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The literature also shows that the consideration of heat storages poses problems. To take into
account a certain stratification in heat storages, in Steen et al. [6] such storage is divided into two separate
layers with separate energy contents to be able to optimize the problem via MILP. Lengyl et al. [7]
divide the storage tank into different layers with constant temperature for different heat suppliers. It is
not clear whether such a procedure allows online operational optimization. A good overview of further
work on the optimization of energy supply systems is provided in Talebi et al. [8], whereby it becomes
clear that linearization of the problem and the use of MILP is state of the art. The biggest challenge
in the formulation of linear programs for optimal operational planning is the necessary linearization
of the problem. Also, endogenous variables, i.e., those that depend on themselves, cannot be dealt
with in the determination of target variables, as summarized by Urbanucci [9]. This circumstance
is especially disadvantageous when considering thermal storage systems with stratified charging
systems, where the operating behavior is influenced by the temperature stratification.

To circumvent the mentioned limitations, nonlinear model-based predictive controls from the
field of machine learning can be used. For these, databased models are created with which it is possible
to map nonlinear relationships. The use of nonlinear models from the field of machine learning has
been used for a long time for the prediction of, e.g., weather data. Two examples among many are
presented in Kato et al. [10] and Xie [11] with the prediction of the heat demand of buildings through
artificial neural networks (ANN). However, there are also examples of online operational optimization.
Kaiser et al. [12] apply their developed SINDY algorithm to various examples of dynamic systems in
a simulation environment, which automatically identifies the respective system behavior based on
measurement data and shows good prediction properties also for nonlinear system behavior. Limon and
Maciejowski [13] also present an approach for data-based modeling and operational optimization,
for the example of a torque-operated pendulum with good results. The authors fear, however,
that higher-dimensional problems will reach their limits concerning computing time. There are only
a few examples in the field of operational optimization of local heat supply systems. Cox et al. [14]
use ANNs to optimize the operation of a refrigeration network, but only to represent the behavior of
the cold storage as a thermal mass. Nevertheless, the results show that operational optimization is
possible and can lead to advantageous operation modes.

The literature review shows that there is a research gap regarding the use of databased nonlinear
models for online operational optimization of local heating systems. The use of these models can lead
to greater proximity to reality due to the actual occurrence of nonlinearities and the intrinsic actuality
of the models. In addition, multi-objective optimizations in a short time and further analysis, such as
optimization under consideration of uncertainties, are possible. Such databased, nonlinear modeling
for online operational optimization of a local heating supply is, therefore, to be presented in this work
to contribute to its meaningful operation in the conflict between economic and ecological requirements.
In the future, the approach presented here will be applied to a newly build local heating supply in
Germany, which will be discussed in the next section.

3. Description of Simulation Model

The simulation model is the image of a heat plant in Kempen on the Lower Rhine, Germany,
which has been in operation since the end of 2019. Connected to a fourth-generation heating
network [15], it will supply around 900 MWh of heat per year to a total of 100 residential units.
The supply or return temperature of the heating network is 55 or 35 ◦C throughout the year.

Due to the low supply temperature of 55 ◦C, the heating network enables the efficient use of
heat generators based on renewable energies. In addition to a natural gas cogeneration module with
50 kWel/90 kWth, an electric geothermal heat pump with 60 kWth and a solar thermal plant consisting
of 211 m2 of compound parabolic concentrator vacuum tube collectors feed heat into a 50 m3 heat
storage with a stratified charging system. For thermal security of supply and for peak load, a natural
gas boiler can supply up to 725 kWth of heat directly to the heating network, see Figure 1.
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Lewy number [18] less than one and in order to represent a realistic temperature stratification in the 
storage tank. 

The heating network topology is irrelevant for the simulation of the heating station, only the 
sum of the heat loads occurring in the network is relevant. The total load consists of the heat demand 
for space heating and hot water preparation of the connected residential units plus distribution losses 
in the network. For an approximate calculation of the total building heating load [19], a secondary 
energy consumption of a new building in Germany of about 40 kWh/(m2-a) at 1400 h of full use and 
a total living space of an estimated 14,000 m2 was assumed. With a design outside temperature of 
−8.1 °C at the grid site and a heating limit temperature of 12 °C, a linear model was used to calculate 
an hourly resolved heating load curve for a complete year. The freely available tool DHWcalc [20] 
was used to calculate the heat demand for domestic hot water preparation. This tool generates tap 
profiles for domestic hot water on a statistical basis. By means of an assumed temperature spread 
between cold and hot water of 30 K and the tapping profile the domestic hot water heat demand was 
determined. An approximate heat loss calculation for the heating network considering the structural 
and technical conditions as well as the thermal boundary conditions [21] completes the calculation of 
the temporally resolved total heat load. In the last step, the model of the heating network received a 
thermal mass in the order of magnitude of the real model. Another important boundary condition is 
the weather (global radiation, outside air temperature, wind speed, degree of coverage, etc.). For this 
purpose, data from a weather station operated by the German Weather Service in nearby Krefeld is 
used. To calculate the economic target (operating costs), energy price data (stock market price of 
natural gas [22] and electricity [23])) as well as taxes, levies and government subsidies in Germany 
must also be taken into account. The ecological target (CO2 emissions), on the other hand, is 
determined according to norm [24].  

The classical control strategy of energy supply systems is based on a simple switch-on sequence 
of the heat generators. Thereby the units switch on in descending order of their efficiency (for further 

Figure 1. Schematic diagram of the heating station of the local heating network in Kempen (Germany).

The heat station was mapped in detail in the simulation environment Matlab®/Simulink® with
the freely accessible toolbox CARNOT [16]. The toolbox contains models for the thermodynamic
calculation of components of the heating, ventilation and air conditioning (HVAC) category.

Each device model was parameterized according to the manufacturer’s specifications or test
protocols of certified test institutes regarding thermal and electrical power curves as well as control and
regulation. The characteristic values of the high-resolution 3D model [17] of the earth probe field are
derived from the results of a thermal response test of the subsurface. In the simulation, the storage is
vertically subdivided into a total of 50 calculation nodes, while maintaining a Courant-Friedrichs-Lewy
number [18] less than one and in order to represent a realistic temperature stratification in the
storage tank.

