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A B S T R A C T

Assessments of security of electricity supply are of high necessity for decision-makers in politics and industry.
Based on scientifically sound and reliable advices, better decisions can be made concerning potential inter-
ventions in the energy system. With growing shares of intermittent renewable energy generation, probabilistic
methods with high temporal resolution are increasingly important to simulate key indicators of security of
electricity supply. However, these simulations are computationally complex and thus very time demanding. For
this reason, we propose a two-stage metamodeling approach to reduce computational effort while maintaining
high levels of accuracy. In the first step, we represent probability distribution curves of available power plant
capacities using sigmoid functions. In the second step, we approximate the relevant regression coefficients. We
apply both, linear regression methods and more advanced approaches based on artificial neural networks in this
second stage. Our results indicate that computational time can be reduced from ~10 h to ~2 min. Further, the
accuracy of the linear regression approach is relatively high and does not comprise the interpretation of relevant
key indicators for the assessment of security of electricity supply. However, our results also show that no further
accuracy gains can be achieved using artificial neural networks, indicating strong linear relationships. Overall,
our approach reduces modeling complexity and therefore allows the investigation of a higher number of dif-
ferent scenarios, thus allowing for deepened insights about the future energy system. Based on our results, we
can state that rather simple, but tailor-made approximation methods can outperform more sophisticated ap-
proaches if the latter are not suitable for the specific use-case. For future research, the application of artificial
neural networks to approximate non-linear relationships within the assessment of security of electricity supply is
highly recommended.

1. Introduction

Against the backdrop of ongoing phase-outs of thermal power plants
in Germany and other European states, assessments of security of
electricity supply are becoming increasingly important. The German
government has decided to phase-out all existing nuclear power plants
by 2023 as a direct reaction to the Fukushima Daiichi nuclear disaster
(German Government, 2011). Moreover, there is an ongoing debate
about the possible mothballing of coal-fired power plants to decrease
CO2-emissions. The Commission on “Growth, Structural Change and
Employment” that has been appointed by the German Federal Cabinet
suggested phasing out all coal-fired power plants in Germany by the
year 2038 (Commission for Growth, Structural Change and
Empoyment, 2019). Reduced capacities of controllable power plants

and growing shares of intermittent producing renewables might lead to
situations in which electricity supply is not sufficient to cover load, thus
e.g. causing load-shedding measures (see Praktiknjo, 2016).

If local and time-limited electricity blackouts occur, German in-
dustry will be affected. As the German electricity system has historically
been among the world’s most reliable, most industrial sites do not have
sufficient back-up systems to maintain production during electricity
outages. In recent years, only few electricity supply interruptions due to
grid instabilities have occurred. The annual interruption duration per
customer in Germany, the so-called system average interruption dura-
tion index (SAIDI), has ranged well below 20 min throughout the last
ten years (BNetzA, 2018a). During these years, no outages due to a lack
of power generation have occurred. However, this might change as a
result of the aforementioned changes in the German electricity system
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and additionally planned generation capacity reductions in other Eur-
opean states.

The needed probabilistic assessments require advanced computer
simulations of weather influences and capacity availabilities in order to
predict the future security of electricity supply in Germany. Due to the
hourly resolution of such simulation models, 8760 evaluations of the
probability distribution of available power plants need to be performed
for each scenario under investigation. As the calculation of these
probability distributions is very computationally intensive, high run-
times limit the possibilities of analyzing a large variety of different
scenarios for future power plant parks. However, such system analyses
are of special importance to provide independent scientific advice for
decision makers in politics and industry as future developments are
inherently subject to uncertainties.

Considering real-life use-cases for the assessment of electricity
supply in Germany as introduced in Section 5, we therefore focus on the
efficient acceleration of runtimes using two-stage metamodels based on
linear response and artificial neural networks (ANNs). Our research
questions are as follows:

1. Can energy system modeling benefit from the application of ANNs to
decrease computational effort?

2. What would be the gains in runtime and losses in accuracy of the ap-
proximation based on linear regression and the ANN-based approach?

The remainder of this paper is structured as follows: In Section 2, we
provide an overview on relevant literature and carve out the existing
research gap. In Section 3, we introduce the simulation model that is
used to assess security of electricity supply. In Section 4, we then pre-
sent the methodological approaches used for runtime accelerations. We
then briefly summarize necessary input data and the scenarios that
were chosen to assess security of electricity supply in Section 5. Section
6 shows our results and provides discussions with regards to both,
runtime accelerations and accuracy losses. Finally, we provide a con-
clusion and outlook for possible future research in Section 7.

2. Literature review

Here we briefly summarize the current scientific state of the art
regarding the computational assessment of security of electricity supply
as well as approximation methods based on linear response and ANNs.
We then conclude the existing research gap.

