@incollection{RattayGeigerHerderetal.2007, author = {Rattay, Oliver and Geiger, Christian and Herder, Jens and Goebbels, Gernot and Nikitin, Igor}, title = {Zweih{\"a}ndige Interaktion in VR-Umgebungen}, series = {Augmented \& Virtual Reality in der Produktentstehung}, volume = {209}, booktitle = {Augmented \& Virtual Reality in der Produktentstehung}, editor = {Gausemeier, J{\"u}rgen and Grafe, Michael}, publisher = {Heinz Nixdorf Institut, Universit{\"a}t Paderborn}, address = {Paderborn}, isbn = {978-3-939350-28-6}, pages = {315 -- 332}, year = {2007}, abstract = {Einfach benutzbare VR-Anwendungen erfordern andere Interaktionstechniken als konventionelle Desktop-Anwendungen mit Maus, Tastatur und Desktop-Metapher zur Verf{\"u}gung stellen. Da solche Ans{\"a}tze in Konzeption und Realisierung deutlicher komplexer sind, m{\"u}ssen diese mit Sorgfalt ausgew{\"a}hlt werden. Folgt man der Argumentation, dass VR eine nat{\"u}rliche Interaktion mit virtuellen Objekten erm{\"o}glicht, so f{\"u}hrt dies fast zwangsl{\"a}ufig zu zweih{\"a}ndigen Interaktionstechniken f{\"u}r virtuelle Umgebungen, da Benutzer in realen Umgebungen gewohnt sind, fast ausschlie{\"i}‚lich zweih{\"a}ndig zu agieren. In diesem Beitrag geben wir eine {\"U}bersicht {\"u}ber den Stand der Technik im Bereich zweih{\"a}ndiger Interaktion, leiten Anforderungen an eine Entwicklung zweih{\"a}ndiger Interaktionstechniken in VR ab und beschreiben einen eigenen Ansatz. Dabei geht es um die zweih{\"a}ndige Interaktion bei der Simulation flexibler biegeschlaffer Bauteile (z. B. Schlauchverbindungen).}, language = {de} } @article{Herder1999, author = {Herder, Jens}, title = {Visualization of a Clustering Algorithm of Sound Sources based on Localization Errors}, series = {Journal of the 3D-Forum Society}, volume = {13}, journal = {Journal of the 3D-Forum Society}, number = {3}, pages = {66 -- 70}, year = {1999}, abstract = {A module for soundscape monitoring and visualizing resource management processes was extended for presenting clusters, generated by a novel sound source clustering algorithm. This algorithm groups multiple sound sources together into a single representative source, considering localization errors depending on listener orientation. Localization errors are visualized for each cluster using resolution cones. Visualization is done in runtime and allows understanding and evaluation of the clustering algorithm.}, language = {en} } @inproceedings{Herder1999, author = {Herder, Jens}, title = {Visualization of a Clustering Algorithm of Sound Sources based on Localization Errors}, series = {Second International Conference on Human and Computer}, booktitle = {Second International Conference on Human and Computer}, address = {Aizu-Wakamatsu}, pages = {1 -- 5}, year = {1999}, abstract = {A module for soundscape monitoring and visualizing resource management processes was extended for presenting clusters, generated by a novel sound source clustering algorithm. This algorithm groups multiple sound sources together into a single representative source, considering localization errors depending on listener orientation. Localization errors are visualized for each cluster using resolution cones. Visualization is done in runtime and allows understanding and evaluation of the clustering algorithm.}, language = {en} } @inproceedings{MyszkowskiHerderKuniietal.1996, author = {Myszkowski, Karol and Herder, Jens and Kunii, Tosiyasu L. and Ibusuki, Masumi}, title = {Visualization and analysis of occlusion for human jaws using a "functionally generated path"}, series = {IS\&T/SPIE Symp. on Electronic Imaging, Visual Data Exploration and Analysis III}, booktitle = {IS\&T/SPIE Symp. on Electronic Imaging, Visual Data Exploration and Analysis III}, publisher = {The International Society for Optical Engineering}, address = {San Jose}, doi = {10.1117/12.234684}, pages = {360 -- 367}, year = {1996}, abstract = {Dynamic characteristics of occlusion during lower jaw motion are useful in the diagnosis of jaw articulation problems and in computer-aided design/manufacture of teeth restorations. The Functionally Generated Path (FGP), produced as a surface which envelops the actual occlusal surface of the moving opponent jaw, can be used for compact representation of dynamic occlusal relations. In traditional dentistry FGP is recorded as a bite impression in a patient's mouth. We propose an efficient computerized technique for FGP reconstruction and validate it through implementation and testing. The distance maps between occlusal surfaces of jaws, calculated for multiple projection directions and accumulated for mandibular motion, provide information for FGP computation. Rasterizing graphics hardware is used for fast calculation of the distance maps. Real-world data are used: the scanned shape of teeth and the measured motion of the lower jaw. We show applications of FGP to analysis of the occlusion relations and occlusal surface design for restorations.