TY - CHAP A1 - Herder, Jens A1 - Büntig, Fabian A1 - Daemen, Jeff A1 - Lang, Jaroslaw A1 - Lück, Florian A1 - Säger, Mitja A1 - Sörensen, Roluf A1 - Hermanni, Markus A1 - Vonolfen, Wolfgang T1 - Subtle Animations using Talent Tracking in a Virtual (TV) Studio T2 - 17th International Conference on Human and Computer N2 - Markerless talent tracking is widely used for interactions and animations within virtual environments. In a virtual (tv) studio talents could be overburden by interaction tasks because camera and text require extensive attention. We take a look into animations and inter- actions within a studio, which do not require any special attention or learning. We show the generation of an artificial shadow from a talent, which ease the keying process, where separation of real shadows from the background is a difficult task. We also demonstrate animations of footsteps and dust. Furthermore, capturing talents’ height can also be used to adjust the parameters of elements in the virtual environment, like the position and scaling of a virtual display. In addition to the talents, a rigid body was tracked as placeholder for graphics, easing the interaction tasks for a talent. Two test productions show the possibilities, which subtle animations offer. In the second production, the rendering was improved (shadows, filtering, normal maps, ...) and instead of using the rigid body to move an object (a flag), the animation was only controlled by the hand’s position. KW - talent tracking KW - virtual studios KW - realtime animations KW - FHD KW - Virtual (TV) Studio Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:due62-opus-16009 UR - http://vsvr.medien.hs-duesseldorf.de/publications/hc2014-subtle-animations-abstract.html CY - Hamamatsu/Aizu-Wakamatsu/Duesseldorf ER - TY - CHAP A1 - Herder, Jens T1 - Sound Spatialization Framework: An Audio Toolkit for Virtual Environments T2 - First International Conference on Human and Computer, Aizu-Wakamatsu, September 1998 N2 - The Sound Spatialization Framework is a C++ toolkit and development environment for providing advanced sound spatialization for virtual reality and multimedia applications. The Sound Spatialization Framework provides many powerful display and user-interface features not found in other sound spatialization software packages. It provides facilities that go beyond simple sound source spatialization: visualization and editing of the soundscape, multiple sinks, clustering of sound sources, monitoring and controlling resource management, support for various spatialization backends, and classes for MIDI animation and handling. KW - sound spatialization KW - resource management KW - virtual environments KW - spatial sound authoring KW - user interface design KW - human-machine interfaces Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:due62-opus-788 CY - Aizu ER - TY - CHAP A1 - Herder, Jens A1 - Ladwig, Philipp A1 - Vermeegen, Kai A1 - Hergert, Dennis A1 - Busch, Florian A1 - Klever, Kevin A1 - Holthausen, Sebastian A1 - Ryskeldiev, Bektur T1 - Mixed Reality Experience - How to Use a Virtual (TV) Studio for Demonstration of Virtual Reality Applications T2 - GRAPP 2018 - 13th International Conference on Computer Graphics Theory and Applications N2 - The article discusses the question of “How to convey the experience in a virtual environment to third parties?” and explains the different technical implementations which can be used for live streaming and recording of a mixed reality experience. The real-world applications of our approach include education, entertainment, e- sports, tutorials, and cinematic trailers, which can benefit from our research by finding a suitable solution for their needs. We explain and outline our Mixed Reality systems as well as discuss the experience of recorded demonstrations of different VR applications, including the need for calibrated camera lens parameters based on realtime encoder values. KW - Virtual Reality KW - Mixed Reality KW - Augmented Virtuality KW - Virtual (TV) Studio KW - Camera Tracking KW - Lehre Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:due62-opus-15823 UR - http://vsvr.medien.hs-duesseldorf.de/publications/grapp2018-mr-openvr-abstract.html SN - 978-989-758-287-5 N1 - Zweitveröffentlichung - Originalpublikation liegt auf: http://www.scitepress.org/DigitalLibrary SP - 281 EP - 287 PB - INSTICC CY - Setubal - Portugal ER - TY - RPRT A1 - Christianson, Kiel A1 - Herder, Jens T1 - Mini-lectures in Computer Science on the WWW N2 - The task of the Center for Language Research is to provide content-based English language instruction for students of computer science and engineering. As such, we find ourselves at the confluence of many of the streams currently running through the English Language Teaching profession, including English for Science and Technology (EST), English for Academic Purposes (EAP), English for Specific Purposes (ESP), Computer-assisted language learning (CALL), content-based instruction, and multimedia applications in foreign language pedagogy. This paper describes our initial attempts to construct a number of World Wide Web pages where students will be able to study EST, EAP, and computer science topics on their own in a multimedia environment. KW - English as a foreign language KW - teaching KW - web and video supported learning KW - Lehre Y1 - 1995 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:due62-opus-854 CY - Aizu ER - TY - CHAP A1 - Becker, Thomas A1 - Herder, Jens T1 - Cost effective tangibles using fiducials for infrared multi-touch frames T2 - 15th International Conference on Human and Computer N2 - The late immersion of multi-touch sensitive displays enables the use of tangibles on multi-touch screens. There a several wide spread and/or sophisticated solutions to fulfill this need but they seem to have some flaws. One popular system at the time of writing is an overlay frame that can be placed on a normal display with the corresponding size. The frame creates a grid with infrared light emitting diodes. The disruption of this grid can be detected and messages with the positions are sent via usb to a connected computer. This system is quite robust in matters of ambient light insensitivity and also fast to calibrate. Unfortunately it is not created with the recognition of tangibles in mind and printed patterns can not be resolved. This article summarizes an attempt to create fiducials that are recognized by an infrared multi-touch frame as fingers. Those false fingers are checked by a software for known patterns. Once a known pattern (= fiducial) has been recognized its position and orientation are send with the finger positions towards the interactive software. The usability is tested with an example application where tangibles and finger touches are used in combination. KW - low cost multi-touch infrared overlay frame KW - fiducial tangible recognition KW - FHD Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:due62-opus-16011 UR - http://vsvr.medien.hs-duesseldorf.de/publications/hc2012-fiducials-abstract.html N1 - Copyright 2012 University of Aizu Press CY - Hamamatsu/Aizu-Wakamatsu/Duesseldorf ER - TY - CHAP A1 - Herder, Jens T1 - Cooperative Tools for Teaching : an Impact of a Network Environment T2 - Annual Report of the Information Systems and Technology Center, University of Aizu, October 1997 N2 - Education at the University of Aizu is focussed upon computer science. Besides being the subject matter of many courses, however, the computer also plays a vital role in the educational process itself, both in the distribution of instructional media, and in providing students with valuable practical experience. All students have unlimited access (24-hours-a-day) to individual networked workstations, most of which are multimedia-capable (even video capture is possible in two exercise rooms). Without software and content tailored for computer-aided instruction, the hardware becomes an expensive decoration. In any case, there is a need to better educate the instructors and students in the use of the equipment. In the interest of facilitating effective, collaborative use of network-based computers in teaching, this article explores the impact that a network environment can have on such activities. First, as a general overview, and to examine the motivation for the use of a network environment in teaching, this article reviews a range of different styles of collaboration. Then the article shows what kind of tools are available for use, within the context of what has come to be called Computer-Supported Cooperative Work (CSCW). KW - CAI KW - CAT KW - computer education KW - collaborative work KW - CSCW KW - groupware KW - FHD Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:due62-opus-827 SP - 3 EP - 8 CY - Aizu ER - TY - CHAP A1 - Brettschneider, Nico A1 - Herder, Jens A1 - de Mooij, Jeroen A1 - Ryskeldiev, Bektur ED - Herder, Jens T1 - Audio vs. Visual Avatars as Guides in Virtual Environments T2 - 21th International Conference on Human and Computer, HC-2018, March 27–28, 2019, Shizuoka University, Hamamatsu, Japan. N2 - Through constant technical progress, multi-user virtual reality is transforming towards a social activity that is no longer only used by remote users, but also in large-scale location-based experiences. We evaluate the usage of realtime-tracked avatars in co-located business-oriented applications in a "guide-user-scenario" in comparison to audio only instructions. The present study examined the effect of an avatar-guide on the user-related factors of Spatial Presence, Social Presence, User Experience and Task Load in order to propose design guidelines for co-located collaborative immersive virtual environments. Therefore, an application was developed and a user study with 40 participants was conducted in order to compare both guiding techniques of a realtime-tracked avatar guide and a non-visualised guide with otherwise constant conditions. Results reveal that the avatar-guide enhanced and stimulated communicative processes while facilitating interaction possibilities and creating a higher sense of mental immersion for users. Furthermore, the avatar-guide appeared to make the storyline more engaging and exciting while helping users adapt to the medium of virtual reality. Even though no assertion could be made concerning the Task Load factor, the avatar-guide achieved a higher subjective value on User Experience. Due to the results, avatars can be considered valuable social elements in the design of future co-located collaborative virtual environments. KW - Virtual Reality KW - Co-located Collaborations KW - Networked Immersive Virtual Environments KW - Head-mounted Display KW - Avatars KW - Lehre Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:due62-opus-23859 UR - https://vsvr.medien.hs-duesseldorf.de/publications/hc2018-avatar/ PB - Hochschule Düsseldorf CY - Düsseldorf ER -