@inproceedings{LorenzenSchoenigGroteRammetal.2023, author = {Lorenzen, Finn and Sch{\"o}nig, Felix and Grote-Ramm, Wolfgang and Oliveira Brito, Marcel and Neuberger, Heiko and Sobolyev, Alexander}, title = {Continual Adaptation of Compressor Maps During Operation on Measurement Data For Increased Performance of Model-Based Applications in Turbomachinery}, series = {ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, June 26-30, 2023 Boston, Massachusetts, USA}, volume = {Volume 4}, booktitle = {ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, June 26-30, 2023 Boston, Massachusetts, USA}, publisher = {ASME}, address = {Boston}, isbn = {978-0-7918-8697-7}, doi = {10.1115/GT2023-103458}, pages = {1 -- 7}, year = {2023}, abstract = {Higher control engineering concepts, including artificial intelligence and model-based control, are recently becoming more popular in complex industrial applications because they enable a significant increase in efficiency. E.g., a model-based approach can be used to enhance the control and monitoring of several coupled components of a larger turbomachinery train. This requires dynamic models of the components, including all machine characteristics, which may experience a shift in their behavior over the course of their lifetime. Such changes occur due to natural fouling, wear of sub-components or external effects induced by maintenance measures. To overcome this problem, we model machine-characteristic maps with artificial neural networks, which may be used as part of prediction models in a model predictive control unit. If an appropriate data set is available, this allows us to adapt the model to the current behavior of the machine without requiring in-depth knowledge about the underlying physics of this "concept drift", as it is known in literature. However, the training of neural networks is usually connected with high computational effort while the task needs to be executed in real-time during operation. Furthermore, in real operating conditions, machine sensors can only provide labeled data from the current operating point of the machine, which can be stationary for long operation periods of up to several months. In general, this yields only an unrepresentative data subset of the machine-characteristics, which is not sufficient to retrain the whole model to a new state. To solve these problems, we firstly reduce the model adaptation to a convex optimization problem, which can be efficiently solved in real-time conditions. Secondly, we use a specialized data management system with which we can integrate historical data to supplement the unrepresentative data subset. In this paper we show the application of the outlined method on a compressor map and discuss the advantages and requirements of the method in the context of modeling applications for industrial turbomachinery.}, language = {en} } @techreport{OliveiraBritoPohlNehr2025, author = {Oliveira Brito, Marcel and Pohl, Tobias and Nehr, Sascha}, title = {Sicheres Schadstoffmonitoring per UAV in Gefahrenszenarien f{\"u}r Einsatzkr{\"a}fte (SiSchaMo): Erforschung eines modularen Sensorsystems zur dreidimensionalen Erfassung und Charakterisierung von Gefahrstoffwolken mittels UAV in-situ Messungen ; Abschlussbericht zum Teilvorhaben}, publisher = {Technische Informationsbibliothek}, address = {Hannover}, doi = {10.34657/18646}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:due62-opus-55799}, pages = {40}, year = {2025}, subject = {Drohne}, language = {de} } @techreport{PolklasWillekeLehmbrincketal.2025, author = {Polklas, Thomas and Willeke, Tobias and Lehmbrinck, Marc and Fomina, Anastasia and Maqueo Martinez, Manuel Ernesto and Oliveira Brito, Marcel}, title = {RoboFlexRobuste Turbomaschinen f{\"u}r den flexiblen Einsatz: Numerische und experimentelle Untersuchungen zu einem axial-radial Turbinendiffusor (AP 1.5); KI-basierte, modellpr{\"a}diktive Turbostrang-Regelung f{\"u}r einen energieoptimalen Betrieb (AP 4.2) (Abschlussbericht Verbundprojekt AG Turbo Teilvorhaben-Nr. 1.5 und 4.2)}, publisher = {Repositorium f{\"u}r Naturwissenschaften und Technik}, address = {Hannover}, doi = {10.34657/18643}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:due62-opus-57122}, pages = {137}, year = {2025}, abstract = {In der Zusammenarbeit zwischen dem ITSM der Universit{\"a}t Stuttgart und Everllence wurde im Rahmen dieses Vorhabens (AP 1.5) eine Versuchsanlage zur Erzeugung repr{\"a}sentativer Diffusorstr{\"o}mungen entwickelt und f{\"u}r experimentelle Untersuchungen eingesetzt. Begleitend zu den experimentellen Untersuchungen wurden verschiedene numerische Modelle entwickelt und anhand der Messergebnisse validiert. Aus diesem Vergleich wurden Empfehlungen zur numerischen Str{\"o}mungssimulation von Axial-Radial-Diffusoren abgeleitet. Insgesamt zeigte die numerische Simulation unter den gew{\"a}hlten Bedingungen eine hohe Sensitivit{\"a}t gegen{\"u}ber den Modellparametern mit entsprechenden Auswirkungen auf die beabsichtigte Geometrieoptimierung. In Arbeitspaket 4.2 des AG Turbo Verbundprojekts RoboFlex ist es den Projektpartnern Hochschule D{\"u}sseldorf und Everllence gelungen, eine modellpr{\"a}diktive Mehrgr{\"o}ßen-Verbundregelung eines exemplarischen Turbomaschinen-Strangs zu entwickeln. Dies erlaubt der Regelungseinheit, alle verf{\"u}gbaren Stellgr{\"o}ßen simultan zu benutzen, um ein vorgegebenes Regelungsziel zu erreichen. Zudem kann das Regelungsziel flexibel um weitere Vorgaben und Beschr{\"a}nkungen erweitert werden, indem diese in die Kostenfunktion implementiert werden. Ein zentraler Forschungsschwerpunkt war hierbei die Einbindung von Methoden der k{\"u}nstlichen Intelligenz in die Modellierung und im gleichen Zuge deren {\"U}berf{\"u}hrung und Implementierung in die linearisierte Modellform, die die modellpr{\"a}diktive Regelung verlangt. Ein besonderes Augenmerk wurde auf die fortlaufende Nachf{\"u}hrung des KI-Modells an den zuletzt durch Messungen bekannten Anlagenzustand gelegt.}, subject = {Str{\"o}mungsmaschine}, language = {de} } @article{GroteRammLanuschnyLorenzenetal.2023, author = {Grote-Ramm, Wolfgang and Lanuschny, David and Lorenzen, Finn and Oliveira Brito, Marcel and Sch{\"o}nig, Felix}, title = {Continual learning for neural regression networks to cope with concept drift in industrial processes using convex optimisation}, series = {Engineering Applications of Artificial Intelligence}, volume = {120}, journal = {Engineering Applications of Artificial Intelligence}, publisher = {Elsevier}, address = {New York}, issn = {1873-6769}, doi = {10.1016/j.engappai.2023.105927}, pages = {10}, year = {2023}, abstract = {Process models in industrial applications, e.g. predictive maintenance or automation, are subject to both divergence from the underlying system due to their time-variant nature and to high complexity resulting from a wide operational range being covered. Hence, regression models require high accuracy for the present system state and at the same time need to be valid across the whole system operating space. While accuracy for the current system state can be gained by updating the model on the current data, the overall validity must often be retrieved from historical or design data. We propose a method to find an appropriate compromise for these two demands. A pre-trained artificial neural network (ANN) is continually updated on the current sensor data stream using convex optimisation. Thus, a unique and optimal solution is generated in each update step, while robust regression accuracy on the domain that is not covered by the arriving data subset is maintained. This is achieved by introducing a data management system to provide some historical data, constraining the optimisation problem and manipulating the architecture of the ANN. Models updated with this method show reasonable stability but display plastic behaviour at the current operating point.}, language = {en} }