TY - CHAP A1 - Herder, Jens T1 - Visualization of a Clustering Algorithm of Sound Sources based on Localization Errors T2 - Second International Conference on Human and Computer N2 - A module for soundscape monitoring and visualizing resource management processes was extended for presenting clusters, generated by a novel sound source clustering algorithm. This algorithm groups multiple sound sources together into a single representative source, considering localization errors depending on listener orientation. Localization errors are visualized for each cluster using resolution cones. Visualization is done in runtime and allows understanding and evaluation of the clustering algorithm. KW - audio rendering, clustering KW - human perception KW - Resource Management KW - Sound Spatialization KW - Visualization Y1 - 1999 SP - 1 EP - 5 CY - Aizu-Wakamatsu ER - TY - JOUR A1 - Martens, William L. A1 - Herder, Jens T1 - Perceptual criteria for eliminating reflectors and occluders for efficient rendering of environmental sound JF - The Journal of the Acoustical Society of America Y1 - 1999 U6 - https://doi.org/10.1121/1.425349 VL - 105 IS - 2 SP - 979 ER - TY - CHAP A1 - Herder, Jens A1 - Cohen, Michael T1 - Design of a Helical Keyboard T2 - icad'96 - International Conference on Auditory Display, Palo Alto N2 - Inspired by the cyclical nature of octaves and helical structure of a scale (Shepard, '82 and '83), we prepared a model of a piano-style keyboard (prototyped in Mathematica), which was then geometrically warped into a left-handed helical configuration, one octave/revolution, pitch mapped to height. The natural orientation of upper frequency keys higher on the helix suggests a parsimonious left-handed chirality, so that ascending notes cross in front of a typical listener left to right. Our model is being imported (via the dxf file format) into (Open Inventor/)VRML, where it can be driven by MIDI events, realtime or sequenced, which stream is both synthesized (by a Roland Sound Module), and spatialized by a heterogeneous spatial sound backend (including the Crystal River Engineering Acoustetron II and the Pioneer Sound Field Control speaker-array System), so that the sound of the respective notes is directionalized with respect to sinks, avatars of the human user, by default in the tube of the helix. This is a work-in-progress which we hope to be fully functional within the next few months. Y1 - 1996 CY - Palo Alto ER - TY - RPRT A1 - Christianson, Kiel A1 - Herder, Jens T1 - Mini-lectures in Computer Science on the WWW N2 - The task of the Center for Language Research is to provide content-based English language instruction for students of computer science and engineering. As such, we find ourselves at the confluence of many of the streams currently running through the English Language Teaching profession, including English for Science and Technology (EST), English for Academic Purposes (EAP), English for Specific Purposes (ESP), Computer-assisted language learning (CALL), content-based instruction, and multimedia applications in foreign language pedagogy. This paper describes our initial attempts to construct a number of World Wide Web pages where students will be able to study EST, EAP, and computer science topics on their own in a multimedia environment. KW - English as a foreign language KW - teaching KW - web and video supported learning KW - Lehre Y1 - 1995 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:due62-opus-854 CY - Aizu ER - TY - CHAP A1 - Herder, Jens T1 - Cooperative Tools for Teaching : an Impact of a Network Environment T2 - Annual Report of the Information Systems and Technology Center, University of Aizu, October 1997 N2 - Education at the University of Aizu is focussed upon computer science. Besides being the subject matter of many courses, however, the computer also plays a vital role in the educational process itself, both in the distribution of instructional media, and in providing students with valuable practical experience. All students have unlimited access (24-hours-a-day) to individual networked workstations, most of which are multimedia-capable (even video capture is possible in two exercise rooms). Without software and content tailored for computer-aided instruction, the hardware becomes an expensive decoration. In any case, there is a need to better educate the instructors and students in the use of the equipment. In the interest of facilitating effective, collaborative use of network-based computers in teaching, this article explores the impact that a network environment can have on such activities. First, as a general overview, and to examine the motivation for the use of a network environment in teaching, this article reviews a range of different styles of collaboration. Then the article shows what kind of tools are available for use, within the context of what has come to be called Computer-Supported Cooperative Work (CSCW). KW - CAI KW - CAT KW - computer education KW - collaborative work KW - CSCW KW - groupware KW - FHD Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:due62-opus-827 SP - 3 EP - 8 CY - Aizu ER - TY - CHAP A1 - Herder, Jens T1 - Sound Spatialization Framework: An Audio Toolkit for Virtual Environments T2 - First International Conference on Human and Computer, Aizu-Wakamatsu, September 1998 N2 - The Sound Spatialization