2.1. Assessment of security of electricity supply

For the assessment of security of electricity supply, two different
approaches are commonly applied: Firstly, a variety of studies use de-
terministic balance sheets of available capacities and peak load as used
by transmission grid operators (cf. entso-e (2015), German

Transmission System Operators (2018)), regulating authorities (cf.
BNetzA (2018a)), and consultancies (cf. Agora Energiewende (2017),
Energy Brainpool (2015), Öko-Institut (2012) and Prognos (2015)).
Secondly, other studies perform probabilistic simulations in high tem-
poral resolution that reflect the weather dependency of load and re-
newable feed-in (c.f. Praktiknjo and Dittmar (2016)). This probabilistic
approach has also been applied by grid operators (cf. entso-e (2017)
and Pentalateral Energy Forum (2018)) and consultancies (cf.
Consentec & r2b energy consulting (2015), EICom (2017), and frontier
economics, FORMAET Services (2014)) in varying degrees of accuracy.

There are two features that distinguish these approaches. Firstly, the
complexity of calculations is much higher for probabilistic approaches.
Secondly, the results of deterministic approaches need to be interpreted
differently from those of stochastic calculations. Balance sheets of
available capacities and peak load rely on rather simple spreadsheet
calculations, whereas probabilistic assessments require advanced si-
mulations of weather influences and capacity availabilities.

However, the results of probabilistic simulations reflect the sto-
chastic character of real-world conditions more closely than determi-
nistic approaches. E.g., the authors of the EU Clean Energy Package state
that a deterministic approach to assess security of electricity supply
“does not give a reliable picture of the adequacy situation due to the
increase in renewable energies in electricity systems” (Meeus &
Nouicer, 2018). To account for this, we have developed a python-based
probabilistic module as part of the JERICHO energy system model from
RWTH Aachen University to assess security of electricity supply. The
module that is briefly presented in this paper (see Section 3) in-
corporates stochastic fluctuations of both renewable feed-in and elec-
tricity demand as well as volatile availabilities of power plant capa-
cities. In order to reflect the stochasticity of weather influences, we
perform hourly simulations for 30 different weather years
(1986–2015). This enables us to conduct scientifically sound assess-
ments of security of electricity supply for different future scenarios.
However, we face runtime constraints that prevent us from analyzzing a
multitude of different scenarios. As this problem is common for prob-
abilistic simulations of security of electricity supply, it is of high im-
portance to decrease computational effort so as to allow for a broader
applicability of the models.

2.2. Metamodeling using linear regression and artificial neural networks

To increase computational efficiency and to lower runtimes, linear
regressions and ANNs are used among other approaches as metamodels
to reflect a functional relationship between input and output variables
based on a gathered set of information. While conducting linear re-
gressions can be described as a rather simple and straightforward ap-
proach for the task of function approximation, the implementation of
ANNs tends to be more sophisticated and requires more specific
knowledge. This difference in complexity is reflected in the possibilities

Nomenclature

AC available capacities
ANN artificial neural network
b0 regression coefficient for intersection
bi regression coefficient for main effects
bij regression coefficient for interaction effects
DoE design of experiments
i index of power plant block
LoLE loss of load expectation
LoLP loss of load probability
MAF mid-term adequacy forecast
n number of power plant blocks
P threshold power

Pi installed capacity of plant unit i
p t( )i probability for non-availability of block i during hour t
PO outage power
Pr probability
Pr approximated probability
q t( )i probability for planned non-availability of block i during

hour t
r t( )i probability for unplanned non-availability of block i

during hour t
SAIDI system average interruption duration index

k curve parameter

k approximated curve parameter
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that arise when using the approaches to model a functional relation-
ship: linear regressions are useful when the underlying functional re-
lationship can be assumed to be linear, while ANNs are suitable for also
approximating non-linear functional relationships.

Linear regressions, or in more general terms polynomial functions,
have a fixed parametric form consisting of regressors and their corre-
sponding regression coefficients. The latter are evaluated using least
square methods.1 To gather information that is useful for a statistically
sound analysis, design of experiments (DoE) is used to sample appro-
priate information very efficiently in an experimental environment
where experiments can be time consuming and costly. A good overview
of DoE is provided by Montgomery (2017).

Once real-world experiments are substituted by computer-aided
experiments, the situation changes: while simulations can still be very
time consuming and costly, the simulation setup can be changed at low
effort, allowing to sample the space of interest with a higher resolution.
For many use-cases, simulations have a rather complex nature resulting
in more non-linear responses that ordinary polynomial functions cannot
map. For this purpose, the aforementioned ANNs can be used. A short
and use-case oriented introduction to ANNs is given in Section 4.2.2

These more elaborated approaches often outperform classical ap-
proaches as shown by Reich, Adam, and Lambach (2017), who deal
with the approximation of energy supply system responses with the
goal of optimizing the system’s structure and dimension. Biedermann,
Reich, Kameier, Adam, and Paschereit (2018) show that, under certain
circumstances, the more sophisticated approaches can even be utilized
for experimental setups. Thus, we can conclude, based on the existing
literature that the application of linear regression methods and ANNs
are promising approaches to decrease runtimes of probabilistic simu-
lation models to assess security of electricity supply. Hence, the im-
plementation of both approaches seems reasonable and the comparison
will allow us to work out which is the best suited approach.

2.3. Existing research gap

Our literature review demonstrated that

(1) complex, probabilistic simulation models might reflect the sto-
chastic nature of real world conditions more realistically, but come
with high runtimes that prevent from analysing a multitude of
scenarios,

(2) both linear regression methods and ANNs are promising methods to
reduce computational effort of simulation models in the sense of
metamodeling.

