TY - CHAP A1 - Wöldecke, Björn A1 - Vierjahn, Tom A1 - Flasko, Matthias A1 - Herder, Jens A1 - Geiger, Christian T1 - Steering actors through a virtual set employing vibro-tactile feedback T2 - TEI '09 Proceedings of the 3rd International Conference on Tangible and Embedded Interaction N2 - Actors in virtual studio productions are faced with the challenge that they have to interact with invisible virtual objects because these elements are rendered separately and combined with the real image later in the production process. Virtual sets typically use static virtual elements or animated objects with predefined behavior so that actors can practice their performance and errors can be corrected in the post production. With the demand for inexpensive live recording and interactive TV productions, virtual objects will be dynamically rendered at arbitrary positions that cannot be predicted by the actor. Perceptive aids have to be employed to support a natural interaction with these objects. In our work we study the effect of haptic feedback for a simple form of interaction. Actors are equipped with a custom built haptic belt and get vibrotactile feedback during a small navigational task (path following). We present a prototype of a wireless vibrotactile feedback device and a small framework for evaluating haptic feedback in a virtual set environment. Results from an initial pilot study indicate that vibrotactile feedback is a suitable non-visual aid for interaction that is at least comparable to audio-visual alternatives used in virtual set productions. KW - tactile feedback KW - interaction in virtual sets KW - navigation aids KW - FHD KW - VSVR KW - Virtual (TV) Studio Y1 - 2009 UR - https://dl.acm.org/citation.cfm?id=1517703 SN - 978-1-60558-493-5 U6 - https://doi.org/10.1145/1517664.1517703 SP - 169 EP - 174 PB - ACM CY - New York ER - TY - CHAP A1 - Wöldecke, Björn A1 - Marinos, Dionysios A1 - Pogscheba, Patrick A1 - Geiger, Christian A1 - Herder, Jens A1 - Schwirten, Tobias T1 - radarTHEREMIN - Creating Musical Expressions in a Virtual Studio Environment T2 - 2011 IEEE International Symposium on VR Innovation N2 - In this paper we describe a prototypical system for live musical performance in a virtual studio environment. The performer stands in front of the studio camera and interacts with an infrared-laser-based multi-touch device. The final TV image shows the performer interacting with a virtual screen which is augmented in front of herself. To overcome the problem of the performer not seeing this virtual screen in reality, we use a special hexagonal grid to facilitate the performer's awareness of this novel Theremin-like virtual musical instrument. KW - multi-point interfaces KW - musical expression KW - virtual studio KW - VSVR KW - Virtual (TV) Studio Y1 - 2011 UR - https://ieeexplore.ieee.org/document/5759671 SN - 978-1-4577-0055-2 U6 - https://doi.org/10.1109/ISVRI.2011.5759671 SP - 345 EP - 346 PB - IEEE CY - Singapore ER - TY - CHAP A1 - Vierjahn, Tom A1 - Wöldecke, Björn A1 - Geiger, Christian A1 - Herder, Jens T1 - Improved Direction Signalization Technique Employing Vibrotactile Feedback T2 - 11th Virtual Reality International Conference, VRIC'2009 N2 - Vibrotactile feedback via body-worn vibrating belts is a common means of direction signalization - e.g. for navigational tasks. Consequently such feedback devices are used to guide blind or visually impaired people but can also be used to support other wayfinding tasks - for instance, guiding actors in virtual studio productions. Recent effort has been made to simplify this task by integrating vibrotactile feedback into virtual studio applications. In this work we evaluate the accuracy of an improved direction signalization technique, utilizing a body-worn vibrotactile belt with a limited number of tactors, and compare it to other work. The results from our user study indicate that it is possible to signalize different directions accurately, even with a small number of tactors spaced by 90°. KW - tactile feedback KW - direction signalization KW - wayfinding KW - human factors KW - FHD