TY - CHAP A1 - Cohen, Michael A1 - Herder, Jens ED - Göbel, Martin ED - Landauer, Jürgen ED - Lang, Ulrich ED - Wapler, Matthias T1 - Symbolic representations of exclude and include for audio sources and sinks: Figurative suggestions of mute/solo & cue and deafen/confide & harken T2 - Virtual Environments ’98, Proceedings of the Eurographics Workshop Y1 - 1998 SN - 3-211-83233-5 U6 - https://doi.org/10.1007/978-3-7091-7519-4_23 SP - 235 EP - 242 PB - Springer-Verlag CY - Stuttgart ER - TY - CHAP A1 - Amano, Katsumi A1 - Matsushita, Fumio A1 - Yanagawa, Hirofumi A1 - Cohen, Michael A1 - Herder, Jens A1 - Koba, Yoshiharu A1 - Tohyama, Mikio T1 - The Pioneer sound field control system at the University of Aizu Multimedia Center T2 - RO-MAN '96 Tsukuba N2 - The PSFC, or Pioneer sound field control system, is a DSP-driven hemispherical 14-loudspeaker array, installed at the University of Aizu Multimedia Center. Collocated with a large screen rear-projection stereographic display the PSFC features realtime control of virtual room characteristics and direction of two separate sound channels, smoothly steering them around a configurable soundscape. The PSFC controls an entire sound field, including sound direction, virtual distance, and simulated environment (reverb level, room size and liveness) for each source. It can also configure a dry (DSP-less) switching matrix for direct directionalization. The PSFC speaker dome is about 14 m in diameter, allowing about twenty users at once to comfortably stand or sit near its sweet spot. KW - Acoustic reflection KW - Auditory displays KW - Control systems KW - Delay effects KW - Electronic mail KW - Large screen displays KW - Loudspeakers KW - Multimedia systems KW - Reverberation KW - Size control Y1 - 1996 SN - 0-7803-3253-9 U6 - https://doi.org/10.1109/ROMAN.1996.568887 SP - 495 EP - 499 PB - IEEE CY - Piscataway ER - TY - CHAP A1 - Herder, Jens A1 - Cohen, Michael T1 - Sound Spatialization Resource Management in Virtual Reality Environments T2 - ASVA’97 ‐- Int. Symp. on Simulation, Visualization and Auralization for Acoustic Research and Education N2 - In a virtual reality environment users are immersed in a scene with objects which might produce sound. The responsibility of a VR environment is to present these objects, but a system has only limited resources, including spatialization channels (mixels), MIDI/audio channels, and processing power. The sound spatialization resource manager controls sound resources and optimizes fidelity (presence) under given conditions. For that a priority scheme based on human psychophysical hearing is needed. Parameters for spatialization priorities include intensity calculated from volume and distance, orientation in the case of non-uniform radiation patterns, occluding objects, frequency spectrum (low frequencies are harder to localize), expected activity, and others. Objects which are spatially close together (depending on distance and direction) can be mixed. Sources that can not be spatialized can be treated as a single ambient sound source. Important for resource management is the resource assignment, i.e., minimizing swap operations, which makes it desirable to look-ahead and predict upcoming events in a scene. Prediction is achieved by monitoring objects’ speed and past evaluation values. Fidelity is contrasted for Zifferent kind of resource restrictions and optimal resource assignment based upon unlimited dynamic scene look-ahead. To give standard and comparable results, the VRML 2.0 specification is used as an application programmer interface. Applicability is demonstrated with a helical keyboard, a polyphonic MIDI stream driven animation including user interaction (user moves around, playing together with programmed notes). The developed sound spatialization resource manager gives improved spatialization fidelity under runtime constraints. Application programmers and virtual reality scene designers are freed from the burden of assigning and predicting the sound sources. Y1 - 1997 SP - 407 EP - 414 CY - Tokyo ER - TY - JOUR A1 - Cohen, Michael A1 - Herder, Jens A1 - L. Martens, William T1 - Cyberspatial Audio Technology T1 - available in Japanese as well - Acoustical Society of Japan, Vol. 55, No. 10, pp. 730-731 JF - The Journal of the Acoustical Society of Japan (E) N2 - Cyberspatial audio applications are distinguished from the broad range of spatial audio applications in a number of important ways that help to focus this review. Most significant is that cyberspatial audio is most often designed to be responsive to user inputs. In contrast to non-interactive auditory displays, cyberspatial auditory displays typically allow active exploration of the virtual environment in which users find themselves. Thus, at least some portion of the audio presented in a cyberspatial environment must be selected, processed, or otherwise rendered with minimum delay relative to user input. Besides the technological demands associated with realtime delivery of spatialized sound, the type and quality of auditory experiences supported are also very different from those associated with displays that support stationary sound localization. Y1 - 1999 U6 - https://doi.org/10.1250/ast.20.389 N1 - available in Japanese as well - Acoustical Society of Japan, Vol. 55, No. 10, pp. 730-731 VL - 20 IS - 6 SP - 389 EP - 395 ER - TY - CHAP A1 - Cohen, Michael A1 - Herder, Jens A1 - Martens, William T1 - Panel: Eartop computing and cyberspatial audio technology T2 - IEEE-VR2001: IEEE Virtual Reality KW - VSVR Y1 - 2001 SN - 0-7695-0948-7 SP - 322 EP - 323 PB - IEEE CY - Yokohama ER - TY - CHAP A1 - Herder, Jens A1 - Cohen, Michael T1 - Design of a Helical Keyboard T2 - icad'96 - International Conference on Auditory Display, Palo Alto N2 - Inspired by the cyclical nature of octaves and helical structure of a scale (Shepard, '82 and '83), we prepared a model of a piano-style keyboard (prototyped in Mathematica), which was then geometrically warped into a left-handed helical configuration, one octave/revolution, pitch mapped to height. The natural orientation of upper frequency keys higher on the helix suggests a parsimonious left-handed chirality, so that ascending notes cross in front of a typical listener left to right. Our model is being imported (via the dxf file format) into (Open Inventor/)VRML, where it can be driven by MIDI events, realtime or sequenced, which stream is both synthesized (by a Roland Sound Module), and spatialized by a heterogeneous spatial sound backend (including the Crystal River Engineering Acoustetron II and the Pioneer Sound Field Control speaker-array System), so that the sound of the respective notes is directionalized with respect to sinks, avatars of the human user, by default in the tube of the helix. This is a work-in-progress which we hope to be fully functional within the next few months. Y1 - 1996 CY - Palo Alto ER -