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a b s t r a c t 

We elaborate on the robustness assessment of a deep neural network (DNN) approach to dimensionality reduction 

for data visualization. The proposed DNN seeks to improve the class separability and compactness in a low- 

dimensional feature space, which is a natural strategy to obtain well-clustered visualizations. It consists of a DNN- 

based nonlinear generalization of Fisher’s linear discriminant analysis and a DNN-based regularizer. Regarding 

data visualization, a well-regularized DNN guarantees to learn sufficiently similar data visualizations for different 

sets of samples that represent the data approximately equally well. Such a robustness against fluctuations in the 

data is essential for many real-world applications. Our results show that the combined DNN is considerably more 

robust than the generalized discriminant analysis alone. We further support this conclusion by examining feature 

representations from four comparative approaches. As a means of measuring the structural dissimilarity between 

different feature representations, we propose a hierarchical cluster analysis. 
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. Introduction 

Mapping high-dimensional data – usually containing many redun-

ant observations – onto 1, 2 or 3 features that are highly informa-

ive, often is a useful first step in data analysis, as it allows to generate

traightforward data visualizations such as histograms or scatter plots.

 fundamental problem arising in this context is that there is no general

nswer to the question of how one is supposed to choose or even design a

apping that yields these informative features. Finding a suitable map-

ing typically requires prior knowledge about the given data. At the

ame time, knowledge is what we hope to be able to derive after map-

ing the data onto informative features. Frequently, one might know

othing or only very little about the given data. In any case, one needs

o be very careful not to mistake crude assumptions for knowledge, as

his may lead to a rather biased view on the data. So in summary, it ap-

ears as a closed loop “knowledge ⇒ mapping ⇒ informative features

knowledge ”, where each part ultimately depends on the given data

nd the only safe entry point is true knowledge. 

Deep neural networks (DNNs) have been proven capable of tack-

ing such problems. A DNN is a model that covers an almost infinite

umber of mappings, which is realized through millions of adjustable

eal-valued network parameters. By a learning process, the network pa-

ameters are gradually optimized (DNN learning ) with respect to a cri-

erion that indicates whether or not a mapping of a given data set is
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nformative. Two DNNs that have been shown to be able to successfully

earn useful data visualizations are the Ge ne r alized D iscriminant A nalysis

GerDA) and D eep A uto E ncoders (DAEs) as suggested by Stuhlsatz et al.

38] and Hinton and Salakhutdinov [15] , respectively. A closer look

t these two DNNs reveals that the term “informative ” may have quite

ifferent meanings. 

GerDA is a nonlinear generalization of Fisher’s L inear D iscriminant

 nalysis (LDA) [12] and thus considers discriminative features to be

ost informative, which appears as a very natural strategy to gener-

te well-clustered visualizations of labeled data sets. DAEs, on the other

and, seek to improve an encoder/decoder mapping 

 DAE ∶= 𝑓 dec ◦𝑓 enc , (1)

here 𝑓 enc is a dimensionality reducing encoder (the desired feature

apping) and 𝑓 dec is the associated decoder. Practically, this is achieved

y defining a criterion that measures the dissimilarity between the data

nd the reconstructions obtained by encoding and subsequent decoding.

AEs can therefore be learned without the use of class labels. Here,

econstructable features are considered most informative. 

The Re gularized N onlinear D iscriminant A nalysis (ReNDA) [2] pre-

ented in this paper uses the combined criterion 

 ∶= (1 − 𝜆) 𝐽 + 𝜆 𝐽 ( 𝜆 ∈ [0 |1]) , (2)
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here the two subcriteria 𝐽 GerDA and 𝐽 DAE are based on GerDA and

 DAE, respectively. As the name suggests, we expect the associated

eNDA DNN to be better regularized. Regularization is a well-known

echnique to improve the generalization capability of a DNN. Regarding

imensionality reduction for data visualization, a good generalization

erformance is indicated by a reliably reproducible 1D, 2D or 3D feature

apping. In other words, a well-regularized DNN guarantees to learn

ufficiently similar feature mappings for different sets of samples that

ll represent the data equally well. Clearly, such a robustness against

uctuations in the data is essential for many real-world applications. 

Based on the belief that a feature mapping learned by a DNN should

e as complex as necessary and as simple as possible, regularization of

NNs is traditionally imposed in the form 

 effective ∶= 𝐽 obj + 𝜆𝐽 reg ( 𝜆 ∈ [0 |∞)) , (3)

hich looks very similar to the combined criterion (2) . Here, 𝜆 is a hy-

erparameter that is adjusted to control the impact of a regularization

erm 𝐽 reg on the DNN’s true objective 𝐽 obj . Well-known approaches fol-

owing (3) are weight decay (encouraging feature mappings that are more

early linear) and weight pruning (elimination of network parameters

hat are least needed) [27] . Both these measures are intended to avoid

he learning of overly complex mappings by imposing a restriction on

he network parameters. In our opinion, one advantage of (2) over these

wo approaches can be stated as follows: 

In (2) , the restriction on the network parameters is implicitly im-

osed through encouraging a feature representation that is informative

n two respects, i.e. the informativity of the feature representation is

aramount. In the case of weight decay or pruning, only 𝐽 obj is respon-

ible for the informativity of the learned feature representation. 𝐽 reg is

sually neither designed to yield any outcomes regarding the given data

or meant to directly support or complement 𝐽 obj . Most often, examin-

ng the effects of 𝐽 reg on a DNN’s learning process can only tell us what

e might already know: The DNN covers overly complex feature map-

ings. 

.1. Related work 

Dimensionality reduction may serve different purposes. The feature

epresentations obtained can be used 

(a) for subsequent classification [9,37] . 

(b) as compact representations for image retrieval [53] . 

(c) for data mining and data visualization [10,13] . 

(d) to analyze machine learning (ML) models [21] . 

(e) to enhance the robustness of ML models [3] . 

For each of these categories, there often exist several dimensionality

eduction approaches that are suitable to solve the concrete task at hand.

seful overviews over unsupervised approaches are given by Lee and

erleysen [20] , Sorzano et al. [35] , Van Der Maaten et al. [45] . To the

est of our knowledge, Chao et al. [5] is the first publication to present

n overview over supervised dimensionality reduction approaches. Its

ocus lies on approaches that have counterparts in the field of unsu-

ervised dimensionality reduction, e.g. isomap-based and locally linear

mbedding-based supervised dimensionality reduction. 

Two of the most fundamental dimensionality reduction approaches

re the linear P rincipal C omponent A nalysis (PCA) and Fisher’s LDA.

hile GerDA is a nonlinear generalization of Fisher’s LDA, DAEs can

e understood as a nonlinear generalization of the linear PCA [15] (a

athematical analysis that reveals the link between the linear PCA and

inear autoencoders is presented in [1,26] ). Therefore, the hybrid PCA-

DA model suggested by Zhao et al. [52] comes closest to a linear coun-

erpart of ReNDA. The key to their hybrid model is a combined criterion

ith the same functional form as (2) . They were able to show that any

eighting between the PCA and the LDA criterion performs better than

he PCA or the LDA alone. 
The regularizing effect of a combined encoding/reconstruction crite-

ion has been addressed in other publications that look at autoencoder-

ike neural networks, e.g. [22,30] . In [49] , the term autoencoder reg-

larization was introduced. The very recently introduced unsupervised

imensionality reduction approach SCVIS [10] seems to benefit from

he described regularizing effect, too. Although SCVIS is introduced

s a deep variational autoencoder [16,28] that uses the t -distributed

 tochastic N eighbor E mbedding (t-SNE) criterion [44] as an additional

ncoding criterion, it can also be viewed as follows: SCVIS is a DNN-

ased parametric t-SNE [43] that is extended to form a deep variational

utoencoder. Because t-SNE has become a state-of-the-art dimensional-

ty reduction approach and because SCVIS bears a certain resemblance

o ReNDA, we consider SCVIS as a comparative approach in Section 5 . 

UMAP (short for U niform M anifold A pproximation and P rojection ) has

ecently drawn much attention because of its outstanding runtime per-

ormance and the sound mathematical foundation laid out in [23] . It is

ompetitive with t-SNE when learned unsupervisedly. With respect to

eNDA it is a far better comparative approach than SCVIS for its capa-

ility of supervised learning ( Section 5 ). 

.2. Research contributions 

We consider this paper to provide useful contributions for applica-

ions under the categories (c) and (d) ( Section 1.1 ). Category (c) applies

ince we aim to further elaborate on an approach to dimensionality re-

uction that is especially suitable for data visualization. Since Sections 3,

 and 5 present several strategies on how to assess and compare the

obustness of dimensionality reduction approaches, category (d) is cov-

red as well. In Section 4 , we also show that ReNDA yields 2D feature

epresentations that allow for a robust hierarchical clustering. The re-

ulting hierarchical tree structures can be used to design hierarchical

lassifiers, a promising approach in the field of classification [18,33] .

his indicates that future applications under category (a) may benefit

rom ReNDA as a data preprocessing step. In this context, 2D visualiza-

ions of the feature representations and hierarchical tree structures can

e used to increase the transparency of the overall classification process.