KW - VSVR Y1 - 2009 SN - 2-9515730-8-1 SP - 1 EP - 8 ER - TY - CHAP A1 - Rattay, Oliver A1 - Geiger, Christian A1 - Herder, Jens A1 - Goebbels, Gernot A1 - Nikitin, Igor ED - Gausemeier, Jürgen ED - Grafe, Michael T1 - Zweihändige Interaktion in VR-Umgebungen T2 - Augmented & Virtual Reality in der Produktentstehung N2 - Einfach benutzbare VR-Anwendungen erfordern andere Interaktionstechniken als konventionelle Desktop-Anwendungen mit Maus, Tastatur und Desktop-Metapher zur Verfügung stellen. Da solche Ansätze in Konzeption und Realisierung deutlicher komplexer sind, müssen diese mit Sorgfalt ausgewählt werden. Folgt man der Argumentation, dass VR eine natürliche Interaktion mit virtuellen Objekten ermöglicht, so führt dies fast zwangsläufig zu zweihändigen Interaktionstechniken für virtuelle Umgebungen, da Benutzer in realen Umgebungen gewohnt sind, fast ausschlieï‚lich zweihändig zu agieren. In diesem Beitrag geben wir eine Übersicht über den Stand der Technik im Bereich zweihändiger Interaktion, leiten Anforderungen an eine Entwicklung zweihändiger Interaktionstechniken in VR ab und beschreiben einen eigenen Ansatz. Dabei geht es um die zweihändige Interaktion bei der Simulation flexibler biegeschlaffer Bauteile (z. B. Schlauchverbindungen). KW - 3D Interaktion KW - Zweihändige Eingabe KW - Simulation biegeschlaffer Objekte KW - FHD KW - VSVR Y1 - 2007 SN - 978-3-939350-28-6 VL - 209 SP - 315 EP - 332 PB - Heinz Nixdorf Institut, Universität Paderborn CY - Paderborn ER - TY - CHAP A1 - Marinos, Dionysios A1 - Geiger, Christian A1 - Herder, Jens T1 - Large-Area Moderator Tracking and Demonstrational Configuration of Position Based Interactions for Virtual Studio T2 - EuroITV '12 Proceedings of the 10th European Conference on Interactive TV and Video N2 - In this paper we introduce a system for tracking persons walking or standing on a large planar surface and for using the acquired data to easily configure position based interactions for virtual studio productions. The tracking component of the system, radarTRACK, is based on a laser scanner device capable of delivering interaction points on a large configurable plane. By using the device on the floor it is possible to use the delivered data to detect feet positions and derive the position and orientation of one or more users in real time. The second component of the system, named OscCalibrator, allows for the easy creation of multidimensional linear mappings between input and output parameters and the routing of OSC messages within a single modular design environment. We demonstrate the use of our system to flexibly create position-based interactions in a virtual studio environment. KW - body tracking KW - OSC mapping KW - virtual studio interaction KW - measurement KW - design KW - reliability KW - experimentation KW - human factors KW - VSVR KW - Virtual (TV) Studio Y1 - 2012 UR - https://dl.acm.org/citation.cfm?id=2325639 SN - 978-1-4503-1107-6 U6 - https://doi.org/10.1145/2325616.2325639 SP - 105 EP - 114 PB - ACM CY - New York ER - TY - CHAP A1 - Klapdohr, Monika A1 - Wöldecke, Björn A1 - Marinos, Dionysios A1 - Herder, Jens A1 - Geiger, Christian A1 - Vonolfen, Wolfgang T1 - Vibrotactile Pitfalls: Arm Guidance for Moderators in Virtual TV Studios T2 - HC '10 Proceedings of the 13th International Conference on Humans and Computers N2 - For this study, an experimental vibrotactile feedback system was developed to help actors with the task of moving their arm to a certain place in a virtual tv studio under live conditions. Our intention is to improve interaction with virtual objects in a virtual set, which are usually not directly visible to the actor, but only on distant displays. Vibrotactile feedback might improve the appearance on tv because an actor is able to look in any desired direction (camera or virtual object) or to read text on a teleprompter while interacting with a virtual object. Visual feedback in a virtual studio lacks spatial relation to the actor, which impedes the adjustment of the desired interaction. The five tactors of the implemented system which are mounted on