@inproceedings{Herder1997, author = {Herder, Jens}, title = {Cooperative Tools for Teaching : an Impact of a Network Environment}, series = {Annual Report of the Information Systems and Technology Center, University of Aizu, October 1997}, booktitle = {Annual Report of the Information Systems and Technology Center, University of Aizu, October 1997}, address = {Aizu}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:due62-opus-827}, pages = {3 -- 8}, year = {1997}, abstract = {Education at the University of Aizu is focussed upon computer science. Besides being the subject matter of many courses, however, the computer also plays a vital role in the educational process itself, both in the distribution of instructional media, and in providing students with valuable practical experience. All students have unlimited access (24-hours-a-day) to individual networked workstations, most of which are multimedia-capable (even video capture is possible in two exercise rooms). Without software and content tailored for computer-aided instruction, the hardware becomes an expensive decoration. In any case, there is a need to better educate the instructors and students in the use of the equipment. In the interest of facilitating effective, collaborative use of network-based computers in teaching, this article explores the impact that a network environment can have on such activities. First, as a general overview, and to examine the motivation for the use of a network environment in teaching, this article reviews a range of different styles of collaboration. Then the article shows what kind of tools are available for use, within the context of what has come to be called Computer-Supported Cooperative Work (CSCW).}, language = {en} } @inproceedings{BallesterRipollHerderLadwigetal.2016, author = {Ballester Ripoll, Marina and Herder, Jens and Ladwig, Philipp and Vermeegen, Kai}, title = {Comparison of two Gesture Recognition Sensors for Virtual TV Studios}, series = {GI-VRAR, Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realit{\"a}t - 13. Workshop der GI-Fachgruppe VR/AR,}, booktitle = {GI-VRAR, Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realit{\"a}t - 13. Workshop der GI-Fachgruppe VR/AR,}, editor = {Pfeiffer, Thies and Fr{\"o}hlich, Julia and Kruse, Rolf}, publisher = {Shaker Verlag}, address = {Herzogenrath}, isbn = {978-3-8440-4718-9}, year = {2016}, abstract = {In order to improve the interactivity between users and computers, recent technologies focus on incorporating gesture recognition into interactive systems. The aim of this article is to evaluate the effectiveness of using a Myo control armband and the Kinect 2 for recognition of gestures in order to interact with virtual objects in a weather report scenario. The Myo armband has an inertial measurement unit and is able to read electrical activity produced by skeletal muscles, which can be recognized as gestures, which are trained by machine learning. A Kinect sensor was used to build up a dataset which contains motion recordings of 8 different gestures and was also build up by a gesture training machine learning algorithm. Both input methods, the Kinect 2 and the Myo armband, were evaluated with the same interaction patterns in a user study, which allows a direct comparison and reveals benefits and limits of each technique.}, language = {en} } @inproceedings{Herder2000, author = {Herder, Jens}, title = {Challenges of Virtual Sets: From Broadcasting to Interactive Media}, series = {Seventh International Workshop on Human}, booktitle = {Seventh International Workshop on Human}, publisher = {University of Aizu}, address = {Aizu-Wakamatsu}, pages = {13 -- 17}, year = {2000}, abstract = {Virtual sets have evolved from computer-generated, prerendered 2D backgrounds to realtime, responsive 3D computer graphics and are nowadays standard repertoire of broadcasting divisions. The graphics, which are combined with real video feed becoming moresophisticated, real looking and more responsive. We will look at the recent developments and suggest further developments like integration of spatial audio into the studio production and generating interactive media streams. Educational institutes recognize the demands of the rising media industry and established new courses on media technology like the Duesseldorf University of Applied Sciences.}, language = {en} } @inproceedings{DeppeNemitzHerder2018, author = {Deppe, Robert and Nemitz, Oliver and Herder, Jens}, title = {Augmented reality for supporting manual non-destructive ultrasonic testing of metal pipes and plates}, series = {Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realit{\"a}t - 15. Workshop der GI-Fachgruppe VR/AR}, booktitle = {Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realit{\"a}t - 15. Workshop der GI-Fachgruppe VR/AR}, editor = {Herder, Jens and Geiger, Christian and D{\"o}rner, Ralf and Grimm, Paul}, publisher = {Shaker Verlag}, address = {Herzogenrath}, isbn = {978-3-8440-6215-1}, doi = {10.2370/9783844062151}, pages = {45 -- 52}, year = {2018}, abstract = {We describe an application of augmented reality technology for non-destructive testing of products in the metal-industry. The prototype is created with hard- and software, that is usually employed in the gaming industry, and delivers positions for creating ultra- sonic material scans (C-scans). Using a stereo camera in combination with an hmd enables realtime visualisation of the probes path, as well as the setting of virtual markers on the specimen. As a part of the implementation the downhill simplex optimization algorithm is implemented to fit the specimen to a cloud of recorded surface points. The accuracy is statistically tested and evaluated with the result, that the tracking system is accurate up to ca. 1-2 millimeters in well set-up conditions. This paper is of interest not only for research institutes of the metal-industry, but also for any areas of work, in which the enhancement with augmented reality is possible and a precise tracking is necessary.