Apart from serving a wide range of data analytics- and ML-related

pplications, our goal is to draw attention to a largely overlooked gap

n ML research: While dimensionality reduction has become a standard

ata preprocessing step to realize robust ML models (cf. [46,50] ), the

obustness of the dimensionality reduction itself is rarely questioned.

urrently, Chenouri et al. [6] appears to be the only other publication

hat directly addresses this gap in ML research. The results of our work

how that this gap deserves greater attention. 

. ReNDA 

As mentioned above, ReNDA is a combination of two different DNNs,

erDA and a DAE. As a matter of fact, both of these DNNs learn feature

appings in a very similar way, which is another reason why we consid-

red this particular combination: They both use a Restricted Boltzmann

achine (RBM) pretraining to determine good initial network param-

ters, which are then used for subsequent gradient descent-based fine-

uning. The big difference between them is that a DAE has an encoding

 𝑓 enc ) and a decoding ( 𝑓 dec ) DNN, whereas GerDA has only an encod-

ng DNN. So contrary to a DAE, GerDA is unable to decode previously

earned informative feature representation [2] . 

The idea behind ReNDA is to equip GerDA with a suitable decod-

ng DNN. We introduce it in such a way that it has a regularizing effect

n the encoding GerDA DNN. In the following, we focus on presenting

he resulting ReNDA DNN as a well-regularized and therefore robust

pproach to dimensionality reduction for data visualization. (In [2, Sec-

ion 3.2.4] , we looked at ReNDA’s capability to decode its feature rep-

esentations.) In Fig. 1 , we show a detailed data flow graph of ReNDA.

n the following four subsections, we give a detailed explanation of all

lements depicted in this figure. 



M. Becker, J. Lippel and A. Stuhlsatz et al. Graphical Models 108 (2020) 101060 

Fig. 1. A data flow graph of the overall 2 L -layered ReNDA DNN. Each layer 

is depicted as a box containing a symbolic plot of its activation function. The 

L layers on the left-hand side form the encoding and the L layers on the right- 

hand side form the decoding DNN ( Sections 2.1 and 2.2 ). The inner “spaces 

flow graph ” along with the RBMs and the curved arrows concern the RBM pre- 

training ( Section 2.3 ). The GerDA criterion 𝐽 GerDA is connected to the feature 

space node by a dashed line, where it takes direct influence during fine-tuning 

( Section 2.4 ). Accordingly, 𝐽 DAE takes direct influence at the original space node 

and the reconstruction space node. From [2] . 
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.1. The encoding DNN 

Suppose that the columns of 𝐗 ∶= ( 𝒙 1 , … , 𝒙 𝑁 ) ∈ ℝ 

𝑑 𝐗 ×𝑁 are d X -

imensional samples and that 𝒚 ∶= ( 𝑦 1 , … , 𝑦 𝑁 ) 𝑡𝑟 ∈ {1 , … , 𝐶} 𝑁 is a vec-

or of class labels associated with these samples. ReNDA’s objective is

o find a DNN-based nonlinear encoding 

 ↦ 𝐙 ∶= 𝑓 enc ( 𝐗 ) ∈ ℝ 

𝑑 𝐙 ×𝑁 (4)

ith d X > d Z ∈ {1, 2, 3} that is optimal in the sense of an LDA for data vi-

ualization, i.e. that the features 𝐙 = ( 𝒛 1 , … , 𝒛 𝑁 ) ∈ ℝ 

𝑑 𝐙 ×𝑁 are both well-

lustered with respect to y and visualizable. The layerwise encoding

hown on the left-hand side of Fig. 1 is obtained by setting X 

0 ≔ X ,

 0 ≔ d X , X 

L ≔ Z , d L ≔ d Z and defining 

 

𝓁 ∶= 𝑓 𝓁 ( 𝐖 

𝓁 𝐗 

𝓁−1 + 𝐁 

𝓁 

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
=∶𝐀 𝓁 ( 𝐗 𝓁−1 ) 

) ∈ ℝ 

𝑑 𝓁 ×𝑁 (5)

or 𝓁 ∈ {1 , … , 𝐿 } and intermediate dimensions 𝑑 1 , … , 𝑑 𝐿 −1 ∈ ℕ . We

efer to 𝑑 0 − 𝑑 1 − 𝑑 2 − ⋯ − 𝑑 𝐿 as the DNN topology. Further,

 

𝓁 ( 𝐗 

𝓁−1 ) ∈ ℝ 

𝑑 𝓁 ×𝑁 is the 𝓁th layer’s net activation matrix and it de-

ends on the layer’s adjustable network parameters: the weight ma-

rix 𝐖 

𝓁 ∈ ℝ 

𝑑 𝓁 ×𝑑 𝓁−1 and the bias matrix 𝐁 

𝓁 ∶= ( 𝒃 𝓁 , … , 𝒃 𝓁 ) ∈ ℝ 

𝑑 𝓁 ×𝑁 . The

unction 𝑓 𝓁 ∶ ℝ → ℝ is called the 𝓁th layer’s activation function and it

s applied entrywise, i.e. 

 

𝓁 
𝑘,𝑛 = 𝑓 𝓁 ( 𝑎 𝓁 𝑘,𝑛 ( 𝐗 

𝓁−1 )) (6)
ields the entries of X 

𝓁 . The encoding DNN’s activation functions are set

o f 𝓁 ≔ sigm with sigm ∶ ℝ → (0 |1) given by 

igm ( 𝑥 ) ∶= 

1 
1 + exp ( − 𝑥 ) 

( 𝑥 ∈ ℝ ) (7) 

or 𝓁 ∈ {1 , … , 𝐿 − 1} and to f L ≔ id with id ∶ ℝ → ℝ given by 

d ( 𝑥 ) ∶= 𝑥 ( 𝑥 ∈ ℝ ) , (8) 

espectively. In Fig. 1 the activation functions are depicted as symbolic

lots. 

Altogether 

 enc = 𝑓 𝐿 ◦𝐀 

𝐿 ◦… ◦𝑓 2 ◦𝐀 

2 ◦𝑓 1 ◦𝐀 

1 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
layerwise forward propagation 

(9) 

nd optimizing it with respect to 𝐽 GerDA ( Section 2.4.1 ) corresponds to

he originally proposed GerDA fine-tuning [38] . The dashed link be-

ween 𝐽 GerDA and the Z node of the data flow graph shown in Fig. 1 is

 reminder that Z is the GerDA feature space. With the decoding DNN

resented in the next section, Z becomes the feature space of the overall

eNDA DNN. 

.2. The decoding DNN 

As can be seen on the right-hand side of Fig. 1 , the adjustable net-

ork parameters of the encoding DNN are reused for the decoding 

 ↦ 𝐗̂ ∶= 𝑓 dec ( 𝐙 ) ∈ ℝ 

𝑑 𝐗̂ ×𝑁 (10)

ith 𝑑 𝐗̂ ∶= 𝑑 𝐗 . The final biases 𝒃 2 𝐿 ∈ ℝ 

𝑑 2 𝐿 represent the only additional

etwork parameters of ReNDA compared to GerDA. We summarize by

∶= ( 𝐖 

1 , 𝒃 1 , … , 𝐖 

𝐿 , 𝒃 𝐿 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
network parameters of 

the encoding DNN 

, 𝒃 2 𝐿 ) (11)

he network parameters of the ReNDA DNN. One of the main reasons for

his kind of parameter sharing is that it connects 𝑓 enc and 𝑓 dec at a much

eeper level than (2) alone. Observe that 𝐽 GerDA and 𝐽 DAE only take di-

ect influence at three points of the ReNDA DNN. Because a DNN typ-

cally has millions of adjustable real-valued network parameters, there

lso lie millions of degrees of freedom between the two criteria. Thus, it

s very likely that 𝑓 dec compensates for a rather poor 𝑓 enc or vice versa.

n this case, the two mappings would not be working together. Con-

idering this, we can specify what we mean by a connection of 𝑓 enc and

 dec at a deeper level: The parameter sharing ensures that the two DNNs

ork on the very same model. It makes the decoding DNN a support-

ve and complementing coworker that helps to tackle the existing task

ather than causing new, independent problems. The idea of parame-

er sharing between two neural networks has also been investigated by

thers with so-called Siamese architectures [7] . 

We conclude this section with the mathematical formulation of the

eight sharing as it is depicted in Fig. 1 . To provide a better overview,

e arranged the layers as horizontally aligned encoder/decoder pairs

hat share a single weight matrix: Layer 𝓁 = 2 𝐿 uses the transposed

eight matrix ( W 

1 ) tr of the first layer. Layer 𝓁 = 2 𝐿 − 1 uses the trans-

osed weight matrix ( W 

2 ) tr of the second layer. So in general, 

 

𝓁 = 

(
𝐖 

2 𝐿 − 𝓁+1 )𝑡𝑟 (12)

nd 𝑑 𝓁 = 𝑑 2 𝐿 − 𝓁 for 𝓁 ∈ { 𝐿 + 1 , … , 2 𝐿 } , which implies 𝑑 2 𝐿 = 𝑑 0 = 𝑑 𝐗 =
 𝐗̂ . Note that the decoding DNN has the inverse encoding DNN topology

 𝐿 − … − 𝑑 0 . We can therefore still write 𝑑 0 − … − 𝑑 𝐿 for the DNN

opology of the overall ReNDA DNN. In the case of the biases, we see

hat 

 

𝓁 = 𝒃 2 𝐿 − 𝓁 (13) 

or 𝓁 ∈ { 𝐿 + 1 , … , 2 𝐿 − 1} . Observe that (13) does not include the addi-

ional final decoder bias vector b 2 L because there is no d 0 -dimensional
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ncoder bias vector that can be reused at this point. The symbolic acti-

ation function plots indicate that 

 𝓁 = 

{ 

sigm 𝐿 + 1 ≤ 𝓁 ≤ 2 𝐿 − 1 
id 𝓁 = 2 𝐿 . 