To the best of the authors’ knowledge a combination of metamo-
deling approaches and probabilistic simulation of security of electricity
supply has not been analysed, yet. Thus, we introduce a probabilistic
model and assess the runtime gains and accuracy losses of different
metamodeling approaches in the following.

3. Description of simulation model

In this section, we briefly present our current state-of-the-art si-
mulation model for assessing security of electricity supply. First, we
introduce our approach for modeling the availability of a single power
plant unit. Second, we demonstrate the computationally high-de-
manding process (so-called recursive convolution) that is used to ag-
gregate the availabilities of all installed plant units to one probability

distribution curve. Finally, we summarize all other model parts that are
not within the focus of this study but necessary to calculate scientific
key indicators of security of electricity supply.

3.1. Power plant availabilities

The aggregated amount of available power plant capacities follows
a stochastic distribution. This distribution can be derived based on the
realistic assumption that each block of the controllable power plant
portfolio has two possible states: complete availability or non-avail-
ability. Thus, each power plant block follows a discrete Bernoulli dis-
tribution independently of all other blocks. The state of non-availability
for a power plant block with index i at a given time t occurs with
probability p t( )i . Accordingly, the probability that the block is fully
available is given by the converse probability p t1 ( )i .

When deriving the probability of non-availability, we differentiate
the two categories, planned and unplanned non-availability, according
to VGB e.V. (2017). We define planned unavailability such that the start
and duration of the unavailability are determined at least four weeks
before their occurrence. If the lead-time is shorter, we designate this an
unplanned unavailability.

In the following, the probability of a planned unavailability is re-
ferred to as q t( )i . The probability of an unplanned unavailability is
defined as r t( )i .

According to Fig. 1, the probability of non-availability of a power
plant unit p t( )i is the cumulative probability of planned unavailability
and unplanned unavailability in the case of no maintenance. It can be
calculated as follows:

= + = +p t q t q t r t q t r t q t r t( ) ( ) (1 ( ))· ( ) ( ) ( ) ( )· ( )i i i i i i i i (1)

3.2. Recursive convolution

Having shown the derivation of the time-dependent outage prob-
ability of an individual power plant unit in the above paragraphs, we
now extend this consideration by merging a large number of individual
units into one system.

The fact that each block of the controllable power plant portfolio
can take two discrete states results in a total of 2n possible states when
abstracting to n blocks. Hence, there exist about 6.7 10240 possible
states for a total of approximately 800 power station units in Germany.
For the assessment of security of electricity supply, the probability that
a given capacity is available needs to be calculated. As a direct calcu-
lation is not computationally feasible due to the high number of pos-
sible states, we apply the mathematical concept of recursive convolution.
This implies that the calculation is extended recursively by adding one
power plant unit after another. The probability >P PPr ( )i O that the
outage power Po exceeds a given threshold P in a system with i power
plant units can be formulated recursively, according to Brückl (2006),
as:

> = > + >Pr P P Pr P P p t Pr P P P p t( ) ( )·(1 ( )) ( ( ))· ( )
i

O
i

O i i
O i i( 1) ( 1) (2)

Where:

=Pr Probability: =P Outage power:O
=P Threshold power: =P Installed capacity of plant unit i:i

The flowchart in Fig. 2 summarizes the necessary processes to calculate
the distribution of available capacities considering n blocks. This pro-
cess needs to be carried out for each hour under investigation as the
probability of non-availability p t( )i varies accordingly.

The process as described above finally provides a probability dis-
tribution of available capacities. Hence, a curve is calculated, which
assigns probability values to capacities, as shown by the example in
Fig. 3.

However, the complexity of numerical simulations initially led to
high computational times despite using the efficient formulation of the

1 For further readings on linear regression, we refer readers to Moré (2012)
and Meeus and Nouicer (2013).

2 A more detailed introduction is provided by Zurada (1992). A more recent
overview on current processes in the field of ANNs, machine learning and
computational intelligence is provided by Biedermann et al. (2018).
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convolution algorithm as published by Ibanez and Milligan (2012). This
is caused by the hourly resolution leading to 8760 convolutions per
year under investigation. For this reason, we use the computing cluster
of RWTH Aachen University for the simulations. Here, we requested the

smp-l-bull cluster, providing 32 cores at 2.0 GHz with total RAM
memory of 256 GB. Despite using high-performance computers and
parallelizing the program code, the runtime per scenario still ranged in
an order of magnitude of 10 h (for a more detailed runtime analysis, see
Section 6). Hence, we applied more advanced techniques to accelerate
computational time by using metamodels. Section 4 shows these ap-
proaches in more detail.

3.3. Calculation of scientific key indicators for security of electricity supply

Having derived the distribution curve of available capacities, in the
following paragraphs we briefly summarize all additional steps that are
necessary to scientifically evaluate security of electricity supply.
However, as their computational effort is significantly lower than the
runtime of the recursive convolution algorithm, the latter parts of
the model are not within the focus of this paper. Thus, only a short

Fig. 1. Planned and unplanned unavailability.

