TY - CHAP A1 - Ayten, Hüseyin A1 - Herder, Jens A1 - Vonolfen, Wolfgang T1 - Visual Acceptance Evaluation of Soft Shadow Algorithms for Virtual TV Studios T2 - HC '10 Proceedings of the 13th International Conference on Humans and Computers N2 - Shadows in computer graphics are an important rendering aspect for spatial objects. For realtime computer applications such as games, it is essential to represent shadows as accurate as possible. Also, various tv stations work with virtual studio systems instead of real studio sets. Especially for those systems, a realistic impression of the rendered and mixed scene is important. One challenge, hence, is the creation of a natural shadow impression. This paper presents the results of an empirical study to compare the performance and quality of different shadow mapping methods. For this test, a prototype studio renderer was developed. A percentage closer filter (pcf) with a number of specific resolutions is used to minimize the aliasing issue. More advanced algorithms which generate smooth shadows like the percentage closer soft shadow (pcss) method as well as the variance shadow maps (vsm) method are analysed. Different open source apis are used to develop the virtual studio renderer, giving the benefit of permanent enhancement. The Ogre 3D graphic engine is used to implement the rendering system, benefiting from various functions and plugins. The transmission of the tracking data is accomplished with the vrpn server/client and the Intersense api. The different shadow algorithms are compared in a virtual studio environment which also casts real shadows and thus gives a chance for a direct comparison throughout the empirical user study. The performance is measured in frames per secon KW - Virtual (TV) Studio KW - soft shadow KW - realtime rendering KW - augmented reality KW - algorithmus KW - FHD KW - experimentation KW - verification KW - VSVR Y1 - 2010 UR - https://dl.acm.org/citation.cfm?id=1994505 SP - 66 EP - 71 PB - University of Aizu Press CY - Aizu-Wakamatsu ER - TY - CHAP A1 - Brosda, Constantin A1 - Daemen, Jeff A1 - Djuderija, Sascha A1 - Joeres, Stephan A1 - Langer, Oleg A1 - Schweitzer, Andre A1 - Wilhelm, Andreas A1 - Herder, Jens T1 - TouchPlanVS Lite - A Tablet-based Tangible Multitouch Planning System for Virtual TV Studio Productions T2 - Proceedings of the 2012 Joint International Conference on Human-Centered Computer Environments N2 - This paper presents a mobile approach of integrating tangible user feedback in today’s virtual TV studio productions. We describe a tangible multitouch planning system, enabling a single user to prepare and customize scene flow and settings. Users can view and interact with virtual objects by using a tangible user interface on a capacitive multitouch surface. In a 2D setting created TV scenes are simultaneously rendered as separate view using a production/target renderer in 3D. Thereby the user experiences a closer reproduction of a final production and set assets can be reused. Subsequently, a user can arrange scenes on a timeline while maintaining different versions/sequences. The system consists of a tablet and a workstation, which does all application processing and rendering. The tablet is just an interface connected via wireless LAN. KW - virtual studio KW - planning tools KW - tangibles KW - capacitive touch screens KW - application streaming KW - VSVR KW - Virtual (TV) Studio Y1 - 2012 UR - https://dl.acm.org/citation.cfm?doid=2160749.2160764 SN - 978-1-4503-1191-5 SP - 64 EP - 67 PB - ACM CY - New York ER - TY - CHAP A1 - Burga, Jose A1 - Daemen, Jeff A1 - Djuderija, Sascha A1 - Gnehr, Maren A1 - Goossens, Lars A1 - Hartz, Sven A1 - Haufs-Brusberg, Peter A1 - Herder, Jens A1 - Ibrahim, Mohammed A1 - Koop, Nikolas A1 - Leske, Christophe A1 - Meyer, Laurid A1 - Müller, Antje A1 - Salgert, Björn A1 - Schroeder, Richard A1 - Thiele, Simon T1 - Four Metamorphosis States in a Distributed Virtual (TV) Studio: Human, Cyborg, Avatar, and Bot T2 - 10th International Conference on Visual Media Production (CVMP 2013), London N2 - The major challenge in virtual studio technology is the interaction between the actor and virtual objects. Within a distributed live production, two locally separated markerless tracking systems where used simultaneously alongside a virtual studio. The production was based on a fully tracked actor, cyborg (half actor, half graphics), avatar, and a bot. All participants could interact and throw a virtual disc. This setup is compared and mapped to Milgram’s continuum and technical challenges are described. KW - TV KW - Distributed Virtual KW - Studio KW - Human KW - Cyborg KW - Avatar KW - Bot KW - VSVR Y1 - 2013 CY - London ER - TY - CHAP A1 - Cohen, Michael A1 - Herder, Jens A1 - Martens, William T1 - Panel: Eartop computing and cyberspatial audio technology T2 - IEEE-VR2001: IEEE Virtual Reality KW - VSVR Y1 - 2001 SN - 0-7695-0948-7 SP - 322 EP - 323 PB - IEEE CY - Yokohama ER - TY - CHAP A1 - Daemen, Jeff A1 - Haufs-Brusberg, Peter A1 - Herder, Jens T1 - Markerless Actor Tracking for Virtual (TV) Studio Applications T2 - 2013 International Joint Conference on Awareness Science and Technology & Ubi-Media Computing (iCAST 2013 & UMEDIA 2013) N2 - Virtual (tv) studios gain much more acceptance through improvements in computer graphics and camera tracking. Still commercial studios cannot have full interaction between actors and virtual scene because actors data are not completely digital available as well as the feedback for actors is still not sufficient. Markerless full body tracking might revolutionize virtual studio technology as it allows better interaction between real and virtual world. This article reports about using a markerless actor tracking in a virtual studio with a tracking volume of nearly 40 cubic meter enabling up to three actors within the green box. The tracking is used for resolving the occlusion between virtual objects and actors so that the Tenderer can output automatically a mask for virtual objects in the foreground in case the actor is behind. It is also used for triggering functions scripted within the Tenderer engine, which are attached to virtual objects, starting any kind of action (e.g., animation). Last but not least the system is used for controlling avatars within the virtual set. All tracking and rendering is done within a studio frame rate of 50 Hz with about 3 frames delay. The markerless actor tracking within virtual studios is evaluated by experts using an interview approach. The statistical evaluation is based on a questionnaire. KW - Cameras KW - Tracking KW - TV KW - Skeleton KW - Engines KW - Delays KW - Production KW - VSVR KW - Virtual (TV) Studio Y1 - 2013 UR - https://ieeexplore.ieee.org/document/6765544 SN - 978-1-4799-2364-9 U6 - https://doi.org/10.1109/ICAwST.2013.6765544 SP - 790 EP - 795 PB - IEEE CY - Aizu-Wakamatsu ER - TY - CHAP A1 - Fiedler, Jannik A1 - Rilling, Stefan A1 - Bogen, Manfred A1 - Herder, Jens ED - Braz, José T1 - Multimodal interaction techniques in scientific data visualization: An analytical survey T2 - In Proceedings of the 10th International Conference on Computer Graphics Theory and Applications (GRAPP-2015) N2 - The interpretation process of complex data sets makes the integration of effective interaction techniques crucial. Recent work in the field of human-computer interaction has shown that there is strong evidence that multimodal user interaction, i.e. the integration of various input modalities and interaction techniques into one comprehensive user interface, can improve human performance when interacting with complex data sets. However, it is still unclear which factors make these user interfaces superior to unimodal user interfaces. The contribution of this work is an analytical comparison of a multimodal and a unimodal user interface for a scientific visualization application. We show that multimodal user interaction with simultaneously integrated speech and gesture input improves user performance regarding efficiency and ease of use. KW - Interaction KW - Mulitmodal KW - Interaction Techniques KW - 3-D Interaction KW - Immersive Environments KW - VSVR Y1 - 2015 SN - 978-989-758-087-1 U6 - https://doi.org/10.5220/0005296404310437 SP - 431 EP - 437 PB - SCITEPRESS CY - s. l. ER - TY - CHAP A1 - Flasko, Matthias A1 - Pogscheba, Patrick A1 - Herder, Jens A1 - Vonolfen, Wolfgang T1 - Heterogeneous binocular camera-tracking in a Virtual Studio T2 - 8. Workshop Virtuelle und Erweiterte Realität der GI-Fachgruppe VR/AR N2 - This paper presents a tracking of parts of a human body in a virtual TV studio environment. The tracking is based on a depth camera and a HD studio camera and aims at a realistic interaction between the actor and the computer generated environment. Stereo calibration methods are used to match corresponding pixels of both cameras (HD color and depth image). Hence the images were rectified and column aligned. The disparity is used to correct the depth image pixel by pixel. This image registration results in row and column aligned images where ghost regions are in the depth image resulting from occlusion. Both images