(14)

inally, we have that 

 dec = 𝑓 2 𝐿 ◦𝐀 

2 𝐿 ◦… ◦𝑓 𝐿 +1 ◦𝐀 

𝐿 +1 (15)

ith 𝐀 

2 𝐿 , … , 𝐀 

𝐿 +1 according to (5) . It is 

 ↦ 𝐗̂ = ( 𝑓 dec ◦𝑓 enc )( 𝐗 ) = 𝑓 DAE ( 𝐗 ) (16)

nd optimizing 𝑓 DAE with respect to 𝐽 DAE ( Section 2.4.2 ) corresponds

o the originally proposed DAE fine-tuning [15] . 𝐽 DAE measures the dis-

imilarity between the samples X and its reconstructions 𝐗̂ . In the data

ow graph shown in Fig. 1 this is symbolized by a dashed line from the

 node to 𝐽 DAE to the 𝐗̂ node. 

.3. RBM pretraining 

Both GerDA and DAEs use an RBM pretraining in order to determine

ood initial network parameters. In this context, “good ” means that a

ubsequent gradient descent-based fine-tuning has a better chance to

pproach a globally optimal mapping. Randomly picking a set of initial

etwork parameters, on the other hand, almost certainly leads to map-

ings that are rather poor and only locally optimal [11] . As an in-depth

xplanation of the RBM pretraining would go beyond the scope of this

aper, we only give a brief description of the RBM elements shown in

he data flow graph ( Fig. 1 ). 

We see that there exists an RBM for each horizontally aligned en-

oder/decoder layer pair. Each RBM L for 𝓁 ∈ {1 , … , 𝐿 } is equipped with

 weight matrix 𝐖 ∈ ℝ 

𝑑 𝓁−1 ×𝑑 𝓁 , a vector 𝒃 𝑣 ∈ ℝ 

𝑑 𝓁−1 of visible biases and

 vector 𝒃 ℎ ∈ ℝ 

𝑑 𝓁 of hidden biases. Once pretrained, the weights and

iases are passed to the DNN as indicated by the curved arrows. This is

xactly the same way in which the network parameters of the original

erDA DNN are initialized. Again, the only exception is the final bias

ector b 2 L . Here, the bias b v of RBM 1 is used. The initialization of the re-

aining network parameters of the decoding DNN follows directly from

he parameter sharing (12) and (13) introduced in Section 2.2 . 

.4. Fine-tuning 

For the gradient descent-based fine-tuning, we need to specify the

wo criteria 𝐽 GerDA and 𝐽 DAE . When combining the two criteria one has

o pay attention to their orders of magnitude. We found the following

ormalized criteria to be best working. 

.4.1. Normalized GerDA criterion 

The original GerDA criterion is given by 

 

𝛿
𝑧 ∶= trace 

((
𝐒 𝛿𝑇 

)−1 𝐒 𝛿𝐵 ). (17)

n [38] , it has been shown that maximizing 𝑄 

𝛿
𝑧 yields well-clustered,

isualizable features. The two matrices appearing in (21) are: The

eighted total scatter matrix 

 

𝛿
𝑇 ∶= 𝐒 𝑊 

+ 𝐒 𝛿𝐵 (18)

ith the common (unweighted) within-class scatter matrix

 𝑊 

∶= (1∕ 𝑁) 
∑𝐶 
𝑖 =1 𝑁 𝑖 𝚺𝑖 of the class covariance matrices 𝚺𝑖 ∶=

1∕ 𝑁 𝑖 ) 
∑
𝑛 ∶ 𝑦 𝑛 = 𝑖 ( 𝒛 𝑛 − 𝒎 𝑖 )( 𝒛 𝑛 − 𝒎 𝑖 ) 𝑡𝑟 with the class sizes 𝑁 𝑖 ∶= 

∑
𝑛 ∶ 𝑦 𝑛 = 𝑖 1

nd the class means 𝒎 𝑖 ∶= (1∕ 𝑁 𝑖 ) 
∑
𝑛 ∶ 𝑦 𝑛 = 𝑖 𝒛 𝑛 . The weighted between-

lass scatter matrix 

 

𝛿
𝐵 ∶= 

𝐶 ∑
𝑖,𝑗=1 

𝑁 𝑖 𝑁 𝑗 

2 𝑁 

2 ⋅ 𝛿𝑖𝑗 ⋅ ( 𝒎 𝑖 − 𝒎 𝑗 )( 𝒎 𝑖 − 𝒎 𝑗 ) 𝑡𝑟 (19)

ith the global symmetric weighting 

𝑖𝑗 ∶= 

{ 

1∕ ‖𝒎 𝑖 − 𝒎 𝑗 ‖2 𝑖 ≠ 𝑗 

0 𝑖 = 𝑗. 
(20)
learly, 𝛿ij is inversely proportional to the distance between the class

eans m i and m j . The idea behind this is to make GerDA focus on classes

 and j that are close together or even overlapping, rather than ones that

re already far apart from each other. 

For ReNDA, we modified 𝑄 

𝛿
𝑧 as follows: 

 GerDA ∶= 1 − 

𝑄 

𝛿
𝑧 

𝑑 𝐙 
∈ (0 |1) (21)

he division through d Z is the actual normalization ( Appendix A ). Sub-

racting this result from one makes 𝐽 GerDA a criterion that has to be

inimized, which is necessary in order to be able to perform gradient

escent for optimization. See Appendix B for the partial derivatives of

 GerDA . 

.4.2. Normalized DAE criterion 

Directly applying the classical mean squared error 

SE ∶= 

1 
𝑁 

∥ 𝐗̂ − 𝐗 ∥2 𝐹 ∈ [ 0 |∞) (22) 

ith Frobenius norm 

𝐔 ‖𝐹 ∶= 

√ √ √ √ 

𝑚 ∑
𝑖 =1 

𝑛 ∑
𝑗=1 

|𝑢 𝑖,𝑗 |2 ( 𝐔 ∈ ℝ 

𝑚 ×𝑛 ) (23)

s the DAE criterion is problematic because it is typically considerably

reater than 𝑄 

𝛿
𝑧 . Note that (21) implies 𝑄 

𝛿
𝑧 ∈ (0 |𝑑 𝐙 ) . In the context of

imensionality reduction for data visualization, where d Z ∈ {1, 2, 3},

his difference in order of magnitude is especially large. We therefore

odify the DAE criterion in the following way: 

 DAE ∶= 

MSE ∕ 𝑑 𝐗 
1 + MSE ∕ 𝑑 𝐗 

∈ [ 0 |1 ) (24) 

he division through d X was arbitrarily introduced. Together with N ,

he denominator d X prenormalizes ‖ ⋅ ‖2 
𝐹 

before the final normalization

 ⋅ )∕[1 + ( ⋅ )] . However, there may be better ways of defining a normal-

zed DAE criterion. This is subject to future work. With 𝐽 GerDA (see (21) )

nd 𝐽 DAE having the same bounded codomain, their combination is less

roblematic. The partial derivatives of 𝐽 DAE can be found in Appendix

 . 

. Experiments 

DNNs are able to successfully learn dimensionality-reducing map-

ings that yield informative, visualizable features. This claim has been

xperimentally proven for both GerDA and DAEs. In [15,38] , respec-

ively, the widely used MNIST database of handwritten digits [19] has

een mapped into a 2D feature space. In another example, GerDA has

een used for an emotion detection task. Here, 6552 acoustic features

xtracted from speech recordings were reduced to 2D features that allow

o detect and visualize levels of valence and arousal [39] . 

In the following two sections, we experimentally show that ReNDA

s also able to successfully learn feature mappings for data visualization

nd that these mappings are robust against fluctuations in the data. In

rder to be able to see this improvement in regularization, we ran all

xperiments for both ReNDA and GerDA and compared their results. 

Throughout all of the ReNDA experiments we set 𝜆 = 0 . 5 , mainly

ecause it avoids a prioritization of any of the two criteria 𝐽 GerDA and

 DAE (see (2) ). Although not subject of the work presented in this paper,

ptimizing 𝜆 may improve the results for a particular application. This

as been shown in [1] . 

.1. Artificial galaxy data set 

For a first experiment, we used the artificially generated galaxy-

haped data set shown in Fig. 2 . Although it is already very easy to

isualize, DNN learning of optimal 1D features is still challenging. The
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Fig. 2. A scatter plot of the artificial galaxy data set. The plot on the right-hand 

side shows a zoom of the center point of the galaxy. We see that the 3 classes 

are in fact non-overlapping but very difficult to separate. From [2] . 
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Fig. 3. A comparison of the 1D mappings learned by ReNDA (a) and GerDA (b). 

The top row of small subplots in (a) and (b), respectively, shows the histograms 

of the 1D features associated with the validation samples of each of the 10 galaxy 

data sets. The large plots represent overlays of these 10 subplots. From [2] . 
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eason why we chose to use an artificial rather than a real-world data

et is that most interesting real-world data sets are far too complex to

btain fast results. In the case of the galaxy data set, the associated DNN

arameters are relatively fast to compute, which made it possible to run

ery extensive experiments but with reasonable computational effort. 

