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(e main emphasis on this paper is to analyze the axisymmetric flow and heat transfer in a liquid film over an unsteady radially
stretching surface in the presence of a transverse magnetic field. (e similarity transformations are used to reduce the highly
nonlinear governing partial differential equations for momentum and energy into a set of ordinary differential equations. A
numerical scheme is developed for the reduced nonlinear differential equations for the velocity and temperature fields. (e
literature survey shows that the present problem of thin film flow over a radially stretching sheet has not been studied before. (e
features of the flow and heat transfer characteristic for different values of governing parameters such as unsteadiness parameter,
Prandtl number, Eckert number, and magnetic parameter are thoroughly examined. (is study noticed that, by increasing the
magnetic parameter and unsteadiness parameter, film thickness decreases.

1. Introduction

(e study of laminar boundary layer flow and heat transfer
across a thin liquid film gains enormous interest among
many researchers. (is tremendous amount of attention
further enhances to explore increasingly industrial appli-
cation owing to stretching phenomena, to be specific, for
example, the designing of various heat exchangers, coating
processes, paper production, annealing and thinning of
cooper wire, continuous stretching of plastic films and ar-
tificial fibers, metal, polymer extrusion, and metal spinning.

(e boundary layer along material handling conveyors and
the extrusion from the die is generally drawn and simul-
taneously stretched into sheet.

(e problem of stretching sheet for different cases of fluid
flow has been analyzed by different researchers. Sakiadis [1] in
his seminal work initiated the study of boundary layer flow over
a continuous solid surface by taking constant speed. Since then,
many researchers contributed to the stretching sheet area due to
its aforementioned industrial applications. Crane [2] modeled
flow configuration and obtained an exact solution for an ex-
tension of a similar problem. Hemodeled and analyzed a steady
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two-dimensional boundary layer flow over stretching sheet,
which moves in its own plane with a distance from the slit.

An enormous amount of work has been done in the di-
rection of stretching sheet by number of researchers; just to
mention a few, authors in [3–5] studied various aspects of
stretching sheet such as the heat/mass andmomentum transfer
of a semi-infinite fluid layer driven by a continuous stretching
sheet. (ey contributed to diverse range of geometries related
to stretching sheet, for example, continuous stretching of sheet,
radially stretching fixed sheet, and vertical stretching sheets
with Newtonian and non-Newtonian behaviors of different
kind. Furthermore, they discussed peculiar characteristics of
heat and mass transfer with magnetohydrodynamic flow to-
gether with suction/injection phenomena. Shahzad and Ali [6,
7] in a series of articles proposed approximate analytic solu-
tions with a thorough investigation of non-Newtonian fluid
model of power law over stretching sheets. In addition, they
discussed the flow in heat transfer together with the convective
boundary condition over a vertical wall. Andersson et al. [8]
worked on unsteady heat transfer problems over a time-de-
pendent stretching sheet. (ey introduced new similarity so-
lution for the temperature field. Although finding an analytic
solution for PDEs model is always hard due to difficulty of the
model and nonlinear terms in the equations, in this scenario,
one of those rare studies includes an exact analytical solution by
Wang [9]. He found an exact solution for two-dimensional
flow past a stretching sheet. He compared his obtained solution
of a liquid film over an unsteady stretching surface with HAM
solutions; both show a great deal of agreement. Abel et al. [10]
studied heat transfer rate in a liquid film over an unsteady
stretching surface including viscous dissipation in the presence
of an external magnetic field with specific surface temperature.
Aziz and Hashim [11, 12] in a couple of articles studied the
influence of internal heat generation on flow and heat transfer
in a thin liquid film on an unsteady stretching sheet; they
assumed and modeled a general surface temperature for this
purpose. Nandeppanavar et al. [13] considered the combined
effects of viscous dissipation, thermal radiation, and nonuni-
form heat source/sink on the presence of magnetic field. Salleh
et al. [14] considered the steady boundary layer flow and heat
transfer over a stretching sheet with Newtonian heating
problem of MHD flow. It is an important field for exploration
due to abundant practical applications. (e actual interest in
MHD flow began around 1918, when Hartmann [15] invented
the electromagnetic pump. Meanwhile, the viscous MHD flow
over an infinite flat plate has received great attention. (e
mathematical analysis and development of new schemes and
algorithms grow quite significantly. Ishak et al. [16] studied
laminar MHD flow and heat transfer due to continuously
stretching plate immersed in an electrically conducting fluid.
Abel et al. [17] studied the MHD boundary layer flow and heat
transfer characteristic of a laminar liquid film over a flat im-
permeable stretching sheet in the presence of a nonuniform
heat source/sink. Abbas et al. [18] analyzed the unsteady MHD
boundary layer flow and heat transfer of an incompressible
rotating viscous fluid over a stretching continuous sheet. Hayat
et al. [19] considered the MHD flow and heat transfer char-
acteristic for the boundary layer flow over a permeable
stretching sheet with velocity and thermal slip conditions.