The heating network topology is irrelevant for the simulation of the heating station, only the sum
of the heat loads occurring in the network is relevant. The total load consists of the heat demand for
space heating and hot water preparation of the connected residential units plus distribution losses
in the network. For an approximate calculation of the total building heating load [19], a secondary
energy consumption of a new building in Germany of about 40 kWh/(m2-a) at 1400 h of full use and
a total living space of an estimated 14,000 m2 was assumed. With a design outside temperature of
−8.1 ◦C at the grid site and a heating limit temperature of 12 ◦C, a linear model was used to calculate
an hourly resolved heating load curve for a complete year. The freely available tool DHWcalc [20]
was used to calculate the heat demand for domestic hot water preparation. This tool generates tap
profiles for domestic hot water on a statistical basis. By means of an assumed temperature spread
between cold and hot water of 30 K and the tapping profile the domestic hot water heat demand was
determined. An approximate heat loss calculation for the heating network considering the structural
and technical conditions as well as the thermal boundary conditions [21] completes the calculation of
the temporally resolved total heat load. In the last step, the model of the heating network received a
thermal mass in the order of magnitude of the real model. Another important boundary condition is
the weather (global radiation, outside air temperature, wind speed, degree of coverage, etc.). For this
purpose, data from a weather station operated by the German Weather Service in nearby Krefeld is
used. To calculate the economic target (operating costs), energy price data (stock market price of
natural gas [22] and electricity [23])) as well as taxes, levies and government subsidies in Germany must
also be taken into account. The ecological target (CO2 emissions), on the other hand, is determined
according to norm [24].
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The classical control strategy of energy supply systems is based on a simple switch-on sequence
of the heat generators. Thereby the units switch on in descending order of their efficiency (for further
information see Section 5). Since primarily the weather conditions determine the heat output of the solar
thermal system, it cannot be switched on arbitrarily. This results in the following switch-on sequence:
solar thermal (ST), combined heat and power plant (CHP), heat pump (HP), natural gas boiler (NGB).
The latter only feeds directly into the heating network and supplies the residual power to maintain the
required network flow temperature. The remaining heat generators feed only into the heat storage,
which means that their heat generation is decoupled from the heat demand of the network over time.
The solar thermal system always supplies heat as soon as the irradiation is sufficient to reach the required
target value. The CHP starts as soon as the center of the storage falls below a temperature limit. The heat
pump switches in addition, if in the upper third of the storage a temperature limit value is fallen below.
The boiler starts up when supply temperature is below a set point. This is illustrated in Figure 2.
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Figure 2. (Top): Storage temperatures for different relative storage heights (100% = top), (Bottom): Thermal
power of the units with standard control of the local heating supply.

Table 1 shows the results of an exemplary simulation over the period of one year, the heat
generation (Qth,out) as well as the electrical power consumption and generation of the individual
devices (Ael,in or Ael,out) as a consequence of the described regulation. The not shown heat losses in the
distribution network account for about 10% of the total heat demand. The heat losses were estimated by
applying heat transport equations [21] using the real installation situation and soil temperature curve.

Table 1. Results of a simulation for the operation of the local heating network under standard control.

Unit Qth,out in MWh Ael,in in MWh Ael,out in MWh Share in %

ST 125.9 0.2 - 14.6
CHP 440.0 - 226.7 51.2
HP 148.6 33.9 - 17.3

NGB 145.0 - - 16.9
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4. Model Predictive Control Approach

The operational management of the heat supply for a hybrid local heating network can be sensibly
evaluated with ecological as well as economic targets in two directions, e.g., ecologically with the CO2

emissions and economically with the operating costs. Often there is a conflict of objectives because
ecological and economical operation are not compatible with each other.

The aim of this work is therefore to develop a multi-objective operational optimization of the heat
supply for a hybrid local heating network, considering as much information as possible about current
and future conditions and the general system behavior. To achieve this goal, a mathematical description
of the system is first required, with which the future behavior or the target variables to be investigated
are described sufficiently precisely in dependence of various influencing variables. This system
description is then the starting point for an optimization algorithm to determine the optimal settings
of the controllable variables as quickly as possible within a time horizon to be defined. A standard
control according to Section 3 serves as reference and benchmark for the performed investigations.

Against the direct use of the dynamic simulation for the operational optimization speaks the high
time requirement of approx. two minutes per simulated day, which makes an evaluation of thousands
of different settings of the controllable variables for the optimization in practical time (in less than one
minute) impossible. But also, the possibility of convergence problems and other errors that could lead
to a termination prohibit the use of simulation. In addition, the dynamic simulation model would
have to be regularly adapted to the current real conditions (e.g., a deterioration of the system due to
fouling in the heat exchangers), which is a great effort.

An alternative is the use of approximation models, which represent the underlying dynamic system
behavior discretely in time and automatically consider changes in the system behavior. This section
describes how a nonlinear approximation for model-predictive control is developed with the help of
the simulation described in Section 3.

4.1. Approximation of Economical and Ecological Objectives

The model-based operational optimization developed here uses an approximation of the nonlinear
system responses. Considering the target variables CO2 emissions and operating costs, the goal is to
minimize the system response y over a defined prediction horizon tp. The mathematical formulation of
the optimization problem of the system response over the prediction horizon ytp shows Equation (1):

ytp =
t=tp∑
t=0

yt(X, Z, u)·wt

min
w.r.t X|(u,Z)

ytp

(1)

Here, X represents the controllable variables (thermal power of CHP and HP) and Z the system
variables (i.a. heat load, global radiation, ambient temperature) over the course of the prediction horizon
tp and u the state variables (storage temperatures). The weighting vector wt serves to compensate for
increasing uncertainties in the prediction horizon. The system responses ytp are the CO2 emissions E
as well as the operating costs K, which result from the use of secondary energy for heat supply in a
fixed time interval, here one hour, and are summed up over the considered time horizon.

Equation (2) makes it clear that the emissions are a function of the gas input in CHP Qg,CHP
and boiler Qg,NGB as well as the electricity production of CHP module Qel,CHP (credit for electricity
production substituted elsewhere) and the electricity consumption of the heat pump Qel,HP. Equation (3)
shows that the costs are additionally a function of the electricity price cel, the gas price cg and the
emission costs ce (summarized as C):

E = f
(
Qg,CHP, Qg,NGB, Qel,CHP, Qel,HP

)
(2)

K = f
(
Qg,CHP, Qg,NGB, Qel,CHP, Qel,HP, C

)
(3)
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The functional relationships for costs, prices and emissions are defined and known via standards,
laws and regulations and other sources. The secondary energy input in the heat/electricity generators
Qg/el can be considered as a function of the generation powers (see Equation (4)):

Qg/el = f
( .
QCHP/NGB/HP

)
(4)

As described in Section 3, the heat load
.