Calculation of 
according to equation (1)

Recursive convolution
of all blocks in hour t

VGB e.V. 
(2017): Mean 
outage rates

Installed 
capacities

Calculation of 

Start

End

Calculation of 
EEX (2018): 

Time of 
outage

VGB e.V. 
(2017): Mean 
outage rates

True

False

Parallelized

Fig. 2. Calculating the distribution of available capacities – flowchart.

Fig. 3. Sample distribution of available capacities.
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overview is provided here in order to enable a comprehensive analysis.
Once the probability distribution of available controllable power

plants has been conducted, the following steps need to be performed:
(1) modeling of electricity load and renewable feed-in in hourly re-
solution for each scenario under investigation, (2) implementation of
contributions from neighboring countries, and (3) calculation of sci-
entific key indicators for the assessment of security of electricity supply.

3.3.1. Electricity load and renewable feed-in
As the calculated probability distribution only reflects the avail-

ability of controllable power plants, the contribution of fluctuating re-
newables needs to be accounted for on the load side within the model.
For this reason, residual load (i.e. electricity load minus renewable
feed-in) is calculated. To do so, two factors need to be determined for
each hour under investigation: first, electricity load and second, the
feed-in of fluctuating renewables.

To simulate the temperature dependency of loads in the countries
studied, we derived country-specific functions, which depict the re-
lationship between electricity load and temperature. We simulated the
temperature sensitivity of electricity loads using these functions, histor-
ical weather data, and the normalized electricity load profiles that are
published in the Mid-term Adequacy Forecast (MAF) by entso-e (2016).

To model the feed-in of fluctuating renewable energies, we used two
data sets by González Aparicio et al. (2016) and González Aparicio,
Huld, Careri, Monforti, and Zucker (2017). These data sets comprise
standardized, hourly feed-in hydrographs for wind (off- and onshore)
and photovoltaics for 30 weather years (1986–2015). In addition, we
used data as published by Copernicus (2018) on daily feed-in of run-of-
the-river power plants, and interpolated this to hourly resolution.

Finally, residual load can be calculated as the difference between
electricity load and renewable feed-in. The intersection of the dis-
tribution curve of available capacities, as derived within Section 3.2
and the residual load determines the probability that the electricity load
in a given hour for a given weather year can be covered, as depicted in
Fig. 4. Here, the probability to cover residual load in the presented hour
emerges as 90%.

3.3.2. Contributions from neighbouring countries
The purely national approach as described above is extended by

taking into account potential foreign contributions to cover the elec-
tricity load in Germany. Within our simulations, contributions from
Austria, Belgium, Switzerland, Czech Republic, Denmark, France, the
Netherlands, Norway, Poland, and Sweden are considered due to the
countries’ direct electrical connection to the German grid. This poten-
tial from neighboring countries is accounted for on the load side.
Potential imports are subtracted from the residual load within
Germany.

3.3.3. Determination of key indicators
To reflect realistic conditions, probabilistic influences need to be

accounted for within the model. On the load side, this comprises tem-
perature effects and fluctuating import potentials. On the supply side,
both weather effects on renewable feed-in and hourly changing power
plant availabilities need to be considered. This leads to hourly shifting
probabilities to cover residual load, as shown in Fig. 5.

Stochastic key indicators reflect this fluctuating behavior. Based on
the model outputs, the hourly Loss of Load Probability (LoLP) can be
calculated as complementary probability according to the following
equation:

=LoLP Pr1 load coverage_ (3)

LoLP reflects states in which available capacities are not sufficient to
cover electricity load completely. An evaluation of LoLPs is especially
interesting for hours of peak load and peak residual load.

By aggregating LoLP values over the course of a year, one can de-
termine the so-called Loss of Load Expectation (LoLE). This indicator
reflects the expected loss of load duration stated in hours. Thus, the
LoLE value represents all stochastic influences on both the demand and
on the supply sides that occur within the period under consideration.

=
=

=

LoLE LoLP h·1
t

t

t
1

8760

(4)

4. Reducing computational effort

As stated in Section 3.2, the computational effort for calculating the
hourly resolved distribution of available capacities in current state-of-
the-art models is very high, ranging in the order of magnitude of 10 h
per simulation run. However, this time effort is already relatively low
when directly compared to the six days that each run took before uti-
lizing the high-performance computer cluster and a parallel code
structure. Since the computational effort is mainly caused by the high
number of hours being evaluated, the goal is to further decrease com-
puting time by performing fewer convolutions while still being able to
evaluate the indicators mentioned in Section 3.3.3 as precisely as pos-
sible.

The proposed method of two-stage metamodeling to further reduce
the computational effort can be explained as follows:

Stage 1: Representing the probability distribution of available ca-
pacities

The availability distributions for each hour of the year (see Fig. 3)
have the general form of a sigmoid functions. Though it can be re-
presented by other functional relationships, as for example different

Fig. 4. Sample calculation of probability to cover residual load.
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kind of distribution functions, in the scope of this paper we have fo-
cused on a sigmoid function according to Eq. (5). Thus, the first-stage of
our metamodeling approach is to approximate the availability dis-
tribution using the sigmoid function.