Chen et al. [20] studied the MHD flow and heat transfer of an
electrically conducting viscoelastic fluid past a stretching
surface and discussed the effects of joule and viscous dissi-
pation. Fadzilah et al. [21] studied the MHD boundary layer
flow and heat transfer of a viscous and electrically conducting
fluid over a stretching sheet with an induced magnetic field. In
the process of understanding of MHD flow, Labropulu [22]
discussed the effect of transverse magnetic field on an infinite
plate and studied the unsteady stagnation point flow of a
Newtonian fluid. Further analysis of the flow over a stretching
sheet in the presence of transverse magnetic field with heat
source/sink has been performed in [23]. (is study deals with
the numerical study of unsteady laminar MHDs boundary
layer flow and heat transfer of incompressible, viscous, and
electrically conducting fluid. Bhukta et al. [24] investigated the
dissipation effects on MHD-mixed convection unsteady flow
of an electrically conducting fluid over a stretching sheet
embedded in a porous medium subject to transverse magnetic
field. Gnaneswara Reddyet al. [25] presented the unsteady
MHD boundary layer flow and heat transfer of a fluid over a
stretching sheet in the presence of viscous dissipation and heat
source. A similar model for micropolar fluid flow is studied in
Anantha Kumar et al. [26–29]. (ey provided simultaneous
solution for slip flow across convective surfaces in MHD flow
model with varying heat flux [26], thermal radiation [27], and
irregular heat source and sink [28] with thin film flow and
viscous dissipation [29] with modified heat flux. In a series of
articles [30–34], Anantha Kumar et al. [30–34] extensively
studied a number of physical aspects on steady/unsteadyMHD
flow in heat transfer. (eir investigation includes a diverse
range of geometrical models, such as stretching, nonstretching,
coagulated sheet, porous media, flow past cone, and inclined
domain. In this intensive literature survey, to the best of our
knowledge, we could not find a single attempt on thin film flow
over a radially stretching sheet. (e application of thin film
flow in industrial applications motivated the authors to ex-
amine and develop a numerical solution for axisymmetric flow
and heat transfer in Newtonian fluid. (e authors studied the
effects of magnetic field and the mechanism of heat transfer
over a radially stretching sheet. (e authors proposed a time-
dependent PDE model for momentum and energy equations.
(e system of PDE is transformed into system of ordinary
differential equations using a chosen set of similarity trans-
formations, which identically satisfy the conservation of mass.
(en, these ODEs are solved numerically by using BVP4C in
MATLAB. (e effects of physical flow parameters such as
magnetic parameter, unsteadiness parameters, Eckert number
on skin friction coefficient, and Nusselt number are examined.
(e results of these studies are of great importance in viewpoint
of desired properties of the outcome.

With this brief introductory section, the paper is out-
lined as follows: Section 1 will discuss a thorough mathe-
matical formulation including the transformation of PDEs
into ODEs. In addition, a schematic of flow and nomen-
clature of the diverse mathematical symbols are tabulated. In
Section 2, the numerical scheme is developed for the ODEs.
Section 3 summarized the results and discussion of potential
pertaining parameters to analyze flow behavior, and finally,
Section 4 shows a few concluding remarks.
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2. Problem Formulation

Let us consider two-dimensional unsteady MHD boundary
layer flow of Newtonian fluid in a thin liquid film over a
radially stretching sheet whose center is fixed. (e sheet is
coinciding with the plane at z � 0 and is stretched along the
radial direction with the velocity U(r, t) � (br/(1 − αt)),
where b and α are both positive constants with dimension per
time. T s is the surface temperature of the stretching sheet and
is defined as Ts(r,t) � T0− Tref[br2/2υ] (1 − αt)− (3/2), where
T0 is the slit temperature and Tref can be taken as a constant
reference temperature such that 0≤Tref ≤T0. h is the
thickness of the fluid film. Furthermore, the variablemagnetic
field of intensity B(t) chosen in its special form as B(t) �

Bo(1 − αt)(− 1/2) is applied along normal to the sheet. More
details could be found on each parameters in Table 1.