QL is covered by a thermal storage and a peak load boiler
(

.
QNGB). The latter provides heat when the thermal power of the storage tank

.
QTS is not sufficient

(see Equation (5)):
.

QNGB = max
(
0,

.
QL −

.
QTS

)
(5)

How much thermal output the storage and the boiler provide in a time interval depends on the

temperature distribution of the storage tank
→

TTS and the heat load
.

QL in the respective time interval.
If the uppermost storage layer is above the required network temperature (55 ◦C), the output can be
covered proportionally. If the temperature falls below this value, the storage power is also dependent
on the average thermal power of the CHP module

.
QCHP and heat pump

.
QHP, the power of the solar

thermal plant
.

QST and, due to the heat losses of the storage tank, the ambient air temperature Tamb,
see Equation (6):

.
QTS = f

(
→

TTS,
.

QCHP,
.

QHP,
.

QST, Tamb,
.

QL

)
(6)

The average thermal power of the CHP module and HP are the controllable variables X and
are therefore known or can be, to some extent, freely selected for optimization. The average thermal
output of the solar thermal system is not known, but can be considered in a first approximation as a
function of the global radiation

.
G as well as the ambient temperature and the storage temperatures:

.
QST = f

( .
G,
→

TTS, Tamb

)
(7)

Since this is a time-discrete problem and the inertia of the storage is assumed to be large, only the
temperatures at the beginning and at the end of the considered time interval are relevant for the storage
distribution. The HP feeds below the CHP, which delays the influence of the heat output of the HP
on the storage power. Therefore, also a consideration of the controllable variables from preceding
time steps is necessary, at least of the immediately preceding one.

.
G, Tamb and

.
QL are predictions,

which are made available by models which can be developed and/or by publicly accessible weather
data bases. For this work these variables are called system variables Z and assumed to be known
(=perfect forecast). Thus, the following functional relation results for the thermal power of the thermal
storage in the time interval t:

.
QTS,t = f

(
→

TTS,t,
→

TTS,t+1, Xt, Xt−1, Zt

)
(8)

Here
→

TTS,t and
→

TTS,t+1 are the temperature distributions in the tank at the beginning and at the
end of the considered time interval, here one hour. Since only a finite number of temperature sensors
are installed over the axial extension of the storage, only a finite number of temperature layers in the
nL storage makes sense. In the actual application eleven sensors are used, which corresponds to the
maximum number of temperature layers nL,max. For the storage temperature TTS of layer x after a time
interval t + 1 the following dependence is used (see Equation (9)):

TTS,t+1,x =


f (Xt, Zt, TTS,t,x−1, TTS,t,x), x = nL

f (Xt, Zt, TTS,t,x+1, TTS,t,x−1, TTS,t,x+1, TTS,t,x), 0 < x < nL

f (Xt, Zt, TTS,t,x+1, TTS,t,x), x = 0
(9)
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The temperatures of the adjacent layers as well as the controllable variables and the system
variables influence the temperature distribution. The temperature distribution TTS,0 known at the
beginning of the prediction period is called u0 in the following. Figure 3 summarizes the functional
relation for the calculation of costs and emissions.
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Figure 3. Schematic representation of the developed multi-stage approximation of the objectives
for MPC.

It becomes clear that the storage temperatures calculated for the end of a time interval are
needed for the prediction in the following time step, so it is a recurrent approximation. According to
Equation (9), there are dependencies between the individual storage temperatures, which requires the
best possible predictions of these storage temperatures, especially for longer prediction horizons tp, to
avoid excessive error propagation.

Thus, it can be summarized that the prediction of storage temperatures (see Equation (9)) and
the resulting storage or boiler power (see Equation (5)) as well as secondary energy quantities
(see Equation (4)) are necessary to determine the system response in terms of CO2 emissions and
operating costs for the prediction horizon. The challenge is to form as accurate a prediction as possible
with a low computational effort. In the following, the individual approximation models and their
implementation in the simulation environment are explained.

4.2. Thermal Storage Temperature Approximation

The approximation of the temperatures in the storage must meet particularly high requirements in
terms of quality. Every error in an individual temperature prediction will also influence the prediction
of the other temperatures (see Equation (9)), so that decisions regarding the controllable variables and
the boiler performance prediction are incorrect. It must also be ensured that the model generation
and the actual prediction run quickly to keep the time difference between the recording of the state
(u0, see Figure 3) and the transfer of the optimization results to the control system as small as possible.
Thus, the following problems, which conflict with each other, have to be solved:

• Illustration of the nonlinear behavior of the storage temperatures as exact as possible
• Fast modeling and prediction

There are several possibilities for mapping the nonlinear behavior of the storage temperatures.
By meta-heuristic investigations based on simulation data with the control described in Section 3 it
could be determined that Gaussian process regressions (GPR) are a reasonable possibility.

GPRs are regression functions from the field of machine learning, which can be defined via a
covariance as well as a mean function and represent the functional relationship via a distribution
of functions. Consequently, the prediction of GPRs consists of a mean value and the associated
variance. No complicated search for the optimal architecture as with ANNs has to be carried out
(see e.g., Yu and Zhu [25]), only a few hyper parameters have to be optimized. Detailed information
on GPRs is given in Rasmussen [26].

A disadvantage of Gaussian process regressions is the cubic increase in the computational effort
of the training with the number of training data, as Liu at al. [27] detail. For this reason, a selection
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algorithm based on differential entropy (see Ariel and Louzoun [28]) has been developed in this work
to maximizes the mean information density in a specifically reduced training data set. In addition,
a fixed number of recently accumulated data DHist is added to the training data set to increase the
actuality of the models. The following pseudocode summarizes the data selection Algorithm 1:

Algorithm 1

Initialize best found entropy HBest and the termination increment incr with 0
Create DHist by taking last nHist last samples from Data pool D
Define remaining data as DRed

While (incr < 24)
Create DSD by selecting random samples from DRed
Evaluate differential entropy H from DSD
If (H > HBest)→ DSD has a higher information density than DBest

HBest = H
incr = 0
DBest = DSD

else
incr ++

end
end
Output of data selection: Combined data of DHist and DBest

Figure 4 visualizes the data selection:
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of Gaussian process regressions for storage temperatures approximation.