}, language = {en} } @inproceedings{MyszkowskiOkunevaHerderetal.1997, author = {Myszkowski, Karol and Okuneva, Galina and Herder, Jens and Kunii, Tosiyasu L. and Ibusuki, Masumi}, title = {Visual Simulation of the Chewing Process for Dentistry}, series = {Visualization \& Modeling}, booktitle = {Visualization \& Modeling}, editor = {Earnshaw, Rae A. and Huw, Jones and John, Vince}, publisher = {Academic Press}, address = {London}, isbn = {0-12-227738-4}, pages = {419 -- 438}, year = {1997}, abstract = {CAD/CAM techniques are increasingly used in dentistry for the design and fabrication of teeth estorations. Important concerns are the correction of articulation problems that existed before treatment and the prevention of treatment-generated problems. These require interactive evaluation of the occlusal surfaces of teeth during mastication. Traditional techniques based on the use of casts with mechanical articulators require manual adjustment of occlusal surfaces, which becomes impractical when hard restoration materials like porcelain are used; they are also time and labor consuming and provide little visual information. We present new visual tools and a related user interface for global articulation simulation, developed for the Intelligent Dental Care System project. The aim of the simulation is visual representation of characteristics relevant to the chewing process. The simulation is based on the construction of distance maps, which are visual representations of the distributions of the distances of points in a tooth to the opposite jaw. We use rasterizing graphics hardware for fast calculation of the distance maps. Distance maps are used for collision detection and for the derivation of various characteristics showing the distribution of load on the teeth and the chewing capability of the teeth. Such characteristics can be calculated for particular positions of the jaws; cumulative characteristics are used to describe the properties of jaw movement. This information may be used for interactive design of the occlusal surfaces of restorations and for jaw articulation diagnosis. We also demonstrate elements of a user interface that exploit metaphors familiar to dentists from everyday practice.}, language = {en} } @inproceedings{MyszkowskiOkunevaHerderetal.1995, author = {Myszkowski, Karol and Okuneva, Galina and Herder, Jens and Kunii, Tosiyasu L. and Ibusuki, Masumi}, title = {Visual Simulation of the Chewing Process for Dentistry}, series = {Visualization \& Modelling, International Conf., 5-7 December, 1995}, booktitle = {Visualization \& Modelling, International Conf., 5-7 December, 1995}, address = {Leeds}, year = {1995}, abstract = {CAD/CAM techniques are increasingly used in dentistry for the design and fabrication of teeth restorations. Important concerns are the correction of articulation problems that existed beforetreatment and the prevention of treatment-generated problems. These require interactive evaluation of the occlusal surfaces of teeth during mastication. Traditional techniques based on the use of casts with mechanical articulators require manual adjustment of occlusal surfaces, which becomes impractical when hard restoration materials like porcelain are used; they are also time and labor consuming and provide little visual information. We present new visual tools and a related user interface for global articulation simulation, developed for the Intelligent Dental Care System project. The aim of the simulation is visual representation of characteristics relevant to the chewing process. The simulation is based on the construction of distance maps, which are visual representations of the distributions of the distances of points in a tooth to the opposite jaw. We use rasterizing graphics hardware for fast calculation of the distance maps. Distance maps are used for collision detection and for the derivation of various characteristics showing the distribution of load on the teeth and the chewing capability of the teeth. Such characteristics can be calculated for particular positions of the jaws; cumulative characteristics are used to describe the properties of jaw movement. This information may be used for interactive design of the occlusal surfaces of restorations and for jaw articulation diagnosis. We also demonstrate elements of a user interface that exploit metaphors familiar to dentists from everyday practice.}, language = {en} } @inproceedings{AytenHerderVonolfen2010, author = {Ayten, H{\"u}seyin and Herder, Jens and Vonolfen, Wolfgang}, title = {Visual Acceptance Evaluation of Soft Shadow Algorithms for Virtual TV Studios}, series = {HC '10 Proceedings of the 13th International Conference on Humans and Computers}, booktitle = {HC '10 Proceedings of the 13th International Conference on Humans and Computers}, publisher = {University of Aizu Press}, address = {Aizu-Wakamatsu}, pages = {66 -- 71}, year = {2010}, abstract = {Shadows in computer graphics are an important rendering aspect for spatial objects. For realtime computer applications such as games, it is essential to represent shadows as accurate as possible. Also, various tv stations work with virtual studio systems instead of real studio sets. Especially for those systems, a realistic impression of the rendered and mixed scene is important. One challenge, hence, is the creation of a natural shadow impression. This paper presents the results of an empirical study to compare the performance and quality of different shadow mapping methods. For this test, a prototype studio renderer was developed. A percentage closer filter (pcf) with a number of specific resolutions is used to minimize the aliasing issue. More advanced algorithms which generate smooth shadows like the percentage closer soft shadow (pcss) method as well as the variance shadow maps (vsm) method