.1.1. Experimental setup 

The main goal of this experiment is to investigate the influence of

uctuations in the data on the learned ReNDA and GerDA visualizations.

he results allow us to compare these two approaches with regard to

heir robustness. 

We simulated fluctuations in the data by taking 10 distinct sets of

amples from the galaxy data set, which were then used for 10 ReNDA

nd 10 GerDA runs. In detail, each of the 10 galaxy sets contains 1440

amples (480 per class) that were presented for DNN learning, and ad-

itional 5118 samples (1706 per class) that were used for validation.

urther details on how the samples are presented for DNN learning can

e found in Appendix D . 

For both ReNDA and GerDA we chose the DNN topology 2-20-10-1.

his choice is based on the very similar 3-40-20-10-1 DNN topology that

38] used to learn informative 1D features from a 3-class artificial Swiss

oll data set. Removing the intermediate dimension 40 made DNN learn-

ng more challenging while reducing the computational effort. In other

ords, it yielded a less flexible DNN mapping with fewer parameters to

ptimize. 

An important aspect to consider is that the algorithmic implementa-

ions of both ReNDA’s and GerDA’s DNN learning, involve the use of a

andom number stream. In this experiment we ensured that this stream

s the same for all 10 ReNDA and all 10 GerDA runs. The initial network

arameters of the RBM pretraining are also based on this stream, which

mplies that we do not include any potentially biased parameter initial-

zations. As a consequence, any fluctuations in the ReNDA and GerDA

esults are due to the simulated fluctuations in the data only. 

.1.2. 1D visualization 

We now compare the 1D mappings obtained from the 10 ReNDA and

he 10 GerDA runs. To that end, we use class-conditional histograms as

 straightforward method for 1D visualization. This is best explained by

irectly discussing the results. We begin with the ReNDA results shown

n Fig. 3 (a) and discuss the GerDA results ( Fig. 3 (b)) afterwards. 

The top row of small plots in Fig. 3 (a) shows the results of the indi-

idual ReNDA runs. Each of these plots includes 3 distinct relative his-

ograms that are based on standardized 1D features associated with the

alidation samples: One that considers the samples in the red or asterisk

 ) class, a second for the green or cross mark ( ) class, and a third for

he blue or plus mark ( ) class. The large plot in Fig. 3 (a) represents

n overlay of all small plots. Note that the axis limits of all 11 plots

re identical. Therefore, the overlay plot indicates a high similarity be-

ween the learned 1D mappings. Only the order of the 3 classes changes

hroughout the different ReNDA runs, which is due to the symmetry of

he galaxy data set. 
The corresponding GerDA histograms shown in Fig. 3 (b) are or-

anized in the very same way as in Fig. 3 (a), i.e. two small his-

ograms that have the same position in Fig. 3 (a) and (b) are based

n the same 1440 samples for DNN learning and the same 5118 sam-

les for validation. However, here we used differently scaled verti-

al axes depending on the maximum bar height of each histogram.

bserve that only the two bold-framed histograms are similar to

he ReNDA histograms. The GerDA overlay plot shows that the 1D

appings learned by GerDA are significantly less similar to each

ther than those learned by ReNDA. In the case of GerDA, the three

lasses are hard to detect, whereas for ReNDA we obtained 3 bump-

haped and easy to separate clusters. This indicates that regulariz-

ng GerDA in order to obtain ReNDA yields the desired robustness

mprovement. 

.2. Handwritten digits 

The artificial galaxy data set used above is neither high-dimensional

or an interesting example in terms of practical applications. We there-

ore decided to carry out further experiments with the well-known

NIST database of handwritten digits [19] , a widely used real-world

enchmark data set for the testing of DNN learning approaches. 

MNIST contains a large number of samples of handwritten digits 0

o 9 stored as grayscale images of 28 × 28 pixels. These samples are

rganized as two subsets: a training set containing 60k samples and a

est set of 10k samples. With its 28 × 28 pixel images and variations in

he handwriting it falls into the category of big dimensionality data sets

s discussed in [51] . Nevertheless, there are no visible non-understood

uctuations present, which is important for our experimental setup. As

efore, we want to simulate the fluctuations in order to see their effect

n the feature mappings. 
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Fig. 4. A comparison of the 2D feature representations learned by ReNDA (a) 

and GerDA (b). In both (a) and (b), the class centroids are marked with the asso- 

ciated digits. The coloring of the data points is based on the easy-to-spot meta- 

clusters 2-3-8-5, 7-9-4 and 0-6 in (a). We applied a single-hue color scheme 

per meta-cluster and added a matching border per meta-cluster. The selected 

colors were transferred to (b). In (a) and (b), each column corresponds to 1 of 

the 3 partitions of the training samples and each row corresponds to 1 of the 

3 random number streams. The value in the top left corner of each scatter plot 

states the corresponding distance consistency measure DSC [34] . Please note 

that Fig. 7 shows a larger version of the top left scatter plot of Fig. 4(a). 
.2.1. Experimental setup 

The setup of this experiment slightly differs from the previous

ne. Again we considered fluctuations in data but also fluctuations in

he random number stream that both ReNDA and GerDA depend on

 Section 3.1.1 ). In practice, the latter fluctuations are especially present

hen DNN learning is performed on different computer architectures:

lthough we have not studied these effects systematically yet, we be-

ieve that different rounding procedures may lead to significantly dis-

imilar feature representations even if the same samples are used for

NN learning. Instead of conducting experiments on distinct computer

rchitectures, we pursued the following strategy in order to obtain a

leaner experimental setup: 

In this experiment, we simulated these fluctuations in the random

umber stream simply by generating 3 distinct random number streams

ith a single random number generator. The fluctuations in the data

ere simulated via 3 distinct random partitions of the 60k training sam-

les into 50k samples presented for DNN learning, and 10k samples for

alidation. Finally, we combined each of these 3 partitions with each

f the 3 random number streams, which then allowed us to realize 9

eNDA and 9 GerDA runs. Further details on how the samples are pre-

ented for DNN learning can be found in Appendix D. 

For both ReNDA and GerDA we selected the DNN topology 784-

500-375-750-2 that was also used in [38] , allowing a direct comparison

f our results. 

.2.2. 2D visualization 

In the following, we demonstrate ReNDA’s improved robustness

ompared to its predecessor, GerDA, by two means: We look at 2D scat-

er plot visualizations and the distance consistency measure DSC suggested

y Sips et al. [34] to assess the quality and the robustness of the under-

ying 2D mappings. The DSC score has been shown to be a first choice

n terms of the ability to imitate human perception [32] . Recently an

mprovement of the DSC score was suggested, the density-aware DSC

dDSC) [47] . Although possibly relevant for our work too, we used the

riginal DSC score from [32] . 

The scatter plots in Fig. 4 (a) show the results of the 9 ReNDA runs.

ach column corresponds to 1 of the 3 partitions of the 60k training

amples and each row corresponds to 1 of the 3 random number streams

s described in the previous section. The 2D features depicted are based

n the 10k validation samples of the respective run. Fig. 4 (b) shows the

ssociated GerDA scatter plots and it is organized in the very same way,

.e. two scatter plots that have the same position in Fig. 4 (a) and (b) are

ased on the same combination of a training set partition and a random

umber stream. 

The value given in the top left corner of each scatter plot is the asso-

iated DSC score. It is based on the respective 10k validation samples.

 DSC of 100 means that all data points have a smaller Euclidean dis-

ance to their own class centroid than to any other. It is a good mea-

ure of the compactness of class-related clusters that can be directly ap-

lied to any low-dimensional feature representation even if the under-

ying original set of samples is not available. Table 3 shows a compari-

on of the DSC scores of ReNDA, GerDA and 4 comparative approaches

 Section 5 ). 

As can be seen in Fig. 4 (a), ReNDA yields reliably reproducible fea-

ure representations, too. In order to make this more evident, we pur-

ued the following strategy: 

First, we standardized each feature representation as a means to

emove any translatory and scaling differences. Secondly, a mirroring

nd a rotation were applied if needed to obtain similarly orientated

eature representations. In the second step, the top left scatter plot in

ig. 4 (a) served as the reference. The same steps were applied to the

erDA feature representations shown in Fig. 4 (b). For each scatter plot,

he applied overall affine transformation is determined based on the

0k samples presented for DNN learning. The transformation of the fea-

ure representations does not have any effect on the DSC scores. This

an be easily verified by comparing the DSC scores to those published

n [2] . 
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Fig. 5. A comparison of the learning curves associated with ReNDA and GerDA . 

Each learning curve shows the validation classification error (error for short) 

as a function of the learning epoch. The lower blue and the upper red curve 

represent the average errors. The light gray ribbon surrounding each of the two 

indicates the corresponding standard deviations per epoch. The thinner dark 

gray curves show the actual errors per epoch of the 9 ReNDA runs and the 

9 GerDA runs. From [2] . (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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To further highlight the high degree of similarity of the 9 ReNDA

catter plots, we colored the data points based on the easy-to-spot meta-

lusters 2-3-8-5, 7-9-4 and 0-6 . We applied a single-hue color scheme

er meta-cluster and also added a matching border per meta-cluster

 Fig. 4 (a)). The selected colors were transferred to Fig. 4 (b). The coloring

ery well reflects the extent to which the ReNDA approach enhances the

erDA approach. In most cases, GerDA yields the same meta-clusters.

owever, their relative positioning appears less reproducible than in

he case of ReNDA. Also, in the case of GerDA, there appears to be a bit

ore variation between the individual digit clusters contained in the

-3-8-5 meta-cluster. They differ in their order and in the overall shape

hey produce. 