Table 2 shows the most important settings or hyper parameters that have been selected for training
GPRs to approximate the thermal storage temperatures. These were determined by an extensive
meta-heuristic search, which is not covered in this work.

Table 2. Settings for training GPRs to approximate the storage temperatures.

Settings Abbreviation Value

Kernel function - Squared Exponential, ARD
Basis function - Constant

Optimization algorithm - LFBGS
Number of historical samples nHist 360
Number of selected samples nSD 360

To improve the quality as well as the speed of the downstream approximation, not all possible
storage layers are considered, but only four defined zones. This has the advantage that less
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approximation models must be created, the computational effort is reduced, and the gradients
of the temperature changes are smoothed. Figure 5 shows the division of the heat storage tank into
zones. The entire lower half of the storage tank was averaged to one zone (T1) since this zone is not
directly relevant for the supply of the heating network and is mainly served by solar thermal energy.
From the second zone (T2) the return flow for the CHP and boiler is taken. The temperature there
is essential for the decision whether and how CHP and HP can be operated. The uppermost zone
(T4) has the highest relevance for the supply of the heating network and is considered individually.
The zone (T3) between T4 and T2 is required and used to calculate the storage temperatures above
and below it (see Equation (9)). Due to the stratified charging system of the storage, which is not
shown in Figure 5, the heat from the connected devices is fed into the respective zone with the lowest
temperature difference.
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Figure 5. Schematic representation of the division of the heat storage into four zones, each with its own
approximation model.

To get an impression of the prediction quality of the models, Figure 6 shows the prediction of
the uppermost storage tank temperature as the most important temperature to be predicted over a
period of one day as well as the distribution of the prediction error in the range below 61 ◦C, which is
particularly relevant for operation, for one year.
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Figure 6. Left: Simulated and predicted upper storage temperature (T4) for one day on the basis of
different prediction horizons (if < 24 h, then one after the other; time steps = 1 h), Right: Distribution
of the absolute error of these temperature predictions over the period of one year for the relevant
temperatures below 60 ◦C with and without learning phase.
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The distribution of the prediction errors is additionally shown for data that do not include the
first 30 days, i.e., the learning phase of the optimizer. For the comparison, prediction horizons of
24, 12, 6 and 3 h were used. The differences to the results of the simulation described in Section 3 are
shown as “errors”. Boxplots like the two right graphs in Figure 6 summarize statistical dispersion
and location parameters in one plot. The median of the prediction error is marked as a horizontal line
in the boxes, the range of values between the 25 and 75 percentile is marked as a box (=interquartile
distance). The whiskers show the range of 1.5 times the interquartile distance. All values outside this
distance are defined as outliers and are marked as red crosses.

The exemplary course of simulated storage temperature and the associated predictions show that
a reasonable prediction can be made with the GPR models, considering the large number of sources of
error. The consideration of the distribution of the errors clearly shows that the distribution becomes
narrower with a decreasing prediction horizon. Also, the errors are quite small for most of the time
steps. Taking the example of the prediction with a 24-h prediction horizon, the median error is −0.05 K
with a standard deviation of ±0.6 K (approx. 2.3% relative deviation with respect to the mean value of
the temperature in this range). High errors can have a variety of reasons, but especially the low data
availability at the beginning of the predictions at the beginning of the year and the reduced amount of
data for training due to the selection algorithm. If the first 30 days (training phase) are not considered,
the distribution of the prediction errors becomes narrower. The relative standard deviation in the case
of the 24 h prediction is reduced from 2.3 to 1.9%.

To get a further impression of the prediction quality of the models, Figure 7 also shows the
prediction of the further temperature layers for an exemplary section, in all cases with a prediction
horizon of 12 h.
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Figure 7. Simulated and predicted temperatures of the four temperature layers in the heat storage,
each with a 12-h prediction horizon.

The effects of the storage temperature prediction on the prediction of the boiler power as well as
the final calculation of the target values are shown in the next section.

4.3. Boiler Power and End Energy Usage Approximation

Figure 8 visualizes the boiler power over the average heat load as well as the uppermost storage
temperature at the end of a time interval. The data are taken from a yearly simulation where random
settings of the controllable variables were made.
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The mean boiler power (and conversely, inversely proportional to the storage power) behaves
nonlinear. As the upper storage temperature rises, the required boiler power decreases to 0 kW,
where it remains even if the storage temperature continues to rise. Below the grid temperature of
55 ◦C, more boiler power is required, depending on the heat output of the CHP and HP as well as the
storage temperature and the heat load.

Using a similar meta-heuristic approach as mentioned in the last subchapter, it was found that the
approximation of the average storage power in the next time interval and, analogously, the predicted
power of the boiler Q̂NGB (cf. Equation (5)) can be described via a linear regression including interactions.
Equation (10) shows the general function whose regression coefficients are determined using the
Least-Square method:

Q̂NGB =

 b0 +
j=n∑
j=1

b jx j +
j=n−1∑

j=1

k=n∑
k= j+1

b j,kx jxk, TTS,t+1,4 < 61degC

0, TTS,t+1,4 ≥ 61degC
n = Number o f Factors
x = Normalized Factor Setting
b = Regression Coe f f icient in kW
TTS,t+1,4 = Upper Storage Temperature in degC

(10)

In contrast to the prediction of the storage temperatures, the boiler performance is not a
self-dependent prediction. Also, the use of simple regressions allows the use of a larger data
set without time criticality, therefore the selection of data shown in Section 4.3 is not necessary here.

Figure 9 shows, analogous to Figure 6, the course of the boiler performance prediction for one day
and the distribution of the absolute prediction errors for different prediction horizons, whereas the
storage temperatures required for the prediction (cf. Equation (5)) again come from the models
described in Section 4.3. Most of the errors are quite small. Single large outliers can be mainly due to
the erroneous predictions of storage temperatures and the inaccuracies of the linearized model. For the
prediction with a horizon of 24 h the median of the prediction error is 0 kW with a standard deviation
of ±4.7 kW, without the first 30 days the standard deviation is reduced to ±4.2 kW.
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Figure 9. Left: Exemplary course of the boiler power prediction for one day based on different
prediction horizons (if < 24 h, then one after another; time steps = 1 h) (left) as well as the distribution
of the absolute error of these output prediction over the period of one year (right) with and without
training phase.

