TY - CHAP A1 - Herder, Jens T1 - Cooperative Tools for Teaching : an Impact of a Network Environment T2 - Annual Report of the Information Systems and Technology Center, University of Aizu, October 1997 N2 - Education at the University of Aizu is focussed upon computer science. Besides being the subject matter of many courses, however, the computer also plays a vital role in the educational process itself, both in the distribution of instructional media, and in providing students with valuable practical experience. All students have unlimited access (24-hours-a-day) to individual networked workstations, most of which are multimedia-capable (even video capture is possible in two exercise rooms). Without software and content tailored for computer-aided instruction, the hardware becomes an expensive decoration. In any case, there is a need to better educate the instructors and students in the use of the equipment. In the interest of facilitating effective, collaborative use of network-based computers in teaching, this article explores the impact that a network environment can have on such activities. First, as a general overview, and to examine the motivation for the use of a network environment in teaching, this article reviews a range of different styles of collaboration. Then the article shows what kind of tools are available for use, within the context of what has come to be called Computer-Supported Cooperative Work (CSCW). KW - CAI KW - CAT KW - computer education KW - collaborative work KW - CSCW KW - groupware KW - FHD Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:due62-opus-827 SP - 3 EP - 8 CY - Aizu ER - TY - CHAP A1 - Ballester Ripoll, Marina A1 - Herder, Jens A1 - Ladwig, Philipp A1 - Vermeegen, Kai ED - Pfeiffer, Thies ED - Fröhlich, Julia ED - Kruse, Rolf T1 - Comparison of two Gesture Recognition Sensors for Virtual TV Studios T2 - GI-VRAR, Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realität – 13. Workshop der GI-Fachgruppe VR/AR, N2 - In order to improve the interactivity between users and computers, recent technologies focus on incorporating gesture recognition into interactive systems. The aim of this article is to evaluate the effectiveness of using a Myo control armband and the Kinect 2 for recognition of gestures in order to interact with virtual objects in a weather report scenario. The Myo armband has an inertial measurement unit and is able to read electrical activity produced by skeletal muscles, which can be recognized as gestures, which are trained by machine learning. A Kinect sensor was used to build up a dataset which contains motion recordings of 8 different gestures and was also build up by a gesture training machine learning algorithm. Both input methods, the Kinect 2 and the Myo armband, were evaluated with the same interaction patterns in a user study, which allows a direct comparison and reveals benefits and limits of each technique. KW - Gesture recognition KW - Interaction KW - Kinect KW - Myo KW - Virtual (TV) Studio KW - Lehre Y1 - 2016 UR - http://vsvr.medien.hs-duesseldorf.de/publications/gi-vrar2016-gesture-abstract.html SN - 978-3-8440-4718-9 PB - Shaker Verlag CY - Herzogenrath ER - TY - CHAP A1 - Herder, Jens T1 - Challenges of Virtual Sets: From Broadcasting to Interactive Media T2 - Seventh International Workshop on Human N2 - Virtual sets have evolved from computer-generated, prerendered 2D backgrounds to realtime, responsive 3D computer graphics and are nowadays standard repertoire of broadcasting divisions. The graphics, which are combined with real video feed becoming moresophisticated, real looking and more responsive. We will look at the recent developments and suggest further developments like integration of spatial audio into the studio production and generating interactive media streams. Educational institutes recognize the demands of the rising media industry and established new courses on media technology like the Duesseldorf University of Applied Sciences. KW - Education KW - Interactive Media KW - Sound Spatialization KW - Virtual Sets KW - Virtual (TV) Studio KW - VSVR Y1 - 2000 SP - 13 EP - 17 PB - University of Aizu CY - Aizu-Wakamatsu ER - TY - CHAP A1 - Deppe, Robert A1 - Nemitz, Oliver A1 - Herder, Jens ED - Herder, Jens ED - Geiger, Christian ED - Dörner, Ralf ED - Grimm, Paul T1 - Augmented reality for supporting manual non-destructive ultrasonic testing of metal pipes and plates T2 - Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realität – 15. Workshop der GI-Fachgruppe VR/AR N2 - We describe an application of augmented reality technology for non-destructive testing of products in the metal-industry. The prototype is created with hard- and software, that is usually employed in the gaming industry, and delivers positions for creating ultra- sonic material scans (C-scans). Using a stereo camera in combination with an hmd enables realtime visualisation of the probes path, as well as the setting of virtual markers on the specimen. As a part of the implementation the downhill simplex optimization algorithm is implemented to fit the specimen to a cloud of recorded surface points. The accuracy is statistically tested and evaluated with the result, that the tracking system is accurate up to ca. 1-2 millimeters in well set-up conditions. This paper is of interest not only for research institutes of the metal-industry, but also for any areas of work, in which the enhancement with augmented reality is possible and a precise tracking is necessary. KW - Nondestructive Testing KW - Ultrasonic KW - Augmented Reality KW - Tracking KW - Stereo camera KW - M Y1 - 2018 UR - http://vsvr.medien.hs-duesseldorf.de/publications/gi-vrar2018-ar-in-ndt/ SN - 978-3-8440-6215-1 U6 - https://doi.org/10.2370/9783844062151 SP - 45 EP - 52 PB - Shaker Verlag CY - Herzogenrath ER - TY - JOUR A1 - Kunii, Tosiyasu L. A1 - Herder, Jens A1 - Myszkowski, Karol A1 - Okunev, Oleg A1 - Okuneva, Galina A1 - Ibusuki, Masumi T1 - Articulation Simulation for an Intelligent Dental Care System JF - Displays