}, language = {en} } @article{KuniiHerderMyszkowskietal.1994, author = {Kunii, Tosiyasu L. and Herder, Jens and Myszkowski, Karol and Okunev, Oleg and Okuneva, Galina and Ibusuki, Masumi}, title = {Articulation Simulation for an Intelligent Dental Care System}, series = {Displays}, volume = {15}, journal = {Displays}, number = {3}, pages = {181 -- 188}, year = {1994}, abstract = {CAD/CAM techniques are used increasingly in dentistry for design and fabrication of teeth restorations. An important issue is preserving occlusal contacts of teeth after restoration. Traditional techniques based on the use of casts with mechanical articulators require manual adjustment of occlusal surface, which becomes impractical when hard restoration materials like porcelain are used; they are also time and labor consuming. Most existing computer systems ignore completely such an articulation check, or perform the check at the level of a tooth and its immediate neighbors. We present a new mathematical model and a related user interface for global articulation simulation, developed for the Intelligent Dental Care System project. The aim of the simulation is elimination of the use of mechanical articulators and manual adjustment in the process of designing dental restorations and articulation diagnostic. The mathematical model is based upon differential topological modeling of the jawbs considered as a mechanical system. The user interface exploits metaphors that are familiar to dentists from everyday practice. A new input device designed specifically for use with articulation simulation is proposed.}, language = {en} } @inproceedings{RyskeldievCohenHerder2017, author = {Ryskeldiev, Bektur and Cohen, Michael and Herder, Jens}, title = {Applying rotational tracking and photospherical imagery to immersive mobile telepresence and live video streaming groupware}, series = {Proceeding SA '17 SIGGRAPH Asia 2017 Mobile Graphics \& Interactive Applications, Article No. 5}, booktitle = {Proceeding SA '17 SIGGRAPH Asia 2017 Mobile Graphics \& Interactive Applications, Article No. 5}, publisher = {ACM}, address = {New York}, isbn = {978-1-4503-5410-3}, doi = {10.1145/3132787.3132813}, pages = {2}, year = {2017}, abstract = {Mobile live video streaming is becoming an increasingly popular form of interaction both in social media and remote collaboration scenarios. However, in most cases the streamed video does not take mobile devices' spatial data into account (e.g., the viewers do not know the spatial orientation of a streamer), or use such data only in specific scenarios (e.g., to navigate around a spherical video stream).}, language = {en} } @inproceedings{Herder2001, author = {Herder, Jens}, title = {Applications of Spatial Auditory Displays in the Context of Art and Music}, series = {Human Supervision and Control in Engineering and Music}, booktitle = {Human Supervision and Control in Engineering and Music}, publisher = {Universit{\"a}t Kassel}, address = {Kassel}, year = {2001}, language = {en} } @article{AmanoMatsushitaYanagawaetal.1998, author = {Amano, Katsumi and Matsushita, Fumio and Yanagawa, Hirofumi and Cohen, Michael and Herder, Jens and Martens, William and Koba, Yoshiharu and Tohyama, Mikio}, title = {A Virtual Reality Sound System Using Room-Related Transfer Functions Delivered Through a Multispeaker Array: the PSFC at the University of Aizu Multimedia Center}, series = {TVRSJ}, volume = {3}, journal = {TVRSJ}, number = {1}, publisher = {J-STAGE}, doi = {10.18974/tvrsj.3.1_1}, pages = {1 -- 12}, year = {1998}, abstract = {The PSFC, or Pioneer Sound Field Controller, is a DSP-driven hemispherical loudspeaker array, installed at the University of Aizu Multimedia Center. The PSFC features realtime manipulation of the primary components of sound spatialization for each of two audio sources located in a virtual environment, including the content (apparent direction and distance) and context (room characteristics: reverberation level, room size and liveness). In an alternate mode, it can also direct the destination of the two separate input signals across 14 loudspeakers, manipulating the direction of the virtual sound sources with no control over apparent distance other than that afforded by source loudness (including no simulated environmental reflections or reverberation). The PSFC speaker dome is about 10 m in diameter, accommodating about fifty simultaneous users, including about twenty users comfortably standing or sitting near its ``sweet spot,'' the area in which the illusions of sound spatialization are most vivid. Collocated with a large screen rear-projection stereographic display, the PSFC is intended for advanced multimedia and virtual reality applications.}, language = {en} } @incollection{HerderMyszkowskiKuniietal.1996, author = {Herder, Jens and Myszkowski, Karol and Kunii, Tosiyasu L. and Ibusuki, Masumi}, title = {A Virtual Reality Interface to an Intelligent Dental Care System}, series = {Medicine Meets Virtual Reality 4}, booktitle = {Medicine Meets Virtual Reality 4}, editor = {Weghorst, Suzanne J. and Sieburg, Hans B. and Morgan, Karen S.}, publisher = {IOS Press}, address = {Amsterdam}, pages = {17 -- 20}, year = {1996}, language = {en} } @inproceedings{IshikawaHiroseHerder1998, author = {Ishikawa, Kimitaka and Hirose, Minefumi and Herder, Jens}, title = {A Sound Spatialization Server for a Speaker Array as an Integrated Part of a Virtual Environment}, series = {IEEE YUFORIC Germany 98}, booktitle = {IEEE YUFORIC Germany 98}, publisher = {IEEE}, address = {Stuttgart}, year = {1998}, abstract = {Spatial sound plays an important role in virtual reality environments, allowing orientation in space, giving a feeling of space, focusing the user on events in the scene, and substituting missing feedback cues (e.g., force feedback). The sound spatialization framework of the University of Aizu, which supports number of spatialization backends, has been extended to include a sound spatialization server for a multichannel loudspeaker array (Pioneer Sound Field Control System). Our goal is that the spatialization server allows easy integration into virtual environments. Modeling of distance cues, which are essential for full immersion, is discussed. Furthermore, the integration of this prototype into different applications allowed us to reveal the advantages and problems of spatial sound for virtual reality environments.}, language = {en} }