= +Pr
AC

1 exp 1

2

3

(5)

where

AC =: Available capacity Pr =: Approximated probability

k =: =Curve parameter k, 1. .3

In detail, the originally calculated distribution is approximated by de-
termining three influencing curve parameters, namely the vector k.
This is performed by utilizing a least-squares method solved with the
Levenberg-Marquardt algorithm (Moré, 1978). Step 1 does not need to be
carried out for each of the 8760 h of the year, but rather for certain
well-defined combinations of probabilities for non-availability of power
plant units pi. The calculation of the best fitting combinations mainly
depends on the assumed underlying type of relations (i.e. linear or non-
linear) as discussed in more detail below.

Stage 2: Approximating the regression coefficients

If the distribution changes during the course of the year due to
variations of p t( )i , the curve parameters k need to be adjusted ac-
cordingly. Thus, if the functional relationship of p t( ( ))k i can be esti-
mated, the distribution for every hour of the year can be approximated,
too.

The first step in determining p t( ( ))k i is to construct the so-called
design space, in which the functional relationship is required to be
valid. For this, the maximum and minimum of p t( )i are determined.
Consequently, the design space covers combinations of pi that are not
part of the original time series p t( )i .

In this design space, information is gathered to model k using a
linear approximation as well as an ANN. Both metamodels are used and
compared in this study. The choice of linear regression methods implies
the assumption of linear relations, whereas ANNs are especially suitable
for non-linear relations between the input parameters (changing p t( )i )
and the output parameters (i.e. p t( ( ))k i in this case).

To gather appropriate information, designs are set up that define
certain factor level combinations of pi. With those factor level combi-
nations, the time-dependency of p t( )i vanishes. Both approximation
models as well as their corresponding designs are explained in more
detail in the following subsections. Fig. 6 visualizes the workflow for
the two-stage metamodeling. The depicted procedure results in ap-
proximations of the original distribution curves, causing negligible

computational effort. This in turn allows us to approximate the key
indicators stated in Section 3.3.3 for any given time series of p t( )i .

4.1. Linear response considering interactions and two-level factorial design

The functional relationship for approximating the vector k assumes
a linear response and can be written as follows:

= + +
= = = +

b b p b p pk
i

n

i i
i

n

j i

n

ij i j0
1 1

1

1 (6)

where

k
=: =Approximated curve parameter k, 1. .3

b0 =: Regression coefficient for intersection
bi =: Regression coefficient for main effects
bij =: Regression coefficient for interaction effects
n =: Number of power plant units

To determine b0, bi and bij, a system of linear equations needs to be
solved. This is done using the least square method (Moré, 1978). Per-
forming simulations using a full factorial two-level design (sampling all
extreme value combinations, more details are given in Section 4.2)

Fig. 5. Time dependency of capacity distribution and residual load.

Fig. 6. Workflow of two-stage metamodeling.
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gives enough information to solve such a system. A graphical re-
presentation of this design for three dimensions is shown in Fig. 8,
where each simulation is indicated as a red dot. As one can see, the
information is concentrated in the corners of the design space.

4.2. Combining artificial neural network and Latin Hypercube design

If a non-linear relationship is considered, ANNs are frequently ap-
plied, as they are known to provide very powerful universal approx-
imations (see. e.g. Rao and Srinivas (2003)). ANNs consist of so-called
neurons (in analogy to the human brain) that process the received in-
puts (here: pi) by calculating weighted sums and transforming the result
using so-called activation functions, usually a sigmoid-function. Those
neurons are arranged in layers between the inputs and the outputs, so-
called hidden-layers. ANNs for regression-type problems only require
one neuron for the output-layer which uses the identity activation
function and thus only performs the weighted sum. In our work, we use
ANNs to estimate the curve parameters k as introduced in Equation (6)
and thus combine this tool with the energy system model as introduced
in Section 3.

A simplified schematic of an ANN with two inputs, one hidden-layer
with two neurons and one output layer with one neuron is depicted in
Fig. 7: This illustration does not depict the actual ANN design used in
this research (cf. Table 5). However, it links the simplified schematic
with an energy system model. Therefore, probabilities for non-avail-
ability of power plant units pi are assigned to input neurons and a curve
parameter k to estimate LoLP values is assigned to the output neuron.

The weights that are eventually used to process the inputs and
thereby allow to predict the output, are calculated by performing su-
pervised learning: training data, consisting of known input-output pairs,
is processed by the ANN. The ANN tries to predict the output with in-
itially randomly chosen weights. After this forward pass, the weights are
adapted as to minimize a certain error function. This process is conse-
quently named backward pass. The procedure of forward and backward
pass is repeated until a certain stop criterion is fulfilled (e.g. number of
iterations, so-called epochs). To adapt the weights, many different ap-
proaches are used. In this paper, we use the Levenberg-Marquardt al-
gorithm combined with Bayesian regularization as described originally
in Foresee and Hagan (1997), due to its good generalization ability,
which allows all sampled information to be used to adjust the weights.
To find the best network structure (number of layers and number of
neurons per layer), a heuristic search algorithm is utilized which limits
the maximum number of hyperparameters (weights and bias values) to
the number of training data and evaluates the networks performance
using the mean squared error.

