@article{Herder2001, author = {Herder, Jens}, title = {Interactive Content Creation with Virtual Set Environments}, series = {Journal of the 3D-Forum Society}, volume = {15}, journal = {Journal of the 3D-Forum Society}, number = {4}, pages = {53 -- 56}, year = {2001}, abstract = {Digital broadcasting enables interactive \sc tv studios with virtual set environments. This presentation reviews current technology and describes the requirements for such systems. Interoperability over the production, streaming, and viewer levels requires open interfaces. As the technology allow more interaction, it becomes inherent difficult to control the quality of the viewers experience.}, language = {en} } @inproceedings{CohenHerderMartens2001, author = {Cohen, Michael and Herder, Jens and Martens, William}, title = {Panel: Eartop computing and cyberspatial audio technology}, series = {IEEE-VR2001: IEEE Virtual Reality}, booktitle = {IEEE-VR2001: IEEE Virtual Reality}, publisher = {IEEE}, address = {Yokohama}, isbn = {0-7695-0948-7}, pages = {322 -- 323}, year = {2001}, language = {en} } @article{HerderYamazaki2000, author = {Herder, Jens and Yamazaki, Yasuhiro}, title = {A Chatspace Deploying Spatial Audio for Enhanced Conferencing}, series = {Journal of the 3D-Forum Society}, volume = {15}, journal = {Journal of the 3D-Forum Society}, number = {1}, year = {2000}, language = {en} } @inproceedings{Herder2001, author = {Herder, Jens}, title = {Applications of Spatial Auditory Displays in the Context of Art and Music}, series = {Human Supervision and Control in Engineering and Music}, booktitle = {Human Supervision and Control in Engineering and Music}, publisher = {Universit{\"a}t Kassel}, address = {Kassel}, year = {2001}, language = {en} } @inproceedings{HonnoSuzukiHerder2000, author = {Honno, Kuniaki and Suzuki, Kenji and Herder, Jens}, title = {Distance and Room Effects Control for the PSFC, an Auditory Display using a Loudspeaker Array}, series = {Third International Conference on Human and Computer}, booktitle = {Third International Conference on Human and Computer}, publisher = {University of Aizu}, address = {Aizu-Wakamatsu}, pages = {71 -- 76}, year = {2000}, abstract = {The Pioneer Sound Field Controller (PSFC), a loudspeaker array system, features realtime configuration of an entire sound field,including sound source direction, virtual distance, and context of simulated environment (room characteristics: room size and liveness)for each of two sound sources. In the PSFC system, there is no native parameter to specify the distance between the sound source and sound sink (listener) and also no function to control it directrly. This paper suggests the method to control virtual distance using basic parameters: volume, room size and liveness. The implementation of distance cue is an important aspect of 3D sounds. Virtual environments supporting room effects like reverberation not only gain realism but also provide additional information to users about surrounding space. The context switch of different aural attributes is done by using an API of the Sound Spatialization Framework. Therefore, when the sound sink move through two rooms, like a small bathroom and a large living room, the context of the sink switches and different sound is obtained.}, language = {en} } @phdthesis{Herder1999, author = {Herder, Jens}, title = {A Sound Spatialization Resource Management Framework}, publisher = {University of Tsukuba}, address = {Tsukuba}, organization = {University of Tsukuba}, year = {1999}, abstract = {In a virtual reality environment, users are immersed in a scene with objects which might produce sound. The responsibility of a VR environment is to present these objects, but a practical system has only limited resources, including spatialization channels (mixels), MIDI/audio channels, and processing power. A sound spatialization resource manager, introduced in this thesis, controls sound resources and optimizes fidelity (presence) under given conditions, using a priority scheme based on psychoacoustics. Objects which are spatially close together can be coalesced by a novel clustering algorithm, which considers listener localization errors. Application programmers and VR scene designers are freed from the burden of assigning mixels and predicting sound source locations. The framework includes an abstract interface for sound spatialization backends, an API for the VR environments, and multimedia authoring tools.}, language = {en} } @inproceedings{Herder1999, author = {Herder, Jens}, title = {Optimization of Sound Spatialization Resource Management through Clustering}, series = {Second International Conference on Human and Computer}, booktitle = {Second International Conference on Human and Computer}, address = {Aizu-Wakamatsu}, pages = {1 -- 7}, year = {1999}, abstract = {Level-of-detail is a concept well-known in computer graphics to reduce the number of rendered polygons. Depending on the distance to the subject (viewer), the objects' representation is changed. A similar concept is the clustering of sound sources for sound spatialization. Clusters can be used to hierarchically organize mixels and to optimize the use of resources, by grouping multiple sources together into a single representative ource. Such a clustering process should minimize the error of position allocation of elements, perceived as angle and distance, and also differences between velocity relative to the sink (i.e., Doppler shift). Objects with similar direction of motion and speed (relative to sink) in the same acoustic resolution cone and with similar distance to a sink can be grouped together.