Like the boiler performance prediction, classical databased regression functions can be used
for secondary energy predictions (gas consumption of CHP and boiler, electricity production of the
CHP and electricity consumption of the WP, see Equation (4)). The resulting operating costs and
CO2 emissions can be calculated using completely defined, functional relationships. Figure 10 shows
the observed over the predicted sum of operating costs and CO2 emissions for different prediction
horizons. The additionally given coefficient of determination R2 as a quantitative evaluation criterion
shows the percentage of explained variance in the total variance.
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Figure 10. Observed over predicted sum of operating costs (left) and CO2 emissions (right) for different
prediction horizons (PH) over the period of one year.

All plots show that the prediction of the sum of operating costs and CO2 emissions works very
well. The individual prediction errors of the underlying models partially balance each other out over
the prediction horizon. A longer prediction horizon leads to a better balance and thus to a higher
degree of certainty. Whether the achieved prediction quality is sufficient to enable a meaningful
optimization is discussed in Section 6.
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4.4. Implementation in Simulation Environment

To use the approximations for an optimization, the data generation and multi-stage modeling
(see Sections 4.2 and 4.3) must be combined with an optimization algorithm. For the multi-objective
optimization, here of operating costs and CO2 emissions, the use of a multi-swarm optimization
(as developed by Coello Coello and Lechuga [29]) has proven to be performant. Several basic
populations are moved through a search space by passing on the information of non-dominated
individuals, whereby different approaches are used to reduce getting stuck in a local optimum. It is
shown that especially by vectorizing the properties of the considered individuals or by parallelizing
the evaluation of the functional relationships a solution can be found in a sufficiently fast time (here in
less than 30 s).

In order that the optimization of the operation can take place without user intervention,
an automated evaluation of the non-dominated or pareto-optimal solutions must be performed
in the multi-objective search space. In this work, the Euclidean distance d2 of the pareto-optimal
solutions ypo to the theoretical optimum yto is calculated (see Equation (11)). The theoretical optimum
is initially approximated by scanning the design space by an equally distributed experimental design
(see Ye [30] for more details):

d2
(
yto, ypo

)
=

√√√ 2∑
k=1

∣∣∣yto,k − ypo,k
∣∣∣2 (11)

Figure 11 shows the exemplary, abstracted result of a multi-swarm optimization, including
selection of the pareto-optimal solution with the smallest Euclidean distance to the theoretical optimum
as best compromise of the achievable target values
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Figure 11. Schematic visualization of the resulting pareto-optimal solutions, including the choice of the
solution with the best compromise between the reachable target values.

The optimization starts in the simulation environment after two simulated days, because then a
first databased training of the approximation models is possible. The prediction horizon (e.g., 24 h)
as well as the target variables to be optimized are freely selectable at the beginning. Every hour,
the different approximation models are created based on the generated data and the optimization or
minimization of the target value(s) in the prediction horizon is performed. As a result, the settings of
the controllable variables (average power of CHP and HP) for the next time interval, i.e., for the next
hour, are transmitted to the control system of the dynamic simulation. After another simulated hour,
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the new data points are added to the data pool for the formation of the approximation models and the
optimization starts again.

For the optimization, additional boundary conditions are considered. For example, CHP and HP
are not operated if the inlet temperature to these units is too high. Start-up processes that limit or
reduce the output power are also considered.

To evaluate the operational optimization, the difference between the cumulated targets of the
reference and the optimization is calculated:

dK =
tmax∑
t=1

Kre f ,t −Kopt,t

tmax = Number o f considered time steps
Kre f ,t = Costs o f Operation f or time step t with standard controller

Kopt,t = Costs o f Operation f or time step t with optimization

(12)

dE =
tmax∑
t=1

Ere f ,t − Eopt,t

Ere f ,t = CO2 − Emissions f or time step t with standard controller
Eopt,t = CO2 − Emissions f or time step t with optimization

(13)

5. Description of Relevant Data and Scenarios

An economic and ecological evaluation of plant operation always depends on the applicable
energy-economic and political framework conditions. For example, the plant described in Section 3
benefits from the current German policy of promoting the maintenance, modernization and expansion
of combined heat and power generation, recorded in the so-called KWKG [31]. The KWKG creates
favorable economic conditions for the operation of a CHP plant by applying a preferential tax rate
to fossil fuels and paying a performance-related surcharge for a limited period per kilowatt-hour of
electricity generated. The ecological assessment benefits from the so-called electricity credit method [32].
With this method, it is assumed that the amount of electricity generated by the cogeneration plant will
mainly displace electricity from hard coal-fired power plants, where emissions and primary energy
are saved. The CHP plant receives these savings as a credit on the emissions released during its own
operation or on the primary energy used which means that emissions and primary energy use of
the CHP plant are reduced to below zero, especially at high electrical efficiencies. According to the
Building Energy Act (GEG) [33], which has been in force in Germany since November 2020, operators
of CHP plants may only give a value of zero as the lowest value for emissions and a value of 0.3
for the primary energy factor (= primary energy used/heat output) (up to 0.2 for 100% renewable
primary energy). Due to the aspects described, CHP plants, especially those with high electrical
efficiencies, are currently strongly favored in Germany, both economically and ecologically. Only in
times of negative electricity prices below about minus 10 €/MWh does an electrically driven heat
pump achieve lower heat generation costs than a CHP plant, since no surcharges are paid for the
CHP electricity in such times. These energy-political boundary conditions, which are valid today,
are included in scenario 1.

For the 2017 and 2018 period under consideration, Figure 12 shows the theoretical heat production
costs including all subsidies, taxes and charges in Germany as a function of the actual exchange
price for electricity and gas for the German energy market for various heat generators as a box plot.
In addition to the boxplots, the emission factors of the heat generators are shown. Since the specific
emission factors per kWh of consumed secondary energy are fixed and constant in the JIT, the emission
factors of the heat generators (=emission per kWh of heat emitted) are not subject to any fluctuation at
constant assumed efficiencies.
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Figure 12. Scenario 1—Distribution of the heat production costs and values of CO2 emission factors for
different heat generators for the energy policy framework conditions in Germany based on data from
2017 and 2018, with KWKG and electricity credit method.