.2.3. Robust learning behavior 

It is natural to assume that the above final results are due to a more

obust, more efficient and more targeted learning behavior. To test this,

e compare the two learning curves depicted in Fig. 5 . The curves show

he Bayesian linear classification error (error for short) as a function of

earning epochs; the iterative steps of DNN learning. The error is a mea-

ure of class separability and we calculated it based on the respective

0k validation samples. The reason we use it is to show that ReNDA also

erforms well on classification tasks. 

In detail, we see the average ReNDA error (lower emphasized, blue

urve) and the average GerDA error (upper emphasized, red curve).

oth are surrounded by a light gray ribbon indicating the corresponding
Table 1 

Cluster evaluation results obtained for the ReNDA and 

and (b), respectively. The first value in each table cell st

prediction is indicated by 𝐾 

∗ ≠ 10 = 𝐶. The best predicti

GerDA runs, the worst prediction result is 9. The value in

of the false predictions. It is not defined if the number o

Clustering validity index Dimensionality reduction approa

Cali ń ski-Harabasz ReNDA 

GerDA 

Davies-Bouldin ReNDA 

GerDA 

Gap Statistic ReNDA 

GerDA 

Silhouette ReNDA 

GerDA 
tandard deviation per epoch. The thinner dark gray curves represent

he errors of the 9 ReNDA and the 9 GerDA runs, respectively. 

The assumed more robust learning behavior of ReNDA is evident

ecause throughout all learning epochs its standard deviation is signif-

cantly smaller than that of GerDA. Also its average learning curve is

lmost constant after epoch 50 whereas GerDA’s average learning curve

s still falling at epoch 200, which surely can be interpreted as a more

fficient and more targeted learning behavior. 

.2.4. Unsupervised cluster detection 

Yet another way to assess the learned dimensionality reductions is

o simulate the absence of class labels and examine how far an un-

upervised clustering algorithm can detect clusters that are consistent

ith the known class information. In contrast to the previous two sec-

ions, we ran this analysis using the feature representations correspond-

ng to the 50k samples presented for DNN learning. The reason for

his is that we do not consider it an analysis in its own right. It will

e the first step of a future hierarchical classification approach where

he validation samples must be saved for a final overall performance

ssessment. 

In this section, we focus on the necessary initial task of finding the

umber of clusters that appears to be most consistent with a given fea-

ure representation. In close to ideal scenarios, feature representations

hat are well-clustered with respect to their associated class labels would

onsist of exactly one cluster per class. Here, each individual cluster

ould be easy to distinguish from all other clusters ( separability ), and

ll samples that are assumed to form a cluster would not deviate much

rom the respective cluster mean ( compactness ). Simultaneously assess-

ng the overall separability and compactness of a set of clusters is key

o several clustering validity indices (CVIs). 

As can be seen in Table 1 , we use 4 CVIs ( Cali ń ski-Harabasz [4] ,

avies-Bouldin [8] , gap statistic [42] and silhouette [29] ) to validate 3

lustering algorithms: The first is the well-known 𝐾-means algorithm.

he second can be viewed as a variation of the 𝐾-means algorithm.

nstead of assuming 𝐾 ∈ ℕ cluster centroids, a 𝐾-components Gaussian

ixture Model (GMM) is fitted to the data. The third is a hierarchical

lustering algorithm using Ward’s method [48] . It yields a hierarchical

ree structure where each leaf represents a cluster. We denote by 𝐾 ∈ ℕ
he number of leaves of such a hierarchical tree structure. The following

xperimental setup can be easily realized using evalclusters – a

unctionality provided by MATLAB®’s Statistics and Machine Learning

oolbox. 

For each combination of a clustering algorithm with a CVI we identi-

ed the number of clusters 𝐾 

∗ ∈ {1 , … , 20} with the best validity index.

learly, in the case of the MNIST feature representations, 𝐾 

∗ ≠ 10 = 𝐶

an be seen as a false prediction of the number of classes. The num-

er of false predictions per combination is stated by the first value in

ach table cell. The best prediction result is 0. Because we carried out
GerDA feature representations shown in Fig. 4 (a) 

ates the number of false predictions where a false 

on result is 0. Since we carried out 9 ReNDA and 9 

 parentheses states the average absolute deviation 

f false predictions is 0. 

ch Clustering algorithms 

K -means K -comp. GMM Ward’s method 

0 0 1(1.0) 

3 (1.0) 4 (1.5) 5 (1.2) 

0 0 2 (1.0) 

3 (5.0) 4 (5.5) 9 (3.8) 

0 0 1 (1.0) 

3 (1.7) 2 (1.0) 3 (1.3) 

1 (1.0) 5 (1.6) 3 (1.0) 

6 (2.3) 6 (4.0) 7 (3.1) 
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 ReNDA runs and 9 GerDA runs the worst prediction result is 9. The

alue in parentheses states the associated average absolute deviation of

hese false predictions. It is not defined if the number of false predictions

s 0. 

Let us focus on the left-most table cell of the first GerDA row to get

n idea of how to interpret the second value: It is easy to see that the

alse predictions are either 9 or 11, i.e. they deviate by either +1 or −1 .
f any absolute deviation had been > 1, the second value would also

ave been > 1. For instance, the left-most table cell of the third GerDA

ow clearly reveals that K 

∗ deviated by ± 1 once, and by ± 2 twice,

ince (1 + 2 + 2)∕3 ≈ 1 . 7 . 
It is striking that in the case of ReNDA, half of the different

ombinations of a clustering algorithm and a CVI fully agree upon

he correct number of clusters of 𝐾 

∗ = 10 = 𝐶. The only true excep-

ion is the combination of the GMM clustering algorithm with the

ilhouette validity index. The second highest number of false pre-

ictions is 3 (combination of Ward’s method and the silhouette va-

idity index), which appears to be about the best result that one

an expect for a feature representation provided by its predecessor,

erDA. 

Although Ward’s method did not prove as reliable as the K -means

nd the K -components GMM clustering algorithm, it is worthwhile to

ake a closer look at the hierarchical tree structures provided. In the sub-
 d  

ig. 6. Dendrograms ( Section 4.1 ) corresponding to the four top left scatter plots in F

ue color scheme as in the case of the scatter plots. The value stated right of each de

he labeled links connecting the rectangular boxes indicate the pairwise tree dissimi
equent section, we show how they can be used to assess the structural

issimilarities between different feature representations. Furthermore,

e present a suitable strategy on how to examine whether a suggested

et of clusters is in fact class-related. 

. Structural dissimilarity 

In the following subsections, we show that the hierarchical tree struc-

ures obtained by Ward’s method [48] reflect structural dissimilarities

etween different feature representations. By structural dissimilarities

e mean any dissimilarities regarding the relative positioning of a set of

lusters. In this context, assessing the detectability of clusters in terms of

eparability and compactness has been a useful first step ( Section 3.2.4 ).

e assume that the structural dissimilarity assessment presented works

ith any hierarchical clustering algorithm and it is part of our future

ork to carry out and present a comparison. 

Since we are already familiar with the feature representations ob-

ained for the MNIST data set, we continue using them as an example.

n both sections, we assume 𝐾 

∗ = 10 = 𝐶 to be the number of clusters,

egardless of the fact that it has not been reliably predicted in the case

f the GerDA feature representations. The sections describe the different

lements depicted in Fig. 6 (a) and (b), respectively. They contain den-

rograms ( Section 4.1 ) visualizing the hierarchical tree structures cor-
ig. 4 (a) and (b), respectively. The leaves are colored applying the same single- 

ndrogram leaf indicates the reliability (in %) of the label assigned to that leaf. 

larity measures (TDMs) presented in Section 4.2 . 
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Fig. 7. An example of how the cluster-subcluster relationships can be trans- 

ferred back to the top left scatter plot of Fig. 4 (a). The cluster-subcluster rela- 

tionships shown in the top left dendrogram of Fig. 6 (a) are annotated via en- 

circling the meta-clusters at all different levels of merging. The borders of the 

meta-clusters 2-3-8-5, 7-9-4 and 0-6 – including their colors – are identical to 

those in the top left scatter plot of Fig. 4 (a). 
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esponding to the four top left scatter plots shown in Fig. 4 (a) and (b),

espectively. The labeled links indicate the pairwise structural dissim-

larity of the shown tree representations. The considered dissimilarity

easure has been suggested by Saunders et al. [31] ; a brief explanation

s given in Section 4.2 . 

Like the previously performed cluster evaluation ( Section 3.2.4 ), the

ierarchical tree structures discussed in the following are based on the

0k samples presented for DNN learning. Again, this is done with re-

ard to a future hierarchical classification approach where the valida-

ion samples must be saved for a final overall performance assessment. 