are used to generate foreground masks with chroma and depth keying. The color image is taken for skin color segmentation to determine and distinguish the actor’s hands and face. In the depth image the flesh colored regions were used to determine their spatial position. The extracted positions were augmented by virtual objects. The scene is rendered correctly with virtual camera parameters which were calculated from the camera calibration parameters. Generated computer graphics with alpha value are combined with the HD color images. This compositing shows interaction with augmented objects for verification. The additional depth information results in changing the size of objects next to the hands when the actor moves around. KW - virtual studio KW - camera-tracking KW - VSVR Y1 - 2011 CY - Wedel ER - TY - CHAP A1 - Garbe, Katharina A1 - Herbst, Iris A1 - Herder, Jens T1 - Spatial Audio for Augmented Reality T2 - 10th International Conference on Human and Computer N2 - Using spatial audio successfully for augmented reality (AR) applications is a challenge, but is awarded with an improved user experience. Thus, we have extended the AR/VR framework \sc Morgan with spatial audio to improve users orientation in an AR application. In this paper, we investigate the users’ capability to localize and memorize spatial sounds (registered with virtual or real objects). We discuss two scenarios. In the first scenario, the user localizes only sound sources and in the second scenario the user memorizes the location of audio-visual objects. Our results reflect spatial audio performance within the application domain and show which technology pitfalls still exist. Finally, we provide design recommendations for spatial audio AR environments. KW - spatial audio KW - augmented reality KW - sound interaction KW - FHD KW - VSVR Y1 - 2007 SP - 53 EP - 58 CY - Düsseldorf, Aizu-Wakamatsu ER - TY - CHAP A1 - Geiger, Christian A1 - Herder, Jens A1 - Göbel, Sebastian A1 - Heinze, Christin A1 - Marinos, Dionysios T1 - Design and Virtual Studio Presentation of a Traditional Archery Simulator T2 - Proceedings of the Entertainment Interfaces Track 2010 at Interaktive Kulturen, Duisburg, Germany, September 12-15, 2010 N2 - In this paper we describe the design of a virtual reality simulator for traditional intuitive archery. Traditional archers aim without a target figure. Good shooting results require an excellent body-eye coordination that allows the user to perform identical movements when drawing the bow. Our simulator provides a virtual archery experience and supports the user to learn and practice the motion sequence of traditional archery in a virtual environment. We use an infrared tracking system to capture the user’s movements in order to correct his movement. To provide a realistic haptic feedback a real bow is used as interaction device. Our system provides a believable user experience and supports the user to learn how to shoot in the traditional way. Following a user-centered iterative design approach we developed a number of prototypes and evaluated them for refinement in sequent iteration cycles. For illustration purposes we created a short video clip in our virtual studio about this project that presents the main ideas in an informative yet entertaining way. KW - vr archery KW - 3D interaction KW - interactive sport simulation KW - user experience KW - user-centered design KW - Lehre KW - VSVR KW - Virtual Reality Y1 - 2010 UR - https://dl.gi.de/handle/20.500.12116/7385;jsessionid=149F7CDB1184309727393899BD806939 UR - http://ceur-ws.org/Vol-634/Entertainment-Interfaces-Proceedings03.pdf SP - 37 EP - 44 CY - Duisburg ER - TY - JOUR A1 - Griesert, Arnfried A1 - Walczak, Oliver A1 - Herder, Jens T1 - Interactive Realtime Terrain Visualization for Virtual Set Applications JF - Journal of the 3D-Forum Society N2 - Virtual set environments for broadcasting become more sophisticated as well as the visual quality improves. Realtime interaction and production-specific visualization implemented through plugin mechanism enhance the existing systems like the virtual studio software 3DK. This work presents an algorithm which can dynamically manage textures of high resolution by prefetching them depending on their requirement in memory and map them on a procedural mesh in realtime. The main goal application of this work is the virtual representation of a flight over a landscape as part of weather reports in virtual studios and the interaction by the moderator. KW - 3D KW - VSVR KW - Virtual (TV) Studio Y1 - 2003 VL - 17 IS - 4 SP - 20 EP - 26 ER -