TY - CHAP A1 - Marszal, Anna Joanna A1 - Bourelle, Julien S. A1 - Musall, Eike A1 - Heiselberg, Per A1 - Gustavsen, Arild A1 - Voss, Karsten T1 - Net Zero Energy Buildings - Calculation Methodologies versus National Building Codes T2 - EuroSun Conference 2010, Graz, 28.9-30.9.2010 N2 - The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). Th e understanding of such buildings and how the Net ZEB status should be calculated differs in most countries. This paper presents an overview of Net ZEBs energy calculation methodologies proposed by organisations representing eight different countries: Austria, Canada, Denmark, Germany, Italy, Norway, Switzerland and the USA. The different parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo in the coming years. KW - Label Y1 - 2010 UR - https://www.researchgate.net/publication/266247323_Net_Zero_Energy_Buildings_-_Calculation_Methodologies_Versus_National_Building_Codes CY - Graz ER - TY - JOUR A1 - Marszal, Anna Joanna A1 - Heiselberg, Per A1 - Bourelle, Julien S. A1 - Musall, Eike A1 - Voss, Karsten A1 - Sartori, Igor A1 - Napolitano, Assunta T1 - Zero Energy Building - A Review of definitions and calculation methodologies JF - Energy and Buildings N2 - The concept of Zero Energy Building (ZEB) has gained wide international attention during last few years and is now seen as the future target for the design of buildings. However, before being fully implemented in the national building codes and international standards, the ZEB concept requires clear and consistent definition and a commonly agreed energy calculation methodology. The most important issues that should be given special attention before developing anewZEB definition are: (1) the metric of the balance, (2) the balancing period, (3) the type of energy use included in the balance, (4) the type of energy balance, (5) the accepted renewable energy supply options, (6) the connection to the energy infrastructure and (7) the requirements for the energy efficiency, the indoor climate and in case of gird connected ZEB for the building–grid interaction. This paper focuses on the review of the most of the existing ZEB definitions and the various approaches towards possible ZEB calculation methodologies. It presents and discusses possible answers to the abovementioned issues in order to facilitate the development of a consistent ZEB definition and a robust energy calculation methodology. KW - Label Y1 - 2011 UR - https://www.sciencedirect.com/science/article/pii/S0378778810004639 VL - 43 IS - 4 SP - 971 EP - 979 PB - Elsevier ER -