The median values of the heat production costs show that, apart from the feed-in priority of the
solar thermal plant (ST), the simple switch-on sequence of the heat generators according to the model
in Section 3 represents the most economical and ecological operation for the predominant time of
the year under the currently prevailing boundary conditions. The red crosses in the figure indicate
outliers in the costs, which are due to a strong variability of electricity and gas prices on the stock
exchange. In the case of the CHP plant, the outliers above 20 €/MWhth mean negative electricity prices
and thus the omission of the surcharges paid under the KWKG. At the same time, the heat production
costs of the heat pump sink by the negative electricity prices, whereby it would be more economical,
but not more ecological in these few hours in the comparison scenario to deviate from the classical
switch-on sequence and to operate the heat pump instead of the CHP plant. The optimizing regulation
should recognize this and switch the heat generators accordingly. In times of high electricity prices,
the heat production costs of the heat pump are higher than those of the gas boiler. However, since the
combination of CHP system and heat pump is always cheaper than boiler operation, the boiler will not
be preferred. In principle, it is to be expected that the optimizing control system will strive for the
highest possible number of operating hours of the CHP system due to the electricity credit method
and thus even cause a displacement of the solar thermal system compared to the standard control
system. Due to the low heat load in summer, however, only small displacement effects, if any, are to
be expected.

The expansion targets for CHP in Germany laid down out the KWKG have almost been reached
and subsidies are expected to expire in a few years. Although the electricity credit method described
above has already been modified in the Building Energy Act, in comparison with the previous regulation
in the direction of a worse rating of CHP plants and a better rating of combined HP and CHP, it is still
unchanged until at least 2030. The second scenario roughly reflects the framework conditions to be
expected in the next 10 years (see Figure 13): Sale of the produced CHP electricity at the stock exchange
price without surcharges from the KWKG but continued ecological improvement by crediting avoided
CO2 emissions as is currently the case.



Energies 2020, 13, 6714 17 of 25

Energies 2020, 13, x FOR PEER REVIEW 16 of 25 

 

The median values of the heat production costs show that, apart from the feed-in priority of the 
solar thermal plant (ST), the simple switch-on sequence of the heat generators according to the model 
in Section 3 represents the most economical and ecological operation for the predominant time of the 
year under the currently prevailing boundary conditions. The red crosses in the figure indicate 
outliers in the costs, which are due to a strong variability of electricity and gas prices on the stock 
exchange. In the case of the CHP plant, the outliers above 20 €/MWhth mean negative electricity prices 
and thus the omission of the surcharges paid under the KWKG. At the same time, the heat production 
costs of the heat pump sink by the negative electricity prices, whereby it would be more economical, 
but not more ecological in these few hours in the comparison scenario to deviate from the classical 
switch-on sequence and to operate the heat pump instead of the CHP plant. The optimizing 
regulation should recognize this and switch the heat generators accordingly. In times of high 
electricity prices, the heat production costs of the heat pump are higher than those of the gas boiler. 
However, since the combination of CHP system and heat pump is always cheaper than boiler 
operation, the boiler will not be preferred. In principle, it is to be expected that the optimizing control 
system will strive for the highest possible number of operating hours of the CHP system due to the 
electricity credit method and thus even cause a displacement of the solar thermal system compared 
to the standard control system. Due to the low heat load in summer, however, only small 
displacement effects, if any, are to be expected. 

The expansion targets for CHP in Germany laid down out the KWKG have almost been reached 
and subsidies are expected to expire in a few years. Although the electricity credit method described 
above has already been modified in the Building Energy Act, in comparison with the previous 
regulation in the direction of a worse rating of CHP plants and a better rating of combined HP and 
CHP, it is still unchanged until at least 2030. The second scenario roughly reflects the framework 
conditions to be expected in the next 10 years (see Figure 13): Sale of the produced CHP electricity at 
the stock exchange price without surcharges from the KWKG but continued ecological improvement 
by crediting avoided CO2 emissions as is currently the case. 

 

 
Figure 1. Scenario 2 - Distribution of the real heat production costs and values of CO2 emission factors 
for different heat generators for the energy policy framework conditions in Germany based on data 
from 2017 and 2018, without KWKG but with electricity credit method 

Compared to the first scenario, the heat production costs of the CHP plant show less variability 
due to the elimination of surcharges under the KWKG and the pure coupling of electricity revenues 
to electricity exchange prices. In comparison to Figure 14, this can be seen in the shift of the boxplot 
in the amount of the unpaid CHP surcharges. In terms of economics, the standard regulation with 
fixed switch-on sequence is now more often at a disadvantage compared to heat pump operation due 
to the increased costs of CHP operation. Although scenario 2 offers a larger number of hours with 
optimization potential compared to scenario 1, the absolute improvement potential of these hours is 

Figure 13. Scenario 2—Distribution of the real heat production costs and values of CO2 emission factors
for different heat generators for the energy policy framework conditions in Germany based on data
from 2017 and 2018, without KWKG but with electricity credit method.

Compared to the first scenario, the heat production costs of the CHP plant show less variability
due to the elimination of surcharges under the KWKG and the pure coupling of electricity revenues
to electricity exchange prices. In comparison to Figure 14, this can be seen in the shift of the boxplot
in the amount of the unpaid CHP surcharges. In terms of economics, the standard regulation with
fixed switch-on sequence is now more often at a disadvantage compared to heat pump operation due
to the increased costs of CHP operation. Although scenario 2 offers a larger number of hours with
optimization potential compared to scenario 1, the absolute improvement potential of these hours is
much smaller due to the now smaller cost gap between the units. Due to the forward-looking character
of the optimizing control, it can be expected that the operating times of the heat generators will be
shifted to times with lower costs (with low gas/electricity purchase prices) and high electricity revenues
(with high electricity prices; applies only to CHP). Due to the identical emission factors but changed
costs compared to the first scenario, the second scenario is particularly interesting for multi-criteria
optimization. There is a field of tension between the temporarily higher costs of the CHP plant and at
the same time lowest emissions compared to the other heat generators.