.1. Dendrograms 

The result of a hierarchical clustering is often displayed graphi-

ally using a tree-like diagram called a dendrogram. It reveals both

he cluster-subcluster relationships and the order in which the clusters

ere merged. In Fig. 6 , the dendrograms are shown inside rectangular

oxes. In each dendrogram, the 10 leaves are labeled with the respective

NIST digit they represent. The strategy we pursued to label the leaves

lso provides a good way to examine how far a suggested set of clusters

s in fact class-related – an issue we left open in Section 3.2.4 . 

For each leaf, we looked up the class labels of all data points of the re-

pective cluster and determined the class label occurring with the high-

st percentage. The resulting percentages are stated to the right of each

eaf’s label in Fig. 6 . Clearly, a high value per leaf indicates a reliable

verall labeling. Of course, each individual label’s percentage should

nly be the highest at exactly one leaf. Moreover, a unique highest per-

entage per leaf is required. In the case of ReNDA and GerDA, the above

trategy yielded unambiguous labelings. 

We applied the same single-hue color scheme to the leaves as in the

ase of the scatter plots ( Fig. 4 ), in order to facilitate the comparison of

catter plots and dendrograms belonging together. In the ReNDA den-

rograms shown in Fig. 6 (a), note how the single-hue color scheme per

eta-cluster agrees with the final leaf positions. From this, we can con-

lude that this meta-class-based visual assessment was encoded into the

ierarchical tree structures. As a consequence, an automatic detection

f such meta-classes should be realizable by exploiting the underlying

luster-subcluster relationships of a hierarchical representation. 

Fig. 7 shows an example of how the cluster-subcluster relationships

an be transferred back to a 2D scatter plot visualization. The scatter

lot corresponds to the top left scatter plot in Fig. 4 (a). Accordingly,

he cluster-subcluster relationships, here annotated via encircling the

eta-clusters at all different levels of merging, can be seen in the top

eft dendrogram of Fig. 6 (a). The borders of the meta-clusters 2-3-8-5,

-9-4 and 0-6 – including their colors – are identical to those in the top

eft scatter plot of Fig. 4 (a). 

The fact that the ReNDA dendrograms differ slightly from each other

ndicates that subtle dissimilarities between the feature representations

ere encoded into the corresponding set of hierarchical tree structures.

n the case of GerDA, we see that evidently different 2D feature represen-

ations ( Fig. 4 (b)) yield to evidently different dendrograms ( Fig. 6 (b)).

e thus conclude that applying hierarchical clustering algorithms can

ead to suitable tools for the robustness assessment of DNN-based di-

ensionality reductions. 

.2. A Tree Dissimilarity measure 

Recently, Saunders et al. [31] proposed a tree stability measure they

alled minimal containing clade (MCC), a term that is biologically moti-

ated and does not fit well into the context of our work. A closer look

t its definition reveals that the term tree dissimilarity measure (TDM) is

uitable and also more generally applicable: The idea behind it is to first

haracterize each hierarchical tree structure through the vector contain-

ng all leaf-to-leaf edge distances, where a leaf-to-leaf edge distance is

imply the number edges forming the path from a first leaf to a second
eaf. Given two such vectors the TDM of the corresponding hierarchical

ree structure is defined to be the Euclidean distance of those vectors. 

In Fig. 6 , the resulting pairwise TDMs are displayed as labeled links

etween the boxes containing the dendrograms. The average TDM and

ts standard deviation based on all 9 ReNDA and all 9 GerDA runs are

iven by 4.9 ± 3.0 and 11.1 ± 2.8, respectively. The fact that these val-

es agree with the visual robustness assessment presented so far, leads

o interesting future perspectives in the context of the robustness as-

essment of DNN-based dimensionality reduction approaches, not only

n the field of data visualization. 

For instance, having access to a scalar measure allows for a learn-

ng curve-like visualization that can be used to monitor DNN learning

rocesses. In the case of the TDM, this form of visualization would con-

ist of comparative curves each showing how two distinct DNN learning

rocesses converge or diverge. It is subject to our future work to explore

he opportunities of such robustness assessment approaches. 

. Comparative results 

So far, we have only compared ReNDA to its direct predecessor

erDA. In order to be able to provide further comparative results, we

an our 9 MNIST experiments ( Section 3.2 ) with 4 other dimensionality

eduction approaches. We look at the deep belief net (DBN) [40,41] that

e already considered in [2] and UMAP [24] ; both were learned super-

isedly. In addition, we look at 2 unsupervised approaches: the plain

AE obtained for 𝜆 = 1 in (2) and SCVIS [10] . An overview over all

elevant experiment details is given in Appendix D. 

In Section 5.3 , we give a summary of the results that covers all ap-

roaches including ReNDA and GerDA. In addition, the section states

he approximate computation time and memory usage per approach. 

.1. 2D visualization 

Fig. 8 shows the respective scatter plot visualizations. The 2D fea-

ure representations shown are based on our first 2 partitions of the 60k

raining samples and 2 different random number streams. Fig. 8 (a) to (f)
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Fig. 8. A comparison of the 2D feature representations 

learned by the ReNDA (a), GerDA (b), DBN (c), UMAP (d), 

the plain DAE (e) and SCVIS (f). The ReNDA/GerDA re- 

sults from Fig. 4 are repeated to enable a faster compar- 

ison. In all scatter plots, the class centroids are marked 

with the associated digits. The coloring of the data points is 

based on the easy-to-spot meta-clusters 2-3-8-5, 7-9-4 and 

0-6 in (a). We applied the same single-hue color scheme 

per meta-cluster and added a matching border per meta- 

cluster as in Section 3.2.2 . In (a) to (f), the columns corre- 

spond to the first and the second of our 3 partitions of the 

training samples and the rows correspond to 2 different 

random number streams. The value in the top left corner 

of each scatter plot states the corresponding distance con- 

sistency measure DSC [34] . 
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re organized as Fig. 4 (a) and (b), respectively: The columns correspond

o the partitions, the rows to the random number streams. The DSC

cores [34] are stated in the top left corner of each scatter plot. Again,

ll results are based on the 10k validation samples of the respective

artition. To remove any translatory, scaling and rotational differences

etween the scatter plots, we applied the affine transformation intro-

uced in Section 3.2.2 . To simplify the direct comparison of these and

he ReNDA and GerDA scatter plots, we reuse the color scheme from

he previous sections. In addition to the scatter plots, we show all corre-

ponding dendrograms in Figs. 9 and 10 . They were generated as those

n Fig. 6 ( Section 4.1 ). 

As already pointed out in [2] , the DBN learns a highly robust di-

ensionality reduction. The fact that the digit clusters 3 and 8 change

laces in the top left scatter plot of Fig. 8 (c) seems to be the only ir-
egularity worth mentioning. Other new aspects, e.g. the formation of

he large 2-3-8-6-5-0 meta-cluster, are consistent between the 4 scatter

lots. Characterized by similarly good DSC scores as the DBN, the super-

ised UMAP learns 2D feature representations where the digit clusters 0

o 9 are considerably more separable and more compact. However, the

sed UMAP hyperparameter setup (Appendix D) yields no consistent

elative positioning of the digit clusters. Moreover, it does not encour-

ge a consistent meta-cluster structure. This visual impression is more

ronounced in the corresponding dendrograms ( Fig. 9 (b)). 

Since the plain DAE and SCVIS were learned unsupervisedly, they

oth yield significantly less separable and less compact digit clusters.

bserve however that the relative positioning of the centroids of the

igit clusters is quite consistent in the case of the plain DAE. This can be

een as a first experimental confirmation that ReNDA’s DAE-like topol-



M. Becker, J. Lippel and A. Stuhlsatz et al. Graphical Models 108 (2020) 101060 

Fig. 9. Dendrograms ( Section 4.1 ) corresponding to the scatter plots in Fig. 8 (c) and (d), respectively. The leaves are colored applying the same single-hue color 

scheme as in the case of the scatter plots. The value stated right of each dendrogram leaf indicates the reliability (in %) of the label assigned to that leaf. The labeled 

links connecting the rectangular boxes indicate the pairwise tree dissimilarity measures (TDMs) presented in Section 4.2 . 
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gy is the reason for its robustness. As pointed out in Section 1.1 , SCVIS

an be interpreted as a parametric t-SNE [43] that is extended to form

 deep variational autoencoder [16] . Although SCVIS is not equipped

ith a parameter sharing scheme, Ding et al. [10 , including its supple-

entary online material] provides an extensive experimental proof that

t is more robust against simulated data fluctuations than the plain para-

etric t-SNE implementation by Krijthe [17] . We find it very interesting

hat our plain DAE yields a more consistent relative positioning of the

igit cluster centroids. We therefore plan to implement a regularized

arametric t-SNE that is set up as ReNDA, i.e. an extended parametric

-SNE with a DAE topology and the parameter sharing relations (12) and

13) . The results will be presented in a future publication. 

.2. Unsupervised cluster detection 

In Section 3.2.4 , we demonstrated how to utilize unsupervised clus-

ering algorithms to assess a supervisedly learned dimensionality reduc-

ion. Table 2 is organized as Table 1 and summarizes the results for the

BN and UMAP – the corresponding ReNDA results ( Table 1 ) are shown

o enable a faster comparison. 