The information, or more specifically the input-output pairs, are
sampled using a so-called Latin Hypercube Design (LHD) as originally
described by Ye (1998). Due to its stochastic nature, 30,000 LHDs are
constructed and evaluated in terms of a metric criterion. For additional
information at the extreme values of the design space, we also sample a
so-called two-level factorial design. In this context, the number of levels
represents the number of different settings (here: minimal and maximal
values, i.e. two settings) and the term factorial indicates that every
possible combination of those two levels is selected. The design that is
used to generate information for fitting the linear regression as well as
training the ANN is illustrated in Fig. 8 in three dimensions, where each
dimension represents the normalized probability pi for non-availability
of block i as introduced in Equation (1). The LHD is represented by the
green rectangles, the two-level factorial design by the red circles.

5. Description of relevant data and scenarios

To demonstrate realistic model results, it is necessary to reflect
realistic conditions as closely as possible. Therefore, only scientifically
reliable input data from well-established sources that can be claimed to

Fig. 7. Simplified schematic of an artificial neural network architecture. The
inputs (p1 and p2) are multiplied by according weights =wi 1, , 4 and summed, as
well as transformed within the neurons n1 and n2 using an activation function.

Fig. 8. Two-level factorial design (red dots) in the normalized pi design space
to determine a linear regression as well as combined with a Latin Hypercube
Design (green rectangles) to train an ANN.

Table 1
Investigated scenarios.

Year Additional phase-out of coal-fired power plants

0 GW 8 GW

2020 2020 2020_−8GW
2022 2022 2022_−8GW
2023 2023 2023_−8GW

Table 2
Evaluation of runtimes and memory usage.

Scenario Number of
simulations
[/]

Total
runtime
[sec]

Total
runtime
[h]

Average
memory
[MB]

Max
memory
[MB]

Exact approach
2020 8760 37,085 10.30 6847 8859
2022 8760 34,705 9.64 6718 8643
2023 8760 35,428 9.84 6620 8405
2020_−8GW 8760 32,039 8.90 6586 8393
2022_−8GW 8760 30,602 8.50 6593 8367
2023_−8GW 8760 27,834 7.73 6500 8170

Approximation
2020 16 125 0.03 1334 1788
2022 16 117 0.03 1323 1780
2023 8 116 0.03 1073 1441
2020_−8GW 16 108 0.03 1132 1783
2022_−8GW 16 103 0.03 1140 1799
2023_−8GW 8 90 0.03 960 1446
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be free of bias were used within our analyses. Further, all following
assessments are based on a real-life case for Germany. We use currently
available data and highly relevant future scenarios to assess security of
electricity supply in central Europe for the years 2020, 2022, and 2023.

Necessary data-inputs comprise the following: (1) installed con-
trollable and renewable power plant capacities in Germany, (2) in-
stalled capacities in neighboring countries, and (3) net transfer capa-
cities (NTCs) between Germany and its neighbors.

For currently installed capacities of controllable power plants in
Germany, the list of power plants published by BNetzA (2018b):
Kraftwerksliste (Power plant list) was used. Future commissioning and
decommissioning was implemented according to BNetzA (2018c):
Kraftwerksstilllegungsanzeigenliste (KWSAL) (List of power plant clo-
sure notifications). Regarding renewable energies in Germany, data
published by entso-e (2017) was used. Here, the datasets provided for
years 2020 and 2025 were interpolated to reflect conditions in the
scenario-years under investigation. For the installed capacities in
neighboring countries, the same source of data, entso-e (2017), was

used to guarantee consistency. Necessary NTC values to assess the im-
port potential were taken from entso-e (2016) and interpolated ac-
cordingly.

In addition to the installed capacities as given in the above-men-
tioned sources, further details such as system stability measures,
switchable loads, and network stability units need to be accounted for.
For reasons of brevity, we however refrain from a closer description of
the according input data, here.

Having described necessary input-data, we introduce the scenarios
under investigation. Based on the phase-out of nuclear power plants, we
chose the scenario-years 2020 (8 GW of nuclear power plants installed
in Germany), 2022 (4 GW of nuclear power plants), and 2023 (no nu-
clear power plants) as reference years. To reflect ongoing political de-
bate on a possible phase-out of coal-fired power plants, we investigated
scenarios with an additional shut-down of 8 GW of coal-fired power
stations. Overall, we used six different scenarios for the validation of
our metamodels, as can be seen in Table 1.

6. Results and discussion

The results section of this paper is divided into two parts. First, we
give results that were achieved based on a linear approximation ap-
proach. Second, we show results produced by an ANN-based approx-
imation.

Fig. 9. Exact calculation and linear approximation of the probability distribution and course of absolute error over capacity for scenario 2020 in the hour with the
least fit (left) combined with a boxplot of the maximum errors for each hour of the year (right).

Fig. 10. Frequency distribution of LoLP values for scenarios with capacity shortage.

Table 3
Accuracy of linear approximation - LoLP.

2020 2020_−8GW 2022 2022_−8GW 2023 2023_−8GW

RSS 0 4 26 12,454 26 6,360
RMSE 0.0 0.2 0.5 11.1 0.5 7.9
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6.1. Linear approximation

Performing the methodology as described in Section 3, one can see
that the relationship p t( ( ))k i can be approximated by a linear function
when we perform only 16 simulations for years 2020 and 2022 and only
eight simulations for year 2023, instead of originally 8,760 simulation
runs (i.e. exact calculation), thus reducing computational effort by up to
99.7%. Table 2 shows the significant reduction of runtime and memory
requirements for the calculation of the necessary probability distribu-
tion curves.