Scenario 3 differs from the second scenario only in the calculation of CO2 emissions. The so-called
Carnot method, also known as the work value method as detailed by Veigel [34], divides the emissions
of the fuel used into the co-products heat and electricity depending on the respective exergy. The CO2

emissions caused by the production of heat and electricity are shown separately, whereby only the
emissions from heat production are relevant here.

In all scenarios, it is important to note that for the purchase and sale of electricity on the stock
exchange, the electricity volumes for trading must be known in advance and must be fed or consumed
appropriately. Both requirements depend largely on the prediction quality of the models.
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6. Results and Discussion

In the following, the results of the optimization, influenced by the beforehand mentioned scenarios,
are presented and discussed. For the optimization, the multi-stage approximation with a prediction
horizon of 12 h, as shown in Section 4, is used. As a benchmark for the evaluation of the optimization
results the results of the standard control described in Section 3 are used. The simulation starts on
January 1, 2017 and ends 500 days later.

Figure 15 shows the optimization results influenced by the boundary conditions of scenario 1,
on the left for the cumulated costs dK with pure cost optimization, in the middle for the cumulated
CO2 emissions dE with pure CO2 emission optimization and on the right for both cumulated target
variables with multi-objective optimization. The horizontal, dashed line shows the zero line in each
case. If dK or dE are above this line, the optimizer delivers a better value of the respective target
quantity cumulated up to this time step than in the reference simulation with standard control.Energies 2020, 13, x FOR PEER REVIEW 18 of 25 
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For all optimization targets, the optimizer achieves a result above the dashed zero line at the
end of the simulation period, i.e., a better result than the standard control. In the initial phase,
the optimizer makes disadvantageous decisions. Only after about 1000 h improvements occur, which is
understandably related to the growing data basis for the approximation models. In the heating periods,
especially in the second with now well-trained approximation models for the storage temperatures,
a positive slope of the curve progressions (optimizer is better than the standard controller is) tends to
be visible. In the summer months, the optimizer loses slightly compared to the reference simulation.
The reason might be that the storage temperatures are predicted too high if the performance of the
solar thermal system is overestimated. Both reduce the ecologically and economically advantageous
CHP operation in scenario 1. The purely temperature-controlled reference system does not have this
problem, as it prioritizes the CHP plant from the switch-on sequence independent of future prediction.

Table 3 summarizes the results of the optimization at the end of the period. For this, the relative
change in cumulated target values compared to the standard control over the entire period (rT) as well
as for a period without the first 30 days (rT30) is shown.

Table 3. Optimization results of scenario #1 in comparison to the results with standard controller.

Optimization-Goal rT in % (Costs/CO2) rT30 in % (Costs/CO2)

Cost of Operation +10.7/−123.6 +16.1/−43.9
CO2-Emissions −25.9/+197.3 −17.8/+263.5
Multi-objective +1.1/+21.7 +9.5/+136.4

In the case of the optimization of the operating costs a reduction of the energy quantity of the heat
pump by approx. 8% and an increase of the energy quantity of the boiler by 8% takes place over the
simulation period compared with the standard control. For the optimization of the CO2 emissions the
reduction of the energy quantity of the heat pump amounts to approx. 50% and the increase of the
energy quantity of the boiler approx. 48%. This is because the heat pump can only be operated at 50%
or 100% of the maximum power, whereas the boiler has no lower modulation limit in the simulation.
At times when the heat load is above the maximum CHP power but below certain combinations of
combined power of CHP and HP, it may be better to operate the boiler at the appropriate output
than to request too much heat pump power. To optimize costs, however, there are also individual
hours per year during which the boundary conditions speak for additional operation of the heat pump
(e.g., in times of negative electricity prices). This does not apply however to the optimization of the
CO2 emissions, which explains the stronger reduction in the energy quantities. For the multi-objective
optimization, a compromise is found, which ensures that both targets exhibit a positive difference
to the reference. It can be stated that the implemented MPC finds a significant improvement to the
reference for all cases.

In scenario 2 there is no additional compensation for the electricity generated by the CHP.
The specific CO2 emissions remain unchanged compared to scenario 1. For this reason, only the
optimization of costs is considered in Figure 16.

The almost consistently positive gradient of the difference in cumulative operating costs makes it
clear that, analogous to scenario 1, cost optimization is very well possible. Even the summer months
no longer have a negative effect on optimization. This is because, in contrast to scenario 1, it is now not
always advantageous to operate CHP. Because of the abolition of CHP remuneration, the distributions
of the specific heat production costs converge (see Figure 13), which means that operating CHP is
more often uneconomical. Although this increases the number of points in time when optimization
is possible, it reduces the potential benefit per optimization. In sum, Table 4 shows that the relative
improvement in operating costs is only about half as great as under scenario 1.
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Table 4. Optimization results of scenario 2 in comparison to the results with standard controller.

Optimization-Goal rT in % (Costs/CO2) rT30 in % (Costs/CO2)

Cost of Operation +5.3/−3703 +5.9/−3516

Due to the approx. 20% reduction in the amount of energy produced by the CHP over the
simulation period, the electricity credit for emissions drops significantly, with a correspondingly large
deterioration in overall CO2 emissions.

In Scenario 3, the CHP no longer gives an electricity credit for CO2 emissions. The operating costs
do not change compared to scenario 2. For this reason, only the optimization of CO2 emissions is
considered in Figure 17.
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Analogous to scenario 2, there is an almost continuous improvement. The loss of the electricity
credit reduces the maximum possible improvement through increased CHP operation. Compared to
scenario 1, this leads to a much smaller relative improvement (see Table 5). However, this circumstance
also promotes the simultaneous use of CHP and heat pump, which explains a reduction in the amount
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of energy from the CHP of approx. 3% and an increase in the amount of energy from the heat pump of
approx. 8.5%.

Table 5. Optimization results of scenario 3 in comparison to the results with standard controller.

Optimization-Goal rT in % (Costs/CO2) rT30 in % (Costs/CO2)

CO2-Emissions +1.2/+2.6 +1.6/+3.7

The results show that the developed MPC achieves an advantage over a non-predictive standard
control for every scenario. Only the learning phase of the multi-stage approximation based on Machine
Learning methods reduces the performance. However, the quantity of the improvement depends
significantly on the scenario of the energy-economic boundary conditions, which defines the potentials
of the optimization. The following section summarizes the results of this work and outlines the
potentials as well as further steps.