To interpret the results in the right way, it is important to note that

here exists no generally applicable rule on how to select the right CVI

or a given feature representation. For instance, in the case of the DBN,
nly the Davies-Bouldin validity index is able to reliably confirm the

rue number of clusters 𝐾 

∗ = 10 = 𝐶. In the case of UMAP, this can be

chieved with the Davies-Bouldin and the silhouette validity index. Con-

idering the UMAP scatter plots shown in Fig. 8 (d), it is a bit surprising

hat the Cali ń ski-Harabasz and the gap statistic validity index fail to con-

rm the true number of clusters. Currently, we believe that this is due to

 form of within-cluster noise [23] but an adequate explanation requires

urther research. So far, we see it as a positive result that the 2D feature

epresentations provided by ReNDA allows for an application of all CVIs

onsidered. 

.3. Summary of results 

Table 3 states the DSC scores and the TDMs ( Section 4.2 ) of all 6

pproaches considered in this paper. As in all previous sections, the

verages and standard deviations of the DSC scores are based on the

espective 10k validation samples of the 9 runs per approach. The aver-

ges and standard deviations of the TDMs, on the other hand, are based

n the respective 50k training samples. The hierarchical tree structures

btained through Ward’s method will be further used for the design of a

ierarchical classifier. Therefore, the validation samples must be saved

or a final overall performance assessment. 
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Fig. 10. Dendrograms ( Section 4.1 ) corresponding to the scatter plots in Fig. 8 (e) and (f), respectively. The leaves are colored applying the same single-hue color 

scheme as in the case of the scatter plots. The value stated right of each dendrogram leaf indicates the reliability (in %) of the label assigned to that leaf. The labeled 

links connecting the rectangular boxes indicate the pairwise tree dissimilarity measures (TDMs) presented in Section 4.2 . 

Table 2 

Cluster evaluation results obtained for the 9 DBN and 9 UMAP feature representations; 4 of these feature 

representations are shown in Fig. 8 (c) and (d), respectively. The first value in each table cell states the num- 

ber of false predictions where a false prediction is indicated by 𝐾 

∗ ≠ 10 = 𝐶. The best prediction result is 0. 

Since we carried out 9 DBN and 9 UMAP runs, the worst prediction result is 9. The value in parentheses states 

the average absolute deviation of the false predictions. It is not defined if the number of false predictions is 

0. The ReNDA cluster evaluation results from Table 1 are included to enable a faster comparison. 

Clustering validity index Dimensionality reduction approach Clustering algorithms 

K -means K -comp. GMM Ward’s method 

Cali ń ski-Harabasz DBN 9 (5.9) 9 (4.3) 9 (8.3) 

UMAP 9 (9.4) 9 (7.1) 9 (9.0) 

ReNDA 0 0 1(1.0) 

Davies-Bouldin DBN 0 1 (1.0) 0 

UMAP 0 1 (1.0) 0 

ReNDA 0 0 2 (1.0) 

Gap Statistic DBN 9 (6.1) 2 (1.0) 9 (7.9) 

UMAP 9 (9.0) 9 (8.9) 9 (8.9) 

ReNDA 0 0 1 (1.0) 

Silhouette DBN 9 (4.7) 9 (4.9) 9 (6.6) 

UMAP 0 1 (1.0) 0 

ReNDA 1 (1.0) 5 (1.6) 3 (1.0) 
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Table 3 

DSC scores and TDMs, and approximate computation time and memory usage of all approaches consid- 

ered in this paper. All stated averages and standard deviations are based on the 9 runs per approach. The 

computation times are either stated as one value indicating the total computation time, or as follows: 

total = pretraining + fine-tuning. Note that we did not observe significant differences in memory usage 

between pretraining and fine-tuning. The stated value is the maximum observed memory usage. 

DSC score see [34] TDM see Section 4.2 Computation time in hours Memory usage in GB 

ReNDA 94.94 ± 0.39 4.93 ± 3.03 32 = 2 + 30 1.3 

GerDA 91.47 ± 3.03 11.11 ± 2.78 14 = 1 + 13 0.7 

DBN 96.62 ± 0.22 6.48 ± 4.33 77 = 53 + 24 n/a 

UMAP 96.50 ± 0.24 14.16 ± 2.48 < 0.1 1.2 

DAE 55.78 ± 1.74 16.55 ± 1.72 17 = 1 + 16 1.1 

SCVIS 83.88 ± 5.85 15.89 ± 2.75 52 1.1 
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As can be seen, ReNDA yields 2D feature representations with rel-

tively good DSC scores that are also reliably reproducibly. Moreover,

he obtained TDMs are outstanding as compared to those achieved by

he other approaches. Considering the use-case of designing a hierar-

hical classifier, this means that the final classifier design does not vary

uch with small fluctuations in the data. Thus, there is a better chance

hat researchers in this field who work with comparable data sets can

xchange their experience in a meaningful way. In the context of this

se case, all other approaches are less well suited. The dendrograms in

igs. 6 ( Section 4.1 ), 9 and 10 confirm this result. 

Of course, in practice, the robustness of a dimensionality reduction

pproach is not the only aspect to consider. Column 3 of Table 3 shows

hat the supervised learning of a UMAP feature mapping based on 50k

NIST digits takes less than 6 minutes, which is about 320 times faster

han ReNDA. This makes UMAP the better choice for straightforward

ata visualization. Note that our ReNDA/GerDA implementation is not

ell-optimized with regard to computation time and memory usage.

or this, we largely relied on MATLAB®’s core routines, and focused on

 high transparency of the learning processes instead. Despite of this,

eNDA, GerDA and also the corresponding plain DAE appear to have a

etter runtime performance than the DBN and SCVIS. It is however im-

ortant to note that such performance differences are seldom entirely

pproach-related. Other design choices such as the programming lan-

uage and style, the use of APIs, etc. must always be considered equally

esponsible. 

In summary, columns 3 and 4 of Table 3 show that the approxi-

ate computation times vary much between the 6 different approaches

nd that all approaches require a moderate amount of memory that lies

round 1 GB. For the sake of completeness, we present additional de-

ails on all experimental setups in Appendix D. This appendix section

lso covers relevant information about the workstation that was used

or all experiments. 

. Conclusion and outlook 

In this paper, we assessed the robustness of a deep neural net-

ork (DNN) approach to dimensionality reduction for data visualiza-

ion. The DNN used for this work is a combination of the Ge ne r alized

 iscriminant A nalysis (GerDA) and a D eep A uto E ncoder (DAE) as sug-

ested by Stuhlsatz et al. [38] and Hinton and Salakhutdinov [15] , re-

pectively. The combined DNN is called ReNDA (short for Re gularized

 onlinear D iscriminant A nalysis ). The experiments presented in this pa-

er show that ReNDA can reliably produce and reproduce feature rep-

esentations for visualization. To further support this conclusion, we

ooked at four comparative approaches: the DBN [41] already consid-

red in [2] , UMAP [24] , a plain DAE and SCVIS [10] . 

We presented and discussed various visualizations of the results

btained from two extensive experiments. The forms of visualization

anged from straightforward histograms and scatter plots of the feature

epresentations to dendrograms showing hierarchical cluster structures

erived from these feature representations. As part of the hierarchical
luster analysis we carried out in this context, we proposed a measure

hat expresses the structural dissimilarity between two feature represen-

ations. 

The hierarchical cluster analysis presented in Sections 3.2.4 and

 motivates for future research: One is the derivation of a hierarchi-

al classifier, a promising approach in the field of classification [18,33] .

nother is the development of visualizations that can be used to monitor

NN learning processes with respect to their robustness ( Section 4.2 ).

urther interesting future tasks are comparisons of the DAE-based reg-

larization and other regularization approaches (e.g. the recently pro-

osed dropout regularization [36] ), and also experiments testing the semi-

upervised learning capabilities of ReNDA. The latter makes sense since

erDA is a supervised and a DAE is an unsupervised machine learning

pproach. 

In conclusion, ReNDA has proven to be a suitable approach to ro-

ust dimensionality reduction for data visualization. The strategies ap-

lied to measure this robustness show that hierarchical classification

s a promising future application. Finally, we would like to point out

hat the hierarchical cluster analysis presented in this paper can also be

pplied to assess the robustness of other approaches to dimensionality

eduction. We consider the comparison of ReNDA, GerDA and the four

omparative approaches ( Section 5 ) to be a successful first test of this

pproach. 
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ppendix A. On the normalized GerDA criterion 

In Section 2.4.1 , we stated that the GerDA criterion (21) is normal-

zed, i.e. that 𝐽 GerDA ∈ (0 |1) . As this is not straightforward to see, we

ive a proof in this appendix section. 

Let 𝜆k for 𝑘 ∈ {1 , … , 𝑑 𝐙 } denote the eigenvalues of ( 𝐒 𝛿
𝑇 
) −1 𝐒 𝛿

𝐵 
. Then

race ( ( 𝐒 𝛿
𝑇 
) −1 𝐒 𝛿

𝐵 
) = 

∑𝑛 
𝑘 =1 𝜆𝑘 and we need to show that 0 < 𝜆k < 1 for all

 . 