Besides the evaluation of runtime gains, it is of high importance to
analyze the fit of the approximated curves. Using the linear

Fig. 11. LoLEs for each scenario using exact probability distribution curves and linear approximations.

Fig. 12. Deviations of LoLEs using linear approximation methods.

Table 4
Accuracy of linear approximation - LoLEs.

2020 2020_−8GW 2022 2022_−8GW 2023 2023_−8GW

Mean absolute error [h] 0.00 0.00 0.01 0.07 0.00 0.05
Median absolute error [h] 0.00 0.00 0.00 0.06 0.00 0.04
Maximum absolute error [h] 0.00 0.02 0.03 0.15 0.02 0.11

Table 5
Hyperparameters and boundary conditions of the ANN.

Hyperparameter/Boundary condition Value

Maximum Number of Epochs 200
Hidden Layers 1
Maximum Number of Neurons 7
Normalized Input and Outputs Yes
Activation Function Hidden Neurons Tangens hyperbolicus
Activation Function Output Neuron Linear
Training Algorithms Levenberg-Marquardt and Bayesian

Regularization

Table 6
Runtime and memory evaluation using different methods (scenario 2022_−8GW).

Number of simulations [/] Total Runtime [sec] Total Runtime [h] Average Memory [MB] Max Memory [MB]

Exact approach 8760 30,602 8.50 6593 8367
Linear approximation 16 103 0.03 1140 1799
ANN 49 179 0.05 2308 2967
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relationship, a sigmoid function can be fitted in the whole design space.
To visualize the accuracy, Fig. 9 shows the example of the hour with the
least fit of the distribution for the year 2020 (left) combined with a
boxplot of the maximum errors for each hour of the year (right). The

diagram indicates that the distribution functions during the year are
fitted closely. Here, the maximum error turns out to be less than 1.4%.

As introduced in Section 3.3.3, the probability distribution functions
built the basis for the calculation of scientific key indicators to assess

Fig. 13. Comparison of exact calculation, linear approximation, and ANN-based approximation of the probability distribution and course of absolute error over
capacity for scenario 2022_−8GW in the hour with the least fit (left) combined with a boxplot of the maximum errors for each hour of the year (right).

Fig. 14. Frequency distribution of LoLP values exact calculation and approximation based on ANN.
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security of electricity supply. Therefore, we investigated whether the
approximated probability functions provide LoLP and LoLE values with
sufficient accuracy. Our results using the exact probability distribution
curves indicate that for scenarios with no additional coal-reductions,
almost no hours with capacity shortage occur, independent of the
weather year. However, the situation changes for scenarios
2022_–8 GW and 2023_–8 GW. The resulting frequency distributions are
shown in Fig. 10 below. It should be noted here that the total number of
hours under considerations evolves to be =h h30·8760 262, 800 based on
the consideration of 30 different weather years.

In Fig. 10, it can be seen that the frequency distributions are ap-
proximated very closely. However, the results also reveal a tendency of
the approximation to slightly overestimate the loss of load probability.
To quantify the deviations from the exact frequency distribution, the
residual sum of squares (RSS) and the root mean square error (RMSE)
are listed in Table 3.

Even more clearly than based on the distribution of LoLP fre-
quencies, the accuracy of our approximation approach can be shown
and proven statistically when LoLE values are considered. Fig. 11 de-
monstrates the emerging LoLEs for each scenario considering
30 weather years. Both sets of results, using the exact approach and the
approximation based on metamodels, are depicted.

One can draw the conclusion from the boxplots depicted in Fig. 11
that the results vary only slightly when simplifications are applied.
Fig. 12 explicitly shows the deviations between the original results and
those based on approximations.

Further evidence for the sufficient fit of the approximated prob-
ability distributions to reflect realistic results is provided in Table 4.
Here, mean absolute errors, median absolute errors, and maximum
absolute errors are reported for each scenario under investigation.

One can see that the deviations between the LoLEvalues calculated
on the basis of the exact convolution curves and those based on the
approximated curves are insignificant. As LoLE values are interpreted in
absolute terms, usually in the unit of hours, even the maximal deviation

of 0.15 h (i.e. 9 Minutes) does not comprise the interpretation of the
results. Further, approximated curves only overestimate LoLEs in the
scenarios under investigation, which can be seen as estimation on the
safe side.

6.2. Artificial neural networks

Even though the linear regression already allows for an acceptable
approximation as shown above, we applied a more advanced method
based on ANNs to improve accuracy of the second stage approximation
even further and implement possible non-linear effects. Thus, a Latin
Hypercube Design with 33 factor level combinations was added to the
already existing two-level factorial design. The hyperparameters and
boundary conditions for the ANNs training are depicted in Table 5.

As deviations between exact calculations and the linear approach
are highest for scenario 2022_−8GW (see Table 3 and Table 4), this
scenario was chosen as the starting point for the assessment of possible
further accuracy improvements. First, an evaluation of runtime and
memory effects is summarized in Table 6.

