TY - CHAP A1 - Flasko, Matthias A1 - Pogscheba, Patrick A1 - Herder, Jens A1 - Vonolfen, Wolfgang T1 - Heterogeneous binocular camera-tracking in a Virtual Studio T2 - 8. Workshop Virtuelle und Erweiterte Realität der GI-Fachgruppe VR/AR N2 - This paper presents a tracking of parts of a human body in a virtual TV studio environment. The tracking is based on a depth camera and a HD studio camera and aims at a realistic interaction between the actor and the computer generated environment. Stereo calibration methods are used to match corresponding pixels of both cameras (HD color and depth image). Hence the images were rectified and column aligned. The disparity is used to correct the depth image pixel by pixel. This image registration results in row and column aligned images where ghost regions are in the depth image resulting from occlusion. Both images are used to generate foreground masks with chroma and depth keying. The color image is taken for skin color segmentation to determine and distinguish the actor’s hands and face. In the depth image the flesh colored regions were used to determine their spatial position. The extracted positions were augmented by virtual objects. The scene is rendered correctly with virtual camera parameters which were calculated from the camera calibration parameters. Generated computer graphics with alpha value are combined with the HD color images. This compositing shows interaction with augmented objects for verification. The additional depth information results in changing the size of objects next to the hands when the actor moves around. KW - virtual studio KW - camera-tracking KW - VSVR Y1 - 2011 CY - Wedel ER - TY - CHAP A1 - Wöldecke, Björn A1 - Vierjahn, Tom A1 - Flasko, Matthias A1 - Herder, Jens A1 - Geiger, Christian T1 - Steering actors through a virtual set employing vibro-tactile feedback T2 - TEI '09 Proceedings of the 3rd International Conference on Tangible and Embedded Interaction N2 - Actors in virtual studio productions are faced with the challenge that they have to interact with invisible virtual objects because these elements are rendered separately and combined with the real image later in the production process. Virtual sets typically use static virtual elements or animated objects with predefined behavior so that actors can practice their performance and errors can be corrected in the post production. With the demand for inexpensive live recording and interactive TV productions, virtual objects will be dynamically rendered at arbitrary positions that cannot be predicted by the actor. Perceptive aids have to be employed to support a natural interaction with these objects. In our work we study the effect of haptic feedback for a simple form of interaction. Actors are equipped with a custom built haptic belt and get vibrotactile feedback during a small navigational task (path following). We present a prototype of a wireless vibrotactile feedback device and a small framework for evaluating haptic feedback in a virtual set environment. Results from an initial pilot study indicate that vibrotactile feedback is a suitable non-visual aid for interaction that is at least comparable to audio-visual alternatives used in virtual set productions. KW - tactile feedback KW - interaction in virtual sets KW - navigation aids KW - FHD KW - VSVR KW - Virtual (TV) Studio Y1 - 2009 UR - https://dl.acm.org/citation.cfm?id=1517703 SN - 978-1-60558-493-5 U6 - https://doi.org/10.1145/1517664.1517703 SP - 169 EP - 174 PB - ACM CY - New York ER -