Framework is a C++ toolkit and development environment for providing advanced sound spatialization for virtual reality and multimedia applications. The Sound Spatialization Framework provides many powerful display and user-interface features not found in other sound spatialization software packages. It provides facilities that go beyond simple sound source spatialization: visualization and editing of the soundscape, multiple sinks, clustering of sound sources, monitoring and controlling resource management, support for various spatialization backends, and classes for MIDI animation and handling. KW - sound spatialization KW - resource management KW - virtual environments KW - spatial sound authoring KW - user interface design KW - human-machine interfaces Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:due62-opus-788 CY - Aizu ER - TY - CHAP A1 - Herder, Jens T1 - Tools and widgets for spatial sound authoring T2 - CompuGraphics ' 97, Sixth International Conference on Computational Graphics and Visualization Techniques: Graphics in the Internet Age, Vilamoura, Portugal N2 - Broader use of virtual reality environments and sophisticated animations spawn a need for spatial sound. Until now, spatial sound design has been based very much on experience and trial and error. Most effects are hand-crafted, because good design tools for spatial sound do not exist. This paper discusses spatial sound authoring and its applications, including shared virtual reality environments based on VRML. New utilities introduced by this research are an inspector for sound sources, an interactive resource manager, and a visual soundscape manipulator. The tools are part of a sound spatialization framework and allow a designer/author of multimedia content to monitor and debug sound events. Resource constraints like limited sound spatialization channels can also be simulated. KW - spatial sound KW - virtual reality environments KW - multimedia KW - spatialization KW - spatial media KW - vizualization KW - user interface design KW - man-machine interfaces Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:due62-opus-896 UR - http://vsvr.medien.hs-duesseldorf.de/publications/cg97-tawfssa/welcome.html SN - 972-8342-02-0 N1 - Zugriff auf die Konferenzveröffentlichung über den angegebene URL conference paper available via URL SP - 87 EP - 95 CY - Portugal ER - TY - CHAP A1 - Davin, Till A1 - Herder, Jens ED - Weier, Martin ED - Bues, Matthias ED - Wechner, Reto T1 - Real-Time Relighting of Video Streams for Augmented Virtuality Scenes T2 - GI VR / AR Workshop. Gesellschaft für Informatik e.V. KW - Virtual (TV) Studio Y1 - 2021 U6 - https://doi.org/10.18420/vrar2021_6 PB - Gesellschaft für Informatik e.V. (GI) CY - Bonn ER - TY - CHAP A1 - Honsbrok, Jan A1 - Mostafawy, Sina A1 - Herder, Jens A1 - Huldtgren, Alina T1 - Ray-LUT: A Lookup-Based Method for Camera Lens Simulation in Real-Time Using Ray Tracing T2 - Proceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications N2 - Lens systems have a major influence on the image due to effects such as depth of field or optical aberrations. The only method to simulate these effects precisely is to trace rays through an actual lens system. This provides accurate results, but only with high computational effort. To speed up the ray tracing through the lens system, various acceleration methods have been developed, requiring considerable precomputations. We present a new method based on the Realistic Camera by Kolb et. al.. Instead of tracing each ray through the lens system, the rays are precomputed once and stored in a lookup table. In contrast to other methods, our method is simple, and does not require substantial preprocessing upfront. We can simulate complex effects such as chromatic aberrations accurately in real-time, regardless the number of lens surfaces in the system. Our method achieves the same performance as state-of-the-art methods like Polynomial Optics, while maintaining the same number of samples per pixel. Y1 - 2025 U6 - https://doi.org/10.5220/0013105900003912 SP - 177 EP - 184 PB - SciTePress ER - TY - CHAP A1 - Herder, Jens A1 - Neider, Christian A1 - Kinuwaki, Shinichi T1 - HDR-based lighting estimation for virtual studio (TV) environments T2 - 10th International Conference on Human and Computer N2 - Two high dynamic range HDR environments maps based on video streams from fish-eye lens cameras are used for generating virtual lights in a virtual set renderer. The task of realistic virtual light setup of scenes using captured environment maps might be eased as well as visual quality improves. We discuss the light setting problem for virtual studio tv productions which have mixed scenes of real objects, actors, virtual objects and virtual backgrounds. Benefits of hdr interactive light control are that the real light in the studio does not have to be remodeled and the artistic impression by using the light in the studio is also captured. An analysis of system requirements identifies technical challenges. We discuss the properties of a prototype system including test production. KW - HDR environment maps KW - light interaction KW - tracking KW - virtual set environments KW - Virtual (TV) Studio KW - video processing KW - FHD KW - VSVR Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:due62-opus-16665 SP - 111 EP - 117 CY - Düsseldorf, Aizu-Wakamatsu ER -