One can conclude that the more advanced approach based on ANNs
requires more simulations and thus leads to slightly increasing runtimes
and memory requirements. However, the reductions are still highly
significant in comparison to the exact approach. To demonstrate the fit
of the approximated curve in comparison to the linear model, both
approximations are depicted for scenario 2022_−8GW in Fig. 13.

Fig. 13 demonstrates that both the median absolute error and the
maximum absolute error decrease, when ANN-based approximation is
used. For further analysis of the accuracy of the approximations, both
the distribution of LoLP frequencies and the corresponding LoLE values
are calculated and depicted in accordance with Section 6.1. First, the
LoLP frequencies are depicted in Fig. 14.

This shows that the distribution is estimated very closely. Again,
RSS and RMSE are provided so as to quantify the fit, see Table 7.

One can see that the ANN-based approximation has higher RSS and
RMSE values in comparison to the linear metamodel, indicating a
higher deviation from the exact results. At first glance, this seems to be
in contradiction to the overall better fit of the approximated curve using
ANN as shown in Fig. 13. However, a closer analysis reveals that
nonconformity to the original curve is higher for the ANN approxima-
tion for small residual loads. This turns out to be the most important
part of the distribution curve for the assessment of security of electricity
supply, as residual load mostly ranges in this area. Using the linear
approximation method, the maximum absolute error in this part of the
curve is 0.86%. The corresponding error for ANN-based approximation
is 0.91%. The same picture emerges, when LoLE values are computed,
as demonstrated in Fig. 15 in the Appendix A.

No additional gains in accuracy can be reached by the application of
ANN. This is shown in further detail in Table 8.

In summary, we can state that the application of ANN-based ap-
proximation methods does improve the overall-fit of the probability
distribution function, but at the cost of a decreasing fit in a part of the
curve with high importance for the resulting scientific key indicators.
Furthermore, the ANN training demands more computation than the
linear regression resulting in higher runtimes for the two-stage meta-
model with ANN. For these reasons, an application of ANN-based ap-
proximation methods does not provide any further gains in the use-case
as demonstrated within this paper.

7. Conclusion & outlook

Probabilistic assessments of security of electricity supply are of high
importance, as policy makers require a scientifically sound base for
decisions. However, up until to now, the computation time per scenario
often proved to be a barrier for more in-depth analyses of a variety of
possible scenarios. This is mainly caused by the computationally intense
calculation of probability distribution functions for available capacities.

Table 7
Comparison of accuracy based on LoLP frequencies (scenario 2022_−8GW).

Linear approximation ANN-based approximation

RSS 12,454 13,858
RMSE 11.1 11.7

Fig. 15. Deviation of LoLEs – comparison of approaches.

Table 8
Comparison of accuracy.

Linear approximation ANN-based approximation

Mean absolute error [h] 0.07 0.07
Median absolute error [h] 0.06 0.06
Maximum absolute error

[h]
0.15 0.16
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Therefore, we implemented two-stage metamodels to approximate the
distribution curve, and thus decreased the required computational ef-
fort. To perform the approximations, we used both, linear methods and
approaches based on artificial neural networks.

Our results indicate that the application of linear regression
methods significantly reduces the computational effort by up to 99.7%
without noticeably comprising the resulting scientific key indicators.
The observed deviations ranged well below 10 min concerning the
calculated loss of load expectation values for all scenarios under in-
vestigation (see Table 4). However, using an approach based on arti-
ficial neural networks did not achieve further improvements in the
approximations. Despite a better overall fit of the approximated curves,
higher approximation errors in important parts of the distribution curve
prevented gains in accuracy.

Therefore, our key findings are as follows:

– In general, our results indicate that the linear approximation
methods allow for analyses with a greater variety of scenarios, thus
providing more profound insights for the assessment of security of
electricity supply.

– Additionally, our approach proves that well-chosen approximation
tools can assist in handling modeling complexity while keeping the
results sufficiently accurate. Our results indicate that well-chosen
and tailor-made approximation methods resting on rather simple
mathematical approaches can outperform highly elaborated tools
that are less suitable for the specific use-case.

– Thus, we conclude that by chaining a selection of rather straight-
forward approximations challenging problems (as often faced in the
field of energy system modeling) can be efficiently solved.

We hypothesize that our results could be transferred to further ap-
plications in energy system modeling: whenever computationally
complex problems occur within the field of computational engineering
or managerial decision making, appropriate tools to circumvent com-
plexity by using metamodels can help to reduce complexity and achieve
results with high accuracy.

For future research, we propose to investigate the applicability of
approximations based on artificial networks for more complex and non-
linear interrelations within energy system modeling. These could for
example serve to directly model weather effects and the impact of
changing power plant portfolios on the expected outage durations. This
would allow robust optimizations of power plant park portfolios
without the need to conduct computationally intense convolutions.
Also, sensitivity analyses can be performed to evaluate the impact of
those diverse factors on the expected outage duration. For this purpose,
design and performance spaces need to be expanded resulting in more
complex and non-linear interrelations. The model complexity and the
high model performance that are being strived for require the tailor-
made utilization of design of experiment methods, ANN-based ap-
proximations and machine learning techniques.

Appendix A

See Fig. 15.
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