the tracked arm give additional information like collision, navigation and activation. The user study for the developed system shows that the duration for reaching a certain target is much longer in case no visual feedback is given, but the accuracy is similar. In this study, subjects reported that an activation signal indicating the arrival at the target of a drag & drop task was helpful. In this paper, we discuss the problems we encountered while developing such a vibrotactile display. Keeping these pitfalls in mind could lead to better feedback systems for actors in virtual studio environments. KW - vibrotactile feedback KW - Virtual (TV) Studio KW - augmented reality KW - FHD KW - VSVR Y1 - 2010 UR - https://dl.acm.org/citation.cfm?id=1994506 SP - 72 EP - 80 PB - University of Aizu Press CY - Aizu-Wakamatsu ER - TY - CHAP A1 - Herder, Jens A1 - Brosda, Constantin A1 - Djuderija, Sascha A1 - Drochtert, Daniel A1 - Genc, Ömer A1 - Joeres, Stephan A1 - Kellerberg, Patrick A1 - Looschen, Simon A1 - Geiger, Christian A1 - Wöldecke, Björn T1 - TouchPlanVS - A Tangible Multitouch Planning System for Virtual TV Studio Productions T2 - 2011 IEEE Symposium on 3D User Interfaces (3DUI) N2 - This article presents a new approach of integrating tangible user feedback in todays virtual TV studio productions. We describe a tangible multitouch planning system, enabling multiple users to prepare and customize scene flow and settings. Users can collaboratively view and interact with virtual objects by using a tangible user interface on a shared multitouch surface. The in a 2D setting created TV scenes are simultaneously rendered on an external monitor, using a production/target renderer in 3D. Thereby the user experiences a closer reproduction of a final production. Subsequently, users are able to join together the scenes into one complex plot. Within the developing process, a video prototype of the system shows the user interaction and enables early reviews and evaluations. The requirement analysis is based on expert interviews. KW - augmented KW - virtual realities KW - multimedia information systems KW - FHD KW - VSVR KW - Virtual (TV) Studio Y1 - 2011 UR - https://ieeexplore.ieee.org/document/5759226 SN - 978-1-4577-0064-4 U6 - https://doi.org/10.1109/3DUI.2011.5759226 SP - 103 EP - 104 PB - IEEE CY - Singapore ER - TY - CHAP A1 - Geiger, Christian A1 - Herder, Jens A1 - Göbel, Sebastian A1 - Heinze, Christin A1 - Marinos, Dionysios T1 - Design and Virtual Studio Presentation of a Traditional Archery Simulator T2 - Proceedings of the Entertainment Interfaces Track 2010 at Interaktive Kulturen, Duisburg, Germany, September 12-15, 2010 N2 - In this paper we describe the design of a virtual reality simulator for traditional intuitive archery. Traditional archers aim without a target figure. Good shooting results require an excellent body-eye coordination that allows the user to perform identical movements when drawing the bow. Our simulator provides a virtual archery experience and supports the user to learn and practice the motion sequence of traditional archery in a virtual environment. We use an infrared tracking system to capture the user’s movements in order to correct his movement. To provide a realistic haptic feedback a real bow is used as interaction device. Our system provides a believable user experience and supports the user to learn how to shoot in the traditional way. Following a user-centered iterative design approach we developed a number of prototypes and evaluated them for refinement in sequent iteration cycles. For illustration purposes we created a short video clip in our virtual studio about this project that presents the main ideas in an informative yet entertaining way. KW - vr archery KW - 3D interaction KW - interactive sport simulation KW - user experience KW - user-centered design KW - Lehre KW - VSVR KW - Virtual Reality Y1 - 2010 UR - https://dl.gi.de/handle/20.500.12116/7385;jsessionid=149F7CDB1184309727393899BD806939 UR - http://ceur-ws.org/Vol-634/Entertainment-Interfaces-Proceedings03.pdf SP - 37 EP - 44 CY - Duisburg ER -