}, language = {en} } @article{JensHerder1999, author = {Jens Herder,}, title = {Optimization of Sound Spatialization Resource Management through Clustering}, series = {Journal of the 3D-Forum Society}, volume = {13}, journal = {Journal of the 3D-Forum Society}, number = {3}, pages = {59 -- 65}, year = {1999}, abstract = {Level-of-detail is a concept well-known in computer graphics to reduce the number of rendered polygons. Depending on the distance to the subject (viewer), the objects' representation is changed. A similar concept is the clustering of sound sources for sound spatialization. Clusters can be used to hierarchically organize mixelsand to optimize the use of resources, by grouping multiple sources together into a single representative source. Such a clustering process should minimize the error of position allocation of elements, perceived as angle and distance, and also differences between velocity relative to the sink (i.e., Doppler shift). Objects with similar direction of motion and speed (relative to sink) in the same acoustic resolution cone and with similar distance to a sink can be grouped together.}, language = {de} } @misc{Herder2000, author = {Herder, Jens}, title = {Interactive Sound Spatialization - a Primer}, series = {MM News, University of Aizu Multimedia Center}, volume = {8}, journal = {MM News, University of Aizu Multimedia Center}, pages = {8 -- 12}, year = {2000}, abstract = {Sound spatialization is a technology which puts sound into the three dimensional space, so that it has a perceivable direction and distance. Interactive means mutually or reciprocally active. Interaction is when one action (e.g., user moves mouse) has direct or immediate influence to other actions (e.g., processing by a computer: graphics change in size). Based on this definition an introduction to sound reproduction using DVD and virtual environments is given and illustrated by applications (e.g., virtual converts).}, language = {mul} } @article{Herder1999, author = {Herder, Jens}, title = {Visualization of a Clustering Algorithm of Sound Sources based on Localization Errors}, series = {Journal of the 3D-Forum Society}, volume = {13}, journal = {Journal of the 3D-Forum Society}, number = {3}, pages = {66 -- 70}, year = {1999}, abstract = {A module for soundscape monitoring and visualizing resource management processes was extended for presenting clusters, generated by a novel sound source clustering algorithm. This algorithm groups multiple sound sources together into a single representative source, considering localization errors depending on listener orientation. Localization errors are visualized for each cluster using resolution cones. Visualization is done in runtime and allows understanding and evaluation of the clustering algorithm.}, language = {en} } @inproceedings{YamazakiHerder2000, author = {Yamazaki, Yasuhiro and Herder, Jens}, title = {Exploring Spatial Audio Conferencing Functionality in Multiuser Virtual Environments}, series = {The Third International Conference on Collaborative Virtual Environments}, booktitle = {The Third International Conference on Collaborative Virtual Environments}, publisher = {ACM}, address = {San Francisco}, pages = {207 -- 208}, year = {2000}, abstract = {A chatspace was developed that allows conversation with 3D sound using networked streaming in a shared virtual environment. The system provides an interface to advanced audio features, such as a "whisper function" for conveying a confided audio stream. This study explores the use of spatial audio to enhance a user's experience in multiuser virtual environments.}, language = {en} } @inproceedings{Herder1999, author = {Herder, Jens}, title = {Visualization of a Clustering Algorithm of Sound Sources based on Localization Errors}, series = {Second International Conference on Human and Computer}, booktitle = {Second International Conference on Human and Computer}, address = {Aizu-Wakamatsu}, pages = {1 -- 5}, year = {1999}, abstract = {A module for soundscape monitoring and visualizing resource management processes was extended for presenting clusters, generated by a novel sound source clustering algorithm. This algorithm groups multiple sound sources together into a single representative source, considering localization errors depending on listener orientation. Localization errors are visualized for each cluster using resolution cones. Visualization is done in runtime and allows understanding and evaluation of the clustering algorithm.}, language = {en} } @inproceedings{HerderYamazaki2000, author = {Herder, Jens and Yamazaki, Yasuhiro}, title = {A Chatspace Deploying Spatial Audio for Enhanced Conferencing}, series = {Third International Conference on Human and Computer}, booktitle = {Third International Conference on Human and Computer}, publisher = {University of Aizu}, address = {Aizu-Wakamatsu}, pages = {197 -- 202}, year = {2000}, language = {en} } @inproceedings{HerderCohen1997, author = {Herder, Jens and Cohen, Michael}, title = {Enhancing Perspicuity of Objects in Virtual Reality Environments}, series = {Proceedings, Second International Conference on Cognitive Technology}, booktitle = {Proceedings, Second International Conference on Cognitive Technology}, editor = {Gorayska, Barbara and Nehaniv, Chrystopher L. and Marsh, Jonathon P.