N2 - CAD/CAM techniques are used increasingly in dentistry for design and fabrication of teeth restorations. An important issue is preserving occlusal contacts of teeth after restoration. Traditional techniques based on the use of casts with mechanical articulators require manual adjustment of occlusal surface, which becomes impractical when hard restoration materials like porcelain are used; they are also time and labor consuming. Most existing computer systems ignore completely such an articulation check, or perform the check at the level of a tooth and its immediate neighbors. We present a new mathematical model and a related user interface for global articulation simulation, developed for the Intelligent Dental Care System project. The aim of the simulation is elimination of the use of mechanical articulators and manual adjustment in the process of designing dental restorations and articulation diagnostic. The mathematical model is based upon differential topological modeling of the jawbs considered as a mechanical system. The user interface exploits metaphors that are familiar to dentists from everyday practice. A new input device designed specifically for use with articulation simulation is proposed. Y1 - 1994 VL - 15 IS - 3 SP - 181 EP - 188 ER - TY - CHAP A1 - Ryskeldiev, Bektur A1 - Cohen, Michael A1 - Herder, Jens T1 - Applying rotational tracking and photospherical imagery to immersive mobile telepresence and live video streaming groupware T2 - Proceeding SA '17 SIGGRAPH Asia 2017 Mobile Graphics & Interactive Applications, Article No. 5 N2 - Mobile live video streaming is becoming an increasingly popular form of interaction both in social media and remote collaboration scenarios. However, in most cases the streamed video does not take mobile devices' spatial data into account (e.g., the viewers do not know the spatial orientation of a streamer), or use such data only in specific scenarios (e.g., to navigate around a spherical video stream). KW - spatial media KW - rotational tracking KW - mixed reality KW - live streaming KW - social media KW - telepresence KW - mobile computing KW - groupware KW - photospherical imagery Y1 - 2017 UR - https://dl.acm.org/citation.cfm?doid=3132787.3132813 SN - 978-1-4503-5410-3 U6 - https://doi.org/10.1145/3132787.3132813 PB - ACM CY - New York ER - TY - CHAP A1 - Herder, Jens T1 - Applications of Spatial Auditory Displays in the Context of Art and Music T2 - Human Supervision and Control in Engineering and Music KW - VSVR Y1 - 2001 PB - Universität Kassel CY - Kassel ER - TY - JOUR A1 - Amano, Katsumi A1 - Matsushita, Fumio A1 - Yanagawa, Hirofumi A1 - Cohen, Michael A1 - Herder, Jens A1 - Martens, William A1 - Koba, Yoshiharu A1 - Tohyama, Mikio T1 - A Virtual Reality Sound System Using Room-Related Transfer Functions Delivered Through a Multispeaker Array: the PSFC at the University of Aizu Multimedia Center JF - TVRSJ N2 - The PSFC, or Pioneer Sound Field Controller, is a DSP-driven hemispherical loudspeaker array, installed at the University of Aizu Multimedia Center. The PSFC features realtime manipulation of the primary components of sound spatialization for each of two audio sources located in a virtual environment, including the content (apparent direction and distance) and context (room characteristics: reverberation level, room size and liveness). In an alternate mode, it can also direct the destination of the two separate input signals across 14 loudspeakers, manipulating the direction of the virtual sound sources with no control over apparent distance other than that afforded by source loudness (including no simulated environmental reflections or reverberation). The PSFC speaker dome is about 10 m in diameter, accommodating about fifty simultaneous users, including about twenty users comfortably standing or sitting near its ``sweet spot,'' the area in which the illusions of sound spatialization are most vivid. Collocated with a large screen rear-projection stereographic display, the PSFC is intended for advanced multimedia and virtual reality applications. KW - audio signal processing, audio telecommunications KW - auralization KW - calm technology KW - directional mixing console KW - multichannel sound reproduction KW - room-related transfer functions KW - roomware KW - sound localization KW - virtual conferencing environment Y1 - 1998 U6 - https://doi.org/10.18974/tvrsj.3.1_1 VL - 3 IS - 1 SP - 1 EP - 12 PB - J-STAGE ER - TY - CHAP A1 - Herder, Jens A1 - Myszkowski, Karol A1 - Kunii, Tosiyasu L. A1 - Ibusuki, Masumi ED - Weghorst, Suzanne J. ED - Sieburg, Hans B. ED - Morgan, Karen S. T1 - A Virtual Reality Interface to an Intelligent Dental Care System T2 - Medicine Meets Virtual Reality 4 Y1 - 1996 SP - 17 EP - 20 PB - IOS Press CY - Amsterdam ER - TY - CHAP A1 - Ishikawa, Kimitaka A1 - Hirose, Minefumi A1 - Herder, Jens T1 - A Sound Spatialization Server for a Speaker Array as an Integrated Part of a Virtual Environment T2 - IEEE YUFORIC Germany 98 N2 - Spatial sound plays an important role in virtual reality environments, allowing orientation in space, giving a feeling of space, focusing the user on events in the scene, and substituting missing feedback cues (e.g., force feedback). The sound spatialization framework of the University of Aizu, which supports number of spatialization backends, has been extended to include a sound spatialization server for a multichannel loudspeaker array (Pioneer Sound Field Control System). Our goal is that the spatialization server allows easy integration into virtual environments. Modeling of distance cues, which are essential for full immersion, is discussed. Furthermore, the integration of this prototype into different applications allowed us to reveal the advantages and problems of spatial sound for virtual reality environments. KW - distance cue KW - loudspeaker array KW - psychoacoustic KW - sound spatialization server Y1 - 1998 UR - http://vsvr.medien.hs-duesseldorf.de/publications/ve98-spatial-server/welcome.html PB - IEEE CY - Stuttgart ER -