TY - JOUR A1 - Hesse, Jan A1 - König, Rainer A1 - Logi, Filippo A1 - Herder, Jens T1 - A Prototype of an Interface Builder for the Common Lisp Interface Manager - CLIB JF - ACM Sigplan Notices N2 - The Common Lisp Interface Manager (CLIM) is used to develop graphical user interfaces for Lisp-basedapplications. With the prototype of the CLIM interface Builder (CLIB) the programmer can generate code for CLIM interactively. The developing process will be fast and less prone to errors. With this new tool, the interactive rapid prototyping reduces costs of a specification phase. Here we present the concept and first results of the prototype of CLIB. Y1 - 1993 U6 - https://doi.org/10.1145/163114.163116 VL - 28 IS - 8 SP - 19 EP - 28 PB - Forschungszentrum Informatik (FZI), Technical Expert Systems and Robotics ER - TY - JOUR A1 - Kunii, Tosiyasu L. A1 - Herder, Jens A1 - Myszkowski, Karol A1 - Okunev, Oleg A1 - Okuneva, Galina A1 - Ibusuki, Masumi T1 - Articulation Simulation for an Intelligent Dental Care System JF - Displays N2 - CAD/CAM techniques are used increasingly in dentistry for design and fabrication of teeth restorations. An important issue is preserving occlusal contacts of teeth after restoration. Traditional techniques based on the use of casts with mechanical articulators require manual adjustment of occlusal surface, which becomes impractical when hard restoration materials like porcelain are used; they are also time and labor consuming. Most existing computer systems ignore completely such an articulation check, or perform the check at the level of a tooth and its immediate neighbors. We present a new mathematical model and a related user interface for global articulation simulation, developed for the Intelligent Dental Care System project. The aim of the simulation is elimination of the use of mechanical articulators and manual adjustment in the process of designing dental restorations and articulation diagnostic. The mathematical model is based upon differential topological modeling of the jawbs considered as a mechanical system. The user interface exploits metaphors that are familiar to dentists from everyday practice. A new input device designed specifically for use with articulation simulation is proposed. Y1 - 1994 VL - 15 IS - 3 SP - 181 EP - 188 ER - TY - JOUR A1 - Franz, Jürgen T1 - Benefits of Communication Methods in Environmental Protection JF - IETE Technical Review Y1 - 1996 U6 - https://doi.org/10.1080/02564602.1996.11416600 VL - 13 IS - 3 SP - 153 EP - 162 PB - Taylor & Francis ER - TY - JOUR A1 - Kalka, Regine T1 - Marketingerfolgsfaktoren im Facheinzelhandel JF - der markt - Journal für Marketing KW - Marketing KW - Einzelhandel Y1 - 1996 UR - http://link.springer.com/10.1007/BF03031934 U6 - https://doi.org/10.1007/BF03031934 VL - 35 IS - 4 SP - 171 EP - 180 ER - TY - JOUR A1 - Kalka, Regine T1 - Wenig Ziele, die den Kunden berücksichtigen JF - absatzwirtschaft - Zeitschrift für Marketing KW - Absatzmarkt KW - Kundenorientierung Y1 - 1996 VL - 38 IS - 10 ER - TY - JOUR A1 - Kalka, Regine A1 - Lauszus, Dieter T1 - Die Preisfalle der Einheitswährung JF - Gablers Magazin KW - Währung KW - Euro Y1 - 1997 VL - 11 IS - 9 SP - 22 EP - 25 ER - TY - JOUR A1 - Herder, Jens T1 - Sound Spatialization Framework: An Audio Toolkit for Virtual Environments JF - Journal of the 3D-Forum Society N2 - The Sound Spatialization Framework is a C++ toolkit and development environment for providing advanced sound spatialization for virtual reality and multimedia applications. The Sound Spatialization Framework provides many powerful display and user-interface features not found in other sound spatialization software packages. It provides facilities that go beyond simple sound source spatialization: visualization and editing of the soundscape, multiple sinks, clustering of sound sources, monitoring and controlling resource management, support for various spatialization backends, and classes for MIDI animation and handling. Keywords: sound spatialization, resource management, virtual environments, spatial sound authoring, user interface design, human-machine interfaces KW - sound spatialization KW - resource management KW - virtual environments KW - spatial sound authoring KW - user interface design KW - human-machine interfaces Y1 - 1998 VL - 12 IS - 3 SP - 17 EP - 22 ER - TY - JOUR A1 - Benim, Ali Cemal A1 - Syed, Khawar, J., T1 - Laminar flamelet modelling of turbulent premixed combustion JF - Applied Mathematical Modelling Y1 - 1998 UR - https://doi.org/10.1016/s0307-904x(98)00012-2 U6 - https://doi.org/10.1016/s0307-904x(98)00012-2 N1 - C 1998 Elsevier Science Inc.All rights reserve VL - 22 IS - 1-2 SP - 113 EP - 136 PB - Elsevier ER - TY - JOUR A1 - Amano, Katsumi A1 - Matsushita, Fumio A1 - Yanagawa, Hirofumi A1 - Cohen, Michael A1 - Herder, Jens A1 - Martens, William A1 - Koba, Yoshiharu A1 - Tohyama, Mikio T1 - A Virtual Reality Sound System Using Room-Related Transfer Functions Delivered Through a Multispeaker Array: the PSFC at the University of Aizu Multimedia Center JF - TVRSJ N2 - The PSFC, or Pioneer Sound Field Controller, is a DSP-driven hemispherical loudspeaker array, installed at the University of Aizu Multimedia Center. The PSFC features realtime manipulation of the primary components of sound spatialization for each of two audio sources located in a virtual environment, including the content (apparent direction and distance) and context (room characteristics: reverberation level, room size and liveness). In an alternate mode, it can also direct the destination of the two separate input signals across 14 loudspeakers, manipulating the direction of the virtual sound sources with no control over apparent distance other than that afforded by source loudness (including no simulated environmental reflections or reverberation). The PSFC speaker dome is about 10 m in diameter, accommodating about fifty simultaneous users, including about twenty users comfortably standing or sitting near its ``sweet spot,'' the area in which the illusions of sound spatialization are most vivid. Collocated with a large screen rear-projection stereographic display, the PSFC is intended for advanced multimedia and virtual reality applications. KW - audio signal processing, audio telecommunications KW - auralization KW - calm technology KW - directional mixing console KW - multichannel sound reproduction KW - room-related transfer functions KW - roomware KW - sound localization KW - virtual conferencing environment Y1 - 1998 U6 - https://doi.org/10.18974/tvrsj.3.1_1 VL - 3 IS - 1 SP - 1 EP - 12 PB - J-STAGE ER - TY - JOUR A1 - Herder, Jens T1 - Tools and Widgets for Spatial Sound Authoring JF - Computer Networks & ISDN Systems Y1 - 1998 VL - 30 IS - 20-21 SP - 1933 EP - 1940 PB - Elsevier ER -