}, publisher = {IEEE}, address = {Los Alamitos}, isbn = {0-8186-8084-9}, pages = {228 -- 237}, year = {1997}, abstract = {In an information-rich Virtual Reality (VR) environment, the user is immersed in a world containing many objects providing that information. Given the finite computational resources of any computer system, optimization is required to ensure that the most important information is presented to the user as clearly as possible and in a timely fashion. In particular, what is desired are means whereby the perspicuity of an object may be enhanced when appropriate. An object becomes more perspicuous when the information it provides to the user becomes more readily apparent. Additionally, if a particular object provides high-priority information, it would be advantageous to make that object obtrusive as well as highly perspicuous. An object becomes more obtrusive if it draws attention to itself (or equivalently, if it is hard to ignore). This paper describes a technique whereby objects may dynamically adapt their representation in a user's environment according to a dynamic priority evaluation of the information each object provides. The three components of our approach are: - an information manager that evaluates object information priority, - an enhancement manager that tabulates rendering features associated with increasing object perspicuity and obtrusion as a function of priority, and - a resource manager that assigns available object rendering resources according to features indicated by the enhancement manager for the priority set for each object by the information manager. We consider resources like visual space (pixels), sound spatialization channels (mixels), MIDI/audio channels, and processing power, and discuss our approach applied to different applications. Assigned object rendering features are implemented locally at the object level (e.g., object facing the user using the billboard node in VRML 2.0) or globally, using helper applications (e.g., active spotlights, semi-automatic cameras).}, language = {en} } @article{AmanoMatsushitaYanagawaetal.1998, author = {Amano, Katsumi and Matsushita, Fumio and Yanagawa, Hirofumi and Cohen, Michael and Herder, Jens and Martens, William and Koba, Yoshiharu and Tohyama, Mikio}, title = {A Virtual Reality Sound System Using Room-Related Transfer Functions Delivered Through a Multispeaker Array: the PSFC at the University of Aizu Multimedia Center}, series = {TVRSJ}, volume = {3}, journal = {TVRSJ}, number = {1}, publisher = {J-STAGE}, doi = {10.18974/tvrsj.3.1_1}, pages = {1 -- 12}, year = {1998}, abstract = {The PSFC, or Pioneer Sound Field Controller, is a DSP-driven hemispherical loudspeaker array, installed at the University of Aizu Multimedia Center. The PSFC features realtime manipulation of the primary components of sound spatialization for each of two audio sources located in a virtual environment, including the content (apparent direction and distance) and context (room characteristics: reverberation level, room size and liveness). In an alternate mode, it can also direct the destination of the two separate input signals across 14 loudspeakers, manipulating the direction of the virtual sound sources with no control over apparent distance other than that afforded by source loudness (including no simulated environmental reflections or reverberation). The PSFC speaker dome is about 10 m in diameter, accommodating about fifty simultaneous users, including about twenty users comfortably standing or sitting near its ``sweet spot,'' the area in which the illusions of sound spatialization are most vivid. Collocated with a large screen rear-projection stereographic display, the PSFC is intended for advanced multimedia and virtual reality applications.}, language = {en} } @inproceedings{MartensHerderShiba1999, author = {Martens, William L. and Herder, Jens and Shiba, Yoshiki}, title = {A filtering model for efficient rendering of the spatial image of an occluded virtual sound source}, series = {137th Regular Meeting of the Acoustical Society of America and the 2nd Convention of the European Acoustics Association}, booktitle = {137th Regular Meeting of the Acoustical Society of America and the 2nd Convention of the European Acoustics Association}, publisher = {Acoustical Society of America, European Acoustics Association}, address = {Berlin}, year = {1999}, abstract = {Rendering realistic spatial sound imagery for complex virtual environments must take into account the effects of obstructions such as reflectors and occluders. It is relatively well understood how to calculate the acoustical consequence that would be observed at a given observation point when an acoustically opaque object occludes a sound source. But the interference patterns generated by occluders of various geometries and orientations relative to the virtual source and receiver are computationally intense if accurate results are required. In many applications, however, it is sufficient to create a spatial image that is recognizable by the human listener as the sound of an occluded source. In the interest of improving audio rendering efficiency, a simplified filtering model was developed and its audio output submitted to psychophysical evaluation. Two perceptually salient components of occluder acoustics were identified that could be directly related to the geometry and orientation of a simple occluder. Actual occluder impulse responses measured in an anechoic chamber resembled the responses of a model incorporating only a variable duration delay line and a low-pass filter with variable cutoff frequenc}, language = {en} } @inproceedings{MartensHerder1999, author = {Martens, William L. and Herder, Jens}, title = {Perceptual criteria for eliminating reflectors and occluders from the rendering of environmental sound}, series = {137th Regular Meeting of the Acoustical Society of America and the 2nd Convention of the European Acoustics Association}, booktitle = {137th Regular Meeting of the Acoustical Society of America and the 2nd Convention of the European Acoustics Association}, publisher = {Acoustical Society of America, European Acoustics Association}, address = {Berlin}, year = {1999}, abstract = {Given limited computational resources available for the rendering of spatial sound imagery, we seek to determine effective means for choosing whatcomponents of the rendering will provide the most audible differences in the results. Rather than begin with an analytic approach that attempts to predict audible differences on the basis of objective parameters, we chose to begin with subjective tests of how audibly different the rendering result may be heard to be when that result includes two types of sound obstruction: reflectors and occluders. Single-channel recordings of 90 short speech sounds were made in an anechoic chamber in the presence and absence of these two types of obstructions, and as the angle of those obstructions varied over a 90 degree range. These recordings were reproduced over a single loudspeaker in that anechoic chamber, and listeners were asked to rate how confident they were that the recording of each of these 90 stimuli included an obstruction. These confidence ratings can be used as an integral component in the evaluation function used to determine which reflectors and occluders are most important for rendering.}, language = {en} } @inproceedings{SchmittHerderBhalla1997, author = {Schmitt, Lothar M. and Herder, Jens and Bhalla, Subhash}, title = {Information Retrieval and Database Architecture for Conventional Japanese Character Dictionaries}, series = {Proceedings, Second International Conference on Cognitive Technology}, booktitle = {Proceedings, Second International Conference on Cognitive Technology}, editor = {Gorayska, Barbara and Nehaniv, Chrystopher L. and Marsh, Jonathon P.}, publisher = {IEEE}, address = {Los Alamitos}, isbn = {0-8186-8084-9}, pages = {200 -- 217}, year = {1997}, abstract = {The cycle of abstraction-reconstruction which occurs as a fundamental principle in the development of culture and in cognitive processes is described and analyzed. This approach leads to recognition of boundary conditions for and directions of probable development of cognitive tools. It is shown how the transition from a conventional Japanese-English character dictionary to a multi-dimensional language database is an instance of such an abstraction-reconstruction cycle. The different phases of the design of a multi-dimensional language database based upon different computer software technologies are properly placed in this cycle. The methods used include the use of UNIX software tools, classical database methods as-well-as the use of search engines based upon full text search in this process. Several directions of application and extension for a multi-dimensional language database are discussed from the general point of view of an abstraction-reconstruction cycle.}, language = {en} } @inproceedings{IshikawaHiroseHerder1998, author = {Ishikawa, Kimitaka and Hirose, Minefumi and Herder, Jens}, title = {A Sound Spatialization Server for a Speaker Array as an Integrated Part of a Virtual Environment}, series = {IEEE YUFORIC Germany 98}, booktitle = {IEEE YUFORIC Germany 98}, publisher = {IEEE}, address = {Stuttgart}, year = {1998}, abstract = {Spatial sound plays an important role in virtual reality environments, allowing orientation in space, giving a feeling of space, focusing the user on events in the scene, and substituting missing feedback cues (e.g., force feedback). The sound spatialization framework of the University of Aizu, which supports number of spatialization backends, has been extended to include a sound spatialization server for a multichannel loudspeaker array (Pioneer Sound Field Control System). Our goal is that the spatialization server allows easy integration into virtual environments. Modeling of distance cues, which are essential for full immersion, is discussed. Furthermore, the integration of this prototype into different applications allowed us to reveal the advantages and problems of spatial sound for virtual reality environments.}, language = {en} } @article{CohenHerderLMartens1999, author = {Cohen, Michael and Herder, Jens and L. Martens, William}, title = {Cyberspatial Audio Technology}, series = {The Journal of the Acoustical Society of Japan (E)}, volume = {20}, journal = {The Journal of the Acoustical Society of Japan (E)}, number = {6}, doi = {10.1250/ast.20.389}, pages = {389 -- 395}, year = {1999}, abstract = {Cyberspatial audio applications are distinguished from the broad range of spatial audio applications in a number of important ways that help to focus this review. Most significant is that cyberspatial audio is most often designed to be responsive to user inputs. In contrast to non-interactive auditory displays, cyberspatial auditory displays typically allow active exploration of the virtual environment in which users find themselves. Thus, at least some portion of the audio presented in a cyberspatial environment must be selected, processed, or otherwise rendered with minimum delay relative to user input. Besides the technological demands associated with realtime delivery of spatialized sound, the type and quality of auditory experiences supported are also very different from those associated with displays that support stationary sound localization.}, language = {en} }