(e graphical representation of the considered physical
model is given in Figure 1. (e cylindrical polar coordinate
system (r, θ, z) is taken for the mathematical modeling. Due to
the rotational symmetry of the flow, all the physical quantities
are independent of θ and the velocity field takes the form
v � [u(r, z), 0, w(r, z)], where u and w are the velocity
components along the radial r and axial z direction, respectively.

Under the abovementioned assumptions, the basic
governing equations for mass, momentum, and energy may
be written as
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where T represents the temperature of the fluid, υ indicates
the kinematic viscosity, σ indicates the electrical conduc-
tivity, ρ indicates the density of fluid, α � (κ/ρcp) indicates
the thermal diffusivity of the fluid, B is variable magnetic
field, cp indicates the specific heat at constant pressure, andκ
indicates the thermal diffusivity.

(e associated boundary conditions are given by

u � U,

w � 0,

T � TS,

z � 0.

(4)
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Proceeding with the analysis, we introduced the fol-
lowing similarity transformations:

ψ � − r
2
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(6)

where η is the independent variable, ψ(r, z) is the Stokes
stream function such that u � − ((1/r)(zψ/zz)) and
w � ((1/r)(zψ/zr)), and Re � (rU/υ) is the local Reynolds
number. (e velocity components are obtained as

u � Uf′(η),

w � − 2URe(− 1/2)
f(η).

(7)

(e above-defined set of similarity transformations
identically satisfied the law of conservation mass in equation
(1) and the mathematical problem defined in equations
(2)–(5) transforms into a set of ordinary differential equa-
tions together with the boundary conditions as

f″′ − S f′ +
η
2
f″􏼒 􏼓 − f′2 + 2ff″ − Mf′ � 0. (8)

θ″(η) − Pr
S

2
3θ + ηθ′( 􏼁 + 2θf′ − 2fθ′􏼒 􏼓 − 2PrEcf″2 � 0.

(9)

f′(0) � 1,

f(0) � 0,

θ(0) � 1.

(10)

Table 1: Nomenclature.

Symbol Definition
(r, θ, z) Polar coordinates
α � (κ/ρcp) (ermal diffusivity
(u, v, w) Velocity components
B(t) Applied magnetic field
T Temperature of the fluid
Tref Reference temperature
cp Specific heat at constant
p Pressure
ψ(r, z) Stokes stream function
υ Kinematic viscosity
σ Electrical conductivity
ρ Density of fluid
t Temporal variable
Re Local Reynolds number
Cf Local skin friction coefficient
Nur Nusselt number
Pr Prandtl number
Ec Eckert number

′ Differentiation w.r.t. η
β (ickness of the film
θ Dimensionless temperature
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f″(β) � 0,

θ′(β) � 0,

f(β) �
Sβ
2

.

(11)

Here, S � (α/b) is the dimensionless measure of the
unsteadiness parameter, M � (σB2

o/ρb) is the magnetic
parameter, Pr � (]/α) is the Prandtl number, Ec �

(U2/Cp∇T) is Eckert number, and prime shows differen-
tiation with respect to η. β (unknown constant) is the di-
mensionless thickness of the film and is given as
β � (b/υ(1 − αt))(1/2)h.

(e rate at which film thickness varies can be obtained by
differentiating h with respect to t, in the form
(dh/dt) � (− αβ/2)(υ/b(1 − αt))(1/2).

(e important physical quantities of interest in this
problem are the local skin friction coefficient and Nusselt
number that are Cf � (μ(zu/zz)z�0/(ρU2/2)) and
Nur � (− r/Tref )(zT/zz)z�0, respectively.

In nondimensional form, these quantities can be written
as

1
2
Re(1/2)

Cf � f″(0),

2(1 − αt)
(1/2)Re(− 3/2)Nur � − θ′(0).

(12)

3. Numerical Solution

(e nonlinear system of equations (8) and (9) is solved
numerically after converting into initial value problem along
with the boundary conditions (10) and (11) by employing the
BVP4C package from MATLAB. In this method, the third-
order nonlinear differential equation (8) and second-order
differential equation (9) are reduced into a first-order dif-
ferential equation as follows:

f � y(1),

y(1)
′ � y(2),

y(2)
′ � y(3),

θ � y(4),

y(4)
′ � y(5),
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2
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2
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2
􏼒 􏼓.

