@article{SieberichsGeerkensBraunetal.2024, author = {Sieberichs, Christian and Geerkens, Simon and Braun, Alexander and Waschulzik, Thomas}, title = {ECS: an interactive tool for data quality assurance}, series = {AI and Ethics}, journal = {AI and Ethics}, publisher = {Springer Nature}, issn = {2730-5961}, doi = {10.1007/s43681-023-00393-3}, year = {2024}, abstract = {With the increasing capabilities of machine learning systems and their potential use in safety-critical systems, ensuring high-quality data is becoming increasingly important. In this paper, we present a novel approach for the assurance of data quality. For this purpose, the mathematical basics are first discussed and the approach is presented using multiple examples. This results in the detection of data points with potentially harmful properties for the use in safety-critical systems.}, language = {en} } @unpublished{GeerkensSieberichsBraunetal.2023, author = {Geerkens, Simon and Sieberichs, Christian and Braun, Alexander and Waschulzik, Thomas}, title = {QI2 -- an Interactive Tool for Data Quality Assurance}, address = {arXiv}, year = {2023}, abstract = {The importance of high data quality is increasing with the growing impact and distribution of ML systems and big data. Also the planned AI Act from the European commission defines challenging legal requirements for data quality especially for the market introduction of safety relevant ML systems. In this paper we introduce a novel approach that supports the data quality assurance process of multiple data quality aspects. This approach enables the verification of quantitative data quality requirements. The concept and benefits are introduced and explained on small example data sets. How the method is applied is demonstrated on the well known MNIST data set based an handwritten digits.}, language = {en} } @unpublished{SieberichsGeerkensBraunetal.2023, author = {Sieberichs, Christian and Geerkens, Simon and Braun, Alexander and Waschulzik, Thomas}, title = {ECS -- an Interactive Tool for Data Quality Assurance}, publisher = {arXiv}, doi = {10.48550/arXiv.2307.04368}, year = {2023}, abstract = {With the increasing capabilities of machine learning systems and their potential use in safety-critical systems, ensuring high-quality data is becoming increasingly important. In this paper we present a novel approach for the assurance of data quality. For this purpose, the mathematical basics are first discussed and the approach is presented using multiple examples. This results in the detection of data points with potentially harmful properties for the use in safety-critical systems.}, language = {en} } @article{GeerkensSieberichsBraunetal.2024, author = {Geerkens, Simon and Sieberichs, Christian and Braun, Alexander and Waschulzik, Thomas}, title = {QI²: an interactive tool for data quality assurance}, series = {AI and Ethics}, journal = {AI and Ethics}, publisher = {Springer Nature}, issn = {2730-5961}, doi = {10.1007/s43681-023-00390-6}, year = {2024}, abstract = {The importance of high data quality is increasing with the growing impact and distribution of ML systems and big data. Also, the planned AI Act from the European commission defines challenging legal requirements for data quality especially for the market introduction of safety relevant ML systems. In this paper, we introduce a novel approach that supports the data quality assurance process of multiple data quality aspects. This approach enables the verification of quantitative data quality requirements. The concept and benefits are introduced and explained on small example data sets. How the method is applied is demonstrated on the well-known MNIST data set based an handwritten digits.}, language = {en} }