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Abstract. The propagation of a flame front in a homogeneous and initially quiescent hydrogen-air mixture 
in a channel with exit contraction is numerically analyzed by means of Computational Fluid Dynamics. For 
the given configuration, the compressibility effects are important, the average pressure increases in time due 
to the exit contraction, and pressure waves occur, which affect the flame propagation. Flow turbulence is 
modelled by the Realizable k-ε model. In modelling combustion, turbulence-chemistry interactions are 
neglected. Predictions are compared with the measurements for evolution of the flame shape, propagation 
speed and pressure. It is observed that the flame propagation speed, and, thus, the rate of pressure increase 
are over-predicted by the present approach. Still, a fair qualitative agreement to measurements is observed.

1 Introduction  
Power generation by thermal machinery largely depends 
on the combustion process. As the efforts for exploiting 
renewable energies, as well as recovery methods [1] 
increase, combustion remains as an important energy 
conversion method. 

Combustion of hydrogen containing fuels plays an 
important role in clean energy supply. Hydrogen offers 
an attractive method to store excess renewable energies 
[2]. Further, instead of combustion [3],  gasification 
represents an attractive alternative for utilization of solid 
fuels [4]. The gasification product contains a remarkable 
percentage in hydrogen. There is also a growing interest 
in hydrogen production by nuclear energy [5].  

Hydrogen has very different material properties 
compared to other gases and can change the properties of 
the mixture when added to the mixture even in small 
amounts.  

Thus, use of hydrogen containing fuels is a great 
challenge. In premixed combustion, a principal problem 
is flashback [6-9]. Hydrogen addition to the burnable gas 
increases its flashback propensity remarkably due to 
high reactivity of hydrogen.  

Safety, in general, is an important issue in 
relationship with the usage of hydrogen [10,11]. The 
wider flammability range, greater propensity to leak than 
other common gaseous fuels, low activation energy, etc. 
make it easier to cause accidental fires, detonations and 
asphyxiations.   

Thus, the safety practices in production, storage, 
distribution and use of hydrogen are key issues to 
industrial hydrogen energy utilization [12], as the safety 
standards that are commonly applied to the systems with 
small amounts of hydrogen or hydrocarbons may not 

work when applied to larger amounts of hydrogen 
[13,14]. 

Although hydrogen is currently distributed mainly by 
trucks with steel cylinders, transport by pipelines is 
increasingly emerging as an alternative for a 
comprehensive and largescale use of hydrogen. 
Therefore, the investigation of the burning behavior of 
hydrogen air mixtures in tubes and channels is necessary 
from the safety standpoint. 

Many experimental, computational and theoretical 
studies on premixed flame propagation in closed and 
semi-closed tubes have already been carried out [14-18]. 
Still, there is need for further investigations of different 
aspects of the phenomenon, including the details of the 
computational modelling. This is the scope of the present 
contribution. 

2 Problem formulation 
The measurements of Xiao et al. [15] are taken as the 
test case. The combustion system is a partially-open duct 
82 mm square by 530 mm long. There is a circular 
opening placed on the upper wall near the right end of 
the duct.  

The duct is filled with a premixed mixture of 
hydrogen and dry air with a hydrogen volume fraction of 
30%. The temperature and pressure of the gas prior to 
ignition are 298 K and 101325 Pa, respectively. The 
flame is ignited by a spark. Flame propagation is 
measured by optical means. Pressure is measured by a 
transducer. Measurements were performed for different 
opening ratios. The opening ratio is the ratio of open area 
to the area of the duct cross section. In the present study, 
an opening ratio of 0.187 is considered. 

E3S Web of Conferences 128, 01013 (2019)	 https://doi.org/10.1051/e3sconf/201912801013
ICCHMT 2019

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution  
License 4.0 (http://creativecommons.org/licenses/by/4.0/).



 

3 Models 
The simulations are performed using the CFD code 
ANSYS Fluent 18.0 [19]. Differential balance equations 
of mass, momentum, energy, species mass fractions, as 
well as turbulence quantities are solved for the 
chemically reacting mixture, assuming an ideal gas 
behavior [20,21]. Buoyancy is neglected. The radiative 
heat transfer [22] is also omitted.  

The temperature dependence of specific heat 
capacities are modelled by a pair of fourth order 
polynomials [23], for low and high temperature ranges. 
Transport properties are calculated by the kinetic theory 
and the mixture properties by mixing laws [19-21,24,25]. 

Modelling turbulence in the current case is not an 
easy matter. Initially, with low velocities, turbulence may 
not be expected. Turbulence may occur at late stages 
with increasing velocities. A Large Eddy Simulation 
(LES) approach [26-28] would be convenient for the 
present case, but it is not currently applied due to its very 
high computational costs. Presently, a URANS 
(Unsteady Reynolds Averaged Numerical Simulation) 
approach is applied [29], the accuracy of which, is to be 
assessed by comparisons with the experiments. A 
turbulent viscosity based, two-equation turbulence 
model, namely the Realizable k-ε  model   [19,29,30] (k: 
turbulence  kinetic  energy,  ε:  dissipation  rate  of  k)  is used 
as the turbulence model.  

As combustion mechanism, the detailed mechanism 
of Conaire et al. [31] is used. In calculating the reaction 
rates via Arrhenius rate expressions [20], the effect of 
turbulence fluctuations is neglected. Although the 
present   “no-model”   approach   is   cannot   be   seen   to   be  
accurate, it is found to provide an acceptable initial 
approach for the present case. 