7. Conclusions and Outlook

7.1. Multi-Stage Approximation for Optimized Control

The operational optimization of the heat generation of multivariate fed local heat networks is a
complex problem due to the nonlinear system behavior. This is especially true if the system under
consideration has storage with a stratified charging system. Its change of temperature distribution,
which is essential for an operation optimization over several hours, is highly nonlinear. The method
presented here depicts the nonlinear relationship between the most diverse influencing variables and
the ecological and economic target variables of the operation predictively employing a multi-stage
approximation, among other things using machine learning methods. This work contributes to
the scientific community by: (i) showing a path for use of databased nonlinear metamodeling for
efficient operational optimization of district heating networks and (ii) depicting the strong influence of
regulatory boundary conditions on the potential of optimization.

The implementation of this operational optimization with a prediction horizon of 12 h into
the dynamic simulation of a multivariate fed local heating network shows a significant reduction
of operating costs and CO2 emissions over a simulation period of 500 days for different regulatory
conditions compared to a non-predictive standard control. It should be noted that the comparisons
made so far assume that external boundary conditions (weather data, stock exchange prices, heat load
in the network) are known.

Further work until the implementation of the optimizing controller in the heat center of the
new local heating network in mid-2021 will concentrate on the addition of the prediction for the
above-mentioned external boundary conditions and the improvement of the approximations concerning
prediction quality and computation time. In extension, it is planned to test the integration to
the electricity and gas market in the simulation environment. This requires a combination of
extensive offline optimization, in which uncertainties of the prediction or the robustness of the
operating recommendations are included as a further criterion in the optimizing control, as shown
by Reich et al. [35], with online operation optimization, which also takes into account a reduction of
balancing energy in the power grid.

7.2. Impact of District Heating Networks on Local Electricity Grids

As the energy transition in Germany progresses, options to stabilise the electricity grid will
gain importance. An expansion of the modelling and optimisation approach of this work to include
grid-stabilising effects is therefore seen as an important future field of research.

The interaction with the local electricity distribution grid is based on the generator-side power
of the CHP plant integrated into the local heating network and the consumer-side power of the heat
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pump. Theoretically, operation optimised purely to the requirements of the local heating network can
lead to grid-related congestion, which in turn must be eliminated by re-dispatching.

In contrast, the thermal inertia of the local heating network and the available heat storage
power allow for the inclusion or even active alignment to grid-friendly operation. The multivariate
prognosis of the nonlinear system behaviour of the local heating network presented in this work can
be extended by optimisation criteria for grid-friendly service, i.e., it can include all network restrictions
(security-constrained economic dispatch) as well as possibilities of sector coupling. Aspects relevant
for a grid-friendly operation can be unleashed by the avoidance of local grid-related congestion or
through incentives for regional pricing. Figure 18 illustrates the modelling approach for a grid-friendly
operation of the local heating network, distinguishing between both possibilities.
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Figure 18. Schematic representation of the modelling approach reflecting a grid-friendly operation of a
heating network.

(i) The influence on the local electricity distribution network is becoming increasingly important,
especially when upscaling the local heating network with incorporated sector coupling technologies.
Within the framework of future work, the effects of avoiding local grid-related congestion as a
restriction in the dynamic optimisation model with real data are very relevant for research. For this
purpose, the data-based criteria of the grid situation can be used as additional boundary conditions for
operational optimization.

(ii) The current market design, which is based on a uniform electricity price, is only suitable to a
limited extent to promote the operation of the local heating network in a grid-friendly way. Modelling
of the grid-related potential can be based on the approach also known as “nodal pricing” or “locational
marginal pricing (LMP)”. In nodal pricing systems, an individual price is determined for each entry or
exit point of the transmission system, thus providing an incentive for grid-friendly service through
regional electricity pricing. The operation of all modelled generation and consumption units thus takes
place in compliance with the network restrictions, as these restrictions are reflected in the electricity
price which is sharply defined at the network nodes. Any use of P2H elements is therefore grid-friendly
in the event of local congestion, as grid overload is ruled out by the model. The extent to which
regional pricing can stimulate grid-friendly operation and the potential for grid-relief is an addition of
the research subject of this paper.

Author Contributions: Conceptualization, M.R.; Data curation, M.R.; Formal analysis, M.R. and J.G.; Funding
acquisition, M.A.; Investigation, M.R. and J.G.; Methodology, M.R.; Project administration, J.G. and M.A.; Software,
M.R.; Supervision, M.A.; Validation, M.R.; Visualization, M.R. and J.G.; Writing—original draft, M.R., J.G. and P.R.;
Writing—review & editing, M.R., J.G., P.R. and M.A. All authors have read and agreed to the published version of
the manuscript.



Energies 2020, 13, 6714 23 of 25

Funding: This research and the APC was funded by the Federal Ministry of Economic Affairs and Energy of
Germany grant number [03ET1626A].

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Symbols
Ael,in Power consumption (kWh)
Ael,out Power generation (kWh)

c Specific costs (€/MWh, €/t)
C Specific costs matrix
D Dataset
dE Difference between cumulated emissions (kg)
dK Difference between cumulated costs (€)
d2 Euclidian distance
E Sum of CO2 emissions
.

G Global radiation (W/m2)
H Differential entropy
incr Termination increment
K Sum of operating costs
n Number of samples
nL Number of temperature layers in TS
Q Secondary energy (kWh)
.

Q Average power in time interval (kW)
Q̂NGB Predicted mean NGB power (kW)

Qth,out Heat generation (kWh)
T Temperature (deg C)
tp Prediction horizon
u State variables
w Weight vector
X Controllable variables
y System response (here: € or kgCO2 )
ypo Vector of pareto optimal solution
yto Vector of theoretical optimal solution
Z System variables

Abbreviations
ANN Artificial neural network
ARD Automated relevance detection
CHP Combined Heat and Power
GPR Gaussian process regression
HP Heat pump
L Heat Load
MILP Mixed integer linear program
MPC Model predictive control
NGB Natural gas boiler
ST Solar thermal plant
TS Thermal storage
Indices

amb Ambient
Best Best (Entropy)
e Emissions
el Electricity
g Gas
Hist Historical
Red Reduced
SD Selected
t Time step/interval
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