(13)
(e corresponding boundary conditions are

y(1)(0) � 0,

y(2)(0) � y(4)(0) � 1,

y(3)(β) � y(5)(β) � 0,

y(1)(β) �
Sβ
2

.

(14)

As equation (8) is the third-order differential equation
with four boundary conditions, the initial guess for the value
of β is given by the program BVP4C in MATLAB and then
the value of β is adjusted, so that the condition f(β) �

(Sβ/2) holds. (is is done on a hit and trial basis.

4. Results and Discussion

(is study provides a new paradigm in the area of thin film.
(e objective of the upcoming discussion is to effectively
develop a clear understanding of the governing parameters
such as unsteadiness s, magnetic parameter M, Eckert
number Ec, and Prandtl number Pr. (e numerical simu-
lation together with an analytical computation for the
nonlinear differential equations is developed. Furthermore,
we considered the analysis of dimensionless parameters on
unsteadyMHD boundary layer flowwith heat transfer over a
stretching surface. (e effects of magnetic parameter M on
velocity profile are shown in Figure 2. We observed that the
Lorentz force acts as a retarding force. In consequence, the
magnetic parameters reduced the velocity profile. In con-
trast, these retarding forces enhance the frictional resistance,
which end up opposing the fluid motion. In principle, the
velocity boundary layer thickness gets reduced and the

z

r
h

Figure 1: Schematic diagram of the flow over stretching sheet.
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temperature distribution increases with an increase in
magnetic parameter. Figure 3 illustrates the effect of un-
steadiness parameter S on the velocity profile that leads to a
decrease of the velocity with the increasing value of

unsteadiness parameter. (is shows that the boundary layer
thickness becomes thicker for the larger amplitude of un-
steadiness parameter. Figure 4 depicts the temperature
distribution for different values of Eckert number (Ec). (is
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physical parameter expresses the relationship between the
kinetic energy and internal energy. Figure 5 shows the results of
Prandtl number over temperature distribution. One can ob-
serve that an increase in dissipation reduced the thermal

boundary layer. Prandtl number defines the ratio of mo-
mentum diffusivity to thermal diffusivity. In case of smaller
values of Prandtl number, the boundary layer thickness in-
creases, further causing a reduction in heat transfer. Figure 6
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depicts the effects of unsteadiness parameter on temperature
distribution in which temperature decreases as the parameter S
increases. It is evident that the unsteadiness parameter causes a
substantial amount of increase in heat transfer.

Table 2 is formulated in order to observe the effects of
different pertinent parameters on skin friction coefficient and
dimensionless heat transfer rate at the surface. An increase in
magnetic parameter M and the unsteadiness parameter S
causes an increase in the skin friction coefficient. In addition,
the Prandtl number and the unsteadiness parameter influence
increase in the heat transfer rate at the surface.

5. Conclusion

(e problem of unsteady MHD boundary layer flow and
heat transfer in a liquid film over a radially stretching

surface is investigated numerically. (e effects of the
various governing parameters on velocity and temperature
profile are examined. We conclude with the following
remarks:

(i) An increment in values of unsteadiness parameter
and magnetic parameter results in a decay of film
boundary layer thickness

(ii) Velocity increases with an increase in unsteadiness
parameter and decreases by enhancing the magnetic
parameter

(iii) An increase in unsteadiness parameter results in
quite substantial enhancement in thermal con-
ductivity of the fluid

(iv) (e temperature profile decreases with increas-
ing values of both Prandtl number and Eckert
number

(v) Magnitude of skin friction decreases with an in-
crease in unsteadiness parameter and increases with
an increase in magnetic parameter

(vi) Nusselt number decreases with an increase in
Prandtl number and Eckert number
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Table 2: Effects of pertinent parameters on skin friction coefficient
and heat transfer rate.

M S Pr Ec f″(0) θ′(0)

0 0.4 0.7 0.2 − 1.2784767
1 − 1.6237276
2 − 1.9067150
1 0.8 0.7 0.2 − 1.674472 − 1.4105271

1.0 − 1.6650959 − 1.4200617
1.2 − 1.6186823 − 1.3936895

1 0.4 0.7 0.2 − 1.3214547
4 − 3.8102363
6 − 4.7918785

1 0.4 0.7 0.0 − 1.2314224
1 0.2 − 1.3214547
1 0.4 − 1.4114869
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