A coupled solver [19] is used. To convective terms, a 
second-order upwind scheme [19] is applied. Time 
discretization is performed by a Bounded Second Order 
Implicit scheme [19].  

4 Results 
The geometry is approximated as 2D axisymmetric. The 
outlet area is approximated as a circumferential opening 
with the same opening ratio. A sketch of the modelled 
solution domain is presented in Figure 1. 

At the outlet, the static pressure is prescribed. At the 
walls, no-slip conditions apply. Initially, a quiescent, 
atmospheric mixture of hydrogen and air is prescribed. 
For turbulence quantities, vanishingly small initial 
quantities are prescribed. Ignition is accomplished by 
prescribing temperature and species mass fractions 
within a tiny sub-domain (“spark”  in  Figure  1). 

An equidistant grid consisting of square shaped 
volumes   with   the   size   of   0.5   mm   is   used   as   the   “base  
grid”.   This   resolution   by 0.5 mm x 0.5 mm cells has 
been borrowed from the previous study of Xiao et al. 
[15]  on  a  very  similar  problem.  Based  on  this  “base  grid”  
non-conformal local grid refinements are applied to 
achieve sufficiently fine grid resolution of the flame 
front.  

 
 
Figure 1. Solution domain 
(L=530mm, LS=55mm, LO=75mm, R=41mm) 
 
Predicted field distributions of the static pressure (gauge 
pressure,  Δp  =  p  – poutlet) at initial instants, shortly after 
ignition are displayed in the contour plots (as detail 
plots) in Figure 2. Pressure (acoustic) waves generated 
by the ignition and their reflection by the combustor 
walls and interaction can be observed in Figure 2. 

The predicted field distributions of the velocity 
magnitude at four instants of time after ignition are 
presented in Figure 3, as detail plots.   

One can see, how the flame front expands in time, 
and how the gas is accelerated in front of the rapidly 
expanding flame front.  

At the same time, it can also be observed that the 
initially (t = 1.0 ms) spherical shape of the flame front 
gradually evolves to the shape of an ellipsoid. This is 
expectedly mainly due to the effect of the confining 
walls of the combustor. 

 

 
(a) 

 

 
(b) 

 
Figure 2. Predicted fields of gauge pressure at initial instants 
after ignition (detail), (a) t = 0.1 ms, (b) t = 0.2 ms 
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t = 1.0 ms 

 
t = 2.0 ms 

 
t = 3.0 ms 

 
t = 4.0 ms 

 

 
 

Figure 3. Predicted fields of velocity magnitude at different 
instants of time after ignition (detail)  
 
The predicted field distributions of the static temperature 
at four instants of time (t = 1.0, 2.0, 3.0, 4.0 ms) after 
ignition are presented in Figure 4, as detail plots.  The 
evolution of the shape of the flame front in time, from 
sphere to ellipsoid, can even more clearly be observed in 
Figure 4. It is   interesting   to   note   that   a   “notch”   or   “v”  
like shape gets formed on the right side of the flame 
expanding towards the outlet. 

The predicted location of the flame leading tip 
(measured from the spark position) as well as the 
evolution of the static pressure at the position of the 
pressure transducer (7.5 cm away from the right wall) 
are compared with the experiments in Figure 5 and 
Figure 6. 

It can be observed in Figure 5 that the change of the 
flame tip position shows a nearly linear dependence on 
time, for the considered period of time, which is 
indicated by measurements and predictions, both. The 
predictions show a good qualitative agreement with the 
measurements. Quantitatively, the predicted position of 
the flame tip is slightly ahead of the measured position  
of the flame tip for the whole considered time range, 
which indicates a continuous overprediction of the flame 
propagation speed. 

In Figure 6, it can be seen that the pressure at the 
measuring point remains constant for the first two 
milliseconds. Then, a continuous increase of pressure is 

 
t = 1.0 ms 

 
t = 2.0 ms 

 
t = 3.0 ms 

 
t = 4.0 ms 

 

 
 

Figure 4. Predicted fields of static temperature at different 
instants of time after ignition (detail). 

 
measured. The calculations predict the measured 
qualitatively well. Quantitatively, an overprediction is, 
again, observed, which is compatible with the previous 
finding (Fig. 5). 

 

 
 

Figure 5. Location of flame leading tip as function of time, 
present predictions vs. experiments [15] 
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Figure 6. Pressure (absolute) dynamics as function of time, 
present predictions vs. experiments [15] 

5 Conclusions 
The propagation of a flame front in a homogeneous and 
initially quiescent hydrogen-air mixture in a channel 
with exit contraction is numerically analyzed by means 
of Computational Fluid Dynamics.  

For the given configuration, the compressibility 
effects are important. The average pressure increases in 
time due to the applied exit contraction (opening ratio: 
0.187) and pressure waves occur, which can affect the 
flame propagation.  

Flow turbulence is modelled by the Realizable k-ε  
model. In modelling combustion, turbulence-chemistry 
interactions are neglected. Predictions are compared with 
the measurements for evolution of the flame shape, 
propagation speed and pressure. 

It is observed that the flame propagation speed, and 
the rate of pressure increase are overpredicted by the 
present approach. Still, a fair qualitative agreement to 
measurements is observed. 
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