Therefore, let 𝜇k for 𝑘 ∈ {1 , … , 𝑑 𝐙 } denote the eigenvalues of 𝐒 −1 
𝑊 

𝐒 𝛿
𝐵 

nd let 𝒙 𝑘 ∈ ℝ 

𝑑 𝐙 denote an eigenvector to the eigenvalue 𝜇k . Then 

𝐒 −1 
𝑊 

𝐒 𝛿
𝐵 
𝒙 𝑘 = 𝜇𝑘 𝒙 𝑘 

𝒙 𝑡𝑟 
𝑘 
𝐒 𝛿
𝐵 
𝒙 𝑘 = 𝜇𝑘 ⋅ 𝒙 

𝑡𝑟 
𝑘 
𝐒 𝑊 

𝒙 𝑘 . 
(25) 

ince both 𝐒 𝛿
𝐵 

and S W 

(see (19) and (20) ) are positive definite, we have

hat 𝜇k > 0 for all k . We use (18) to rewrite the characteristic eigenvalue

quation associated with (25) as follows: (
𝐒 −1 𝑊 

𝐒 𝛿𝐵 − 𝜇𝑘 𝐈 𝑑 𝐙 
)
𝒙 𝑘 = 𝟎 (

𝐒 −1 𝑊 

( 𝐒 𝛿𝑇 − 𝐒 𝑊 

) − 𝜇𝑘 𝐈 𝑑 𝐙 
)
𝒙 𝑘 = 𝟎 (

𝐒 −1 𝑊 

𝐒 𝛿𝑇 − ( 𝜇𝑘 + 1) 
⏟⏞⏟⏞⏟

=∶ 𝜅𝑘 

𝐈 𝑑 𝐙 
)
𝒙 𝑘 = 𝟎 (26) 
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Table 4 

Overview of our experimental setups for the ReNDA and GerDA runs. The 

batchsizes and the number of epochs were chosen as in the experiments for 

[38] . From [2] . 

ReNDA and GerDA 

Setup / Property Galaxy MNIST 

Data dimensionality 2 784 

Feature dimensionality 1 2 

Number of classes 3 10 

Number of samples 

for DNN learning 1440 50,000 

for validation 5118 10,000 

in total 65,580 60,000 

Pretraining 

Batchsize 144 2000 

Number of Epochs 10 50 

Fine-tuning 

Batchsize 288 5000 

Number of Epochs 1000 200 
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learly, 𝜅k for 𝑘 ∈ {1 , … , 𝑑 𝐙 } denote the eigenvalues of 𝐒 −1 
𝑊 

𝐒 𝛿
𝑇 

and it is

k > 1 for all k . The eigenvalues of ( 𝐒 −1 
𝑊 

𝐒 𝛿
𝑇 
) −1 are simply 0 < 𝜅−1 

𝑘 
< 1 for

ll k . We finally use that ( 𝐒 −1 
𝑊 

𝐒 𝛿
𝑇 
) −1 = 𝐈 𝑑 𝐙 − ( 𝐒 𝛿

𝑇 
) −1 𝐒 𝛿

𝐵 
which is equivalent

o (18) . With these last two statements we further convert (26) to (
( 𝐒 −1 𝑊 

𝐒 𝛿𝑇 ) 
−1 − 𝜅−1 𝑘 𝐈 𝑑 𝐙 

)
𝒙 𝑘 = 𝟎 (

( 𝐒 𝛿𝑇 ) 
−1 𝐒 𝛿𝐵 − 

(
1 − 𝜅−1 𝑘 

)
⏟⏞⏞⏟⏞⏞⏟

= 𝜆𝑘 

𝐈 𝑑 𝐙 
)
𝒙 𝑘 = 𝟎 . (27)

ere, it is easy to see that 0 < 𝜆k < 1 for all k , which is what we intended

o show. 

ppendix B. Partial derivatives of 𝑱 GerDA 

Let 𝓁 ∈ {1 , … , 𝐿 } . The partial derivatives of 𝐽 GerDA (see (21) ) are

iven by 

𝜕𝐽 GerDA 

𝜕𝐖 

𝓁 
= 𝚫𝓁 ( 𝐗 

𝓁−1 ) 𝑡𝑟 (28)

𝜕𝐽 GerDA 

𝜕 𝒃 𝓁 
= 𝚫𝓁 ⋅ 𝟏 𝑁 (29)

ith 𝟏 𝑁 ∶= (1 , 1 , … , 1) 𝑡𝑟 ∈ ℝ 

𝑁 and 

𝓁 ∶= 𝑓 ′𝓁 ( 𝐀 

𝓁 ) ⊙
{ 

𝜕 𝐽 GerDA ∕ 𝜕 𝐙 𝓁 = 𝐿 

( 𝐖 

𝓁+1 ) 𝑡𝑟 𝚫𝓁+1 1 ≤ 𝓁 < 𝐿 . 
(30)

t is 

𝜕𝐽 GerDA 

𝜕𝐙 

= − 

1 
𝑑 𝐙 

⋅
𝜕𝑄 

𝛿
𝑧 

𝜕𝐙 

. (31)

 computable expression for 𝜕 𝑄 

𝛿
𝑧 ∕ 𝜕 𝐙 along with its derivation is given

n [38] . 

ppendix C. Partial derivatives of 𝑱 DAE 

In the case of 𝐽 DAE (see (24) ), the partial derivatives with respect to

he weight matrices are given by 

𝜕𝐽 DAE 

𝜕𝐖 

𝓁 
= 𝚲𝓁 ( 𝐗 

𝓁−1 ) 𝑡𝑟 + 

(
𝚲 2 𝐿 − 𝓁+1 ( 𝐗 

2 𝐿 − 𝓁 ) 𝑡𝑟 
)𝑡𝑟 

(32)

or 𝓁 ∈ {1 , …𝐿 } . The partial derivatives with respect to the bias vectors

re given by 

𝜕𝐽 DAE 

𝜕𝐛 𝓁 
= 

{ 

𝚲 2 𝐿 ⋅ 𝟏 𝑁 𝓁 = 2 𝐿 

( 𝚲𝓁 + 𝚲 2 𝐿 − 𝓁 ) ⋅ 𝟏 𝑁 1 ≤ 𝓁 < 𝐿 . 
(33)

ith 𝟏 𝑁 ∶= (1 , … , 1) 𝑡𝑟 ∈ ℝ 

𝑁 . For 𝓁 ∈ {1 , …2 𝐿 } the matrices 𝚲𝓁 are de-

ned by 

𝓁 ∶= 𝑓 ′𝓁 ( 𝐀 

𝓁 ) ⊙

{ 

𝜕 𝐽 DAE ∕ 𝜕 ̂𝐗 𝓁 = 2 𝐿 

( 𝐖 

𝓁+1 ) 𝑡𝑟 𝚲𝓁+1 1 ≤ 𝓁 < 2 𝐿 . 
(34)

ith 

𝜕𝐽 DAE 

𝜕 ̂𝐗 

= 

2 
(
𝐗̂ − 𝐗 

)
𝑑 𝐗 ⋅𝑁 ⋅

(
1 + MSE ∕ 𝑑 𝐗 

) , (35)

hich is straightforward to prove. 

ppendix D. Experimental setups in detail 

Table 4 states further details on our ReNDA and GerDA experiments

 Section 3 ). The setup is the original setup from [2] . The comparative

esults presented in Section 5 are based on the following experimental

etups. 

In the case of the DBN , we considered the topology 784-1200-1200-

 -10. As pointed out in [2] , the intermediate dimension 2 was added

o the original topology [41] to obtain the desired 2D feature represen-

ations. Other than that, we adopted the example code [40] . It has not

een changed since we ran our DBN experiments for [2] . 
In the case of UMAP , we used the random_state parameter of the

MAP software [25] to initialize the 3 different random number streams.

or all other parameters, we simply used the default values. Our current

MAP version is 0.3.9. 

As mentioned in Section 5 , the plain DAE considered is the one ob-

ained for 𝜆 = 1 in (2) . It was therefore set up as ReNDA and GerDA

including the details stated in Table 4 ). Recall that our DAE criterion

s given by (24) . See (35) for its derivative. 

Because the default topology of SCVIS is too small, we set its encoder

nd decoder topology to those of ReNDA, i.e. 784-1500-375-750-2 and

-750-375-1500-784, respectively. To further increase the comparabil-

ty of the SCVIS and the ReNDA/GerDA results, the SCVIS mappings

ere learned over 200 epochs using a batchsize of 5000. Note that SCVIS

oes not involve an RBM pretraining but the uniformly distributed ran-

om initialization proposed in [14] . We used the seed parameter in

he YAML configuration file to initialize the 3 different random number

treams. Our current SCVIS version is 0.1.0. 

For all experiments, we used a workstation with 2 x Intel Xeon E5-

687W v4 @ 3.00GHz, 12 cores, 256 GB RAM and an NVMe SSD . In the

ase of ReNDA, GerDA, the DBN and the plain DAE, we used a MAT-

AB® Parallel Server to ensure that each of the 9 runs per approach was

erformed on only 1 of the 24 cores. Currently UMAP only supports

ingle-core execution, so each of the 9 runs was performed on only 1

f the 24 cores by default. In the case of SCVIS, a multi-core execu-

ion seems likely since it is implemented using TensorFlow – in order

o avoid the introduction of unforeseeable side effects, we ran SCVIS

ithout limiting its computations to a single core. 

With 256 GB RAM, we were sure not to experience any RAM-related

ottleneck effects in the individual runs per approach. Furthermore, the

/O operations per run only make up a small proportion of the approx-

mate computation times stated in Table 3 , which is due to the NVMe

SD as a storage for logging information, saving intermediate models,

tc. 
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