TY - CHAP A1 - Ryskeldiev, Bektur A1 - Cohen, Michael A1 - Herder, Jens T1 - Applying rotational tracking and photospherical imagery to immersive mobile telepresence and live video streaming groupware T2 - Proceeding SA '17 SIGGRAPH Asia 2017 Mobile Graphics & Interactive Applications, Article No. 5 N2 - Mobile live video streaming is becoming an increasingly popular form of interaction both in social media and remote collaboration scenarios. However, in most cases the streamed video does not take mobile devices' spatial data into account (e.g., the viewers do not know the spatial orientation of a streamer), or use such data only in specific scenarios (e.g., to navigate around a spherical video stream). KW - spatial media KW - rotational tracking KW - mixed reality KW - live streaming KW - social media KW - telepresence KW - mobile computing KW - groupware KW - photospherical imagery Y1 - 2017 UR - https://dl.acm.org/citation.cfm?doid=3132787.3132813 SN - 978-1-4503-5410-3 U6 - https://doi.org/10.1145/3132787.3132813 PB - ACM CY - New York ER - TY - JOUR A1 - Herder, Jens A1 - Cohen, Michael T1 - The Helical Keyboard: Perspectives for Spatial Auditory Displays and Visual Music JF - Journal of New Music Research N2 - Auditory displays with the ability to dynamically spatialize virtual sound sources under real-time conditions enable advanced applications for art and music. A listener can be deeply immersed while interacting and participating in the experience. We review some of those applications while focusing on the Helical Keyboard project and discussing the required technology. Inspired by the cyclical nature of octaves and helical structure of a scale, a model of a piano-style keyboard was prepared, which was then geometrically warped into a helicoidal configuration, one octave/revolution, pitch mapped to height and chroma. It can be driven by MIDI events, real-time or sequenced, which stream is both synthesized and spatialized by a spatial sound display. The sound of the respective notes is spatialized with respect to sinks, avatars of the human user, by default in the tube of the helix. Alternative coloring schemes can be applied, including a color map compatible with chromastereoptic eyewear. The graphical display animates polygons, interpolating between the notes of a chord across the tube of the helix. Recognition of simple chords allows directionalization of all the notes of a major triad from the position of its musical root. The system is designed to allow, for instance, separate audition of harmony and melody, commonly played by the left and right hands, respectively, on a normal keyboard. Perhaps the most exotic feature of the interface is the ability to fork oneís presence, replicating subject instead of object by installing multiple sinks at arbitrary places around a virtual scene so that, for example, harmony and melody can be separately spatialized, using two heads to normalize the octave; such a technique effectively doubles the helix from the perspective of a single listener. Rather than a symmetric arrangement of the individual helices, they are perceptually superimposed in-phase, co-extensively, so that corresponding notes in different registers are at the same azimuth. KW - 3D audio KW - virtual reality KW - computer music KW - spatialization KW - spatial media KW - visual music KW - VSVR Y1 - 2002 VL - 31 IS - 3 SP - 269 EP - 281 ER -