are analysed. Different open source apis are used to develop the virtual studio renderer, giving the benefit of permanent enhancement. The Ogre 3D graphic engine is used to implement the rendering system, benefiting from various functions and plugins. The transmission of the tracking data is accomplished with the vrpn server/client and the Intersense api. The different shadow algorithms are compared in a virtual studio environment which also casts real shadows and thus gives a chance for a direct comparison throughout the empirical user study. The performance is measured in frames per secon}, language = {en} } @inproceedings{KlapdohrWoeldeckeMarinosetal.2010, author = {Klapdohr, Monika and W{\"o}ldecke, Bj{\"o}rn and Marinos, Dionysios and Herder, Jens and Geiger, Christian and Vonolfen, Wolfgang}, title = {Vibrotactile Pitfalls: Arm Guidance for Moderators in Virtual TV Studios}, series = {HC '10 Proceedings of the 13th International Conference on Humans and Computers}, booktitle = {HC '10 Proceedings of the 13th International Conference on Humans and Computers}, publisher = {University of Aizu Press}, address = {Aizu-Wakamatsu}, pages = {72 -- 80}, year = {2010}, abstract = {For this study, an experimental vibrotactile feedback system was developed to help actors with the task of moving their arm to a certain place in a virtual tv studio under live conditions. Our intention is to improve interaction with virtual objects in a virtual set, which are usually not directly visible to the actor, but only on distant displays. Vibrotactile feedback might improve the appearance on tv because an actor is able to look in any desired direction (camera or virtual object) or to read text on a teleprompter while interacting with a virtual object. Visual feedback in a virtual studio lacks spatial relation to the actor, which impedes the adjustment of the desired interaction. The five tactors of the implemented system which are mounted on the tracked arm give additional information like collision, navigation and activation. The user study for the developed system shows that the duration for reaching a certain target is much longer in case no visual feedback is given, but the accuracy is similar. In this study, subjects reported that an activation signal indicating the arrival at the target of a drag \& drop task was helpful. In this paper, we discuss the problems we encountered while developing such a vibrotactile display. Keeping these pitfalls in mind could lead to better feedback systems for actors in virtual studio environments.}, language = {en} } @incollection{HerderWoerzbergerJuttneretal.2005, author = {Herder, Jens and W{\"o}rzberger, Ralf and Juttner, Carsten and Twelker, Uwe}, title = {Verwendung von Grafikkarten-Prozessoren (GPUs) f{\"u}r eine interaktive Produktvisualisierung in Echtzeit unter Verwendung von Shadern und Videotexturen}, series = {Augmented and Virtual Reality in der Produktentstehung}, volume = {167}, booktitle = {Augmented and Virtual Reality in der Produktentstehung}, editor = {Gausemeier, J{\"u}rgen and Grafe, Michael}, publisher = {Heinz Nixdorf Institut, Universit{\"a}t Paderborn}, address = {Paderborn}, pages = {23 -- 36}, year = {2005}, abstract = {Die Visualisierung von Produkten in Echtzeit ist in vielen Bereichen ein hilfreicher Schritt, um potentiellen Kunden eine Vorstellung vom Einsatzgebiet und einen {\"U}berblick {\"u}ber die finale Anwendung zu erlauben. In den letzten Jahren haben neue Technologien in der Grafikkartenindustrie dazu gef{\"u}hrt, dass fr{\"u}her nur auf teuren Grafikworkstations verf{\"u}gbare M{\"o}glichkeiten nun auch mit relativ kosteng{\"u}nstigen Karten, welche f{\"u}r den Einsatz in Standard-PCs konzipiert wurden, realisierbar sind. Es wird an einem Modellentwurf des Innenraums des People Cargo Movers gezeigt, wie die Beleuchtung innerhalb einer Echtzeitvisualisierung durch Shader realisiert werden kann. Als Lichtquelle wird dabei eine Landschaftsaufnahme herangezogen, welche als eine von mehreren Videotexturen eingebunden wurde. Außerdem werden real im virtuellen Studio gefilmte Personen im Innenraum gleicherma{\"i}‚en {\"u}ber Videotexturen dargestellt und ebenfalls durch die Landschaft beleuchtet.}, language = {de} } @article{HerderWoerzbergerTwelkeretal.2002, author = {Herder, Jens and W{\"o}rzberger, Ralf and Twelker, Uwe and Albertz, Stefan}, title = {Use of Virtual Environments in the Promotion and Evaluation of Architectural Designs}, series = {Journal of the 3D-Forum Society}, volume = {16}, journal = {Journal of the 3D-Forum Society}, number = {4}, pages = {117 -- 122}, year = {2002}, abstract = {Virtual environments can create a realistic impression of an architectural space during the architectural design process, providing a powerful tool for evaluation and promotion during a project's early stages. In comparison to pre-rendered animations, such as walkthroughs based on CAD models, virtual environments can offer intuitive interaction and a more life like experience. Advanced virtual environments allow users to change realtime rendering features with a few manipulations, switching between different versions while still maintaining sensory immersion. This paper reports on an experimental project in which architectural models are being integrated into interactive virtual environments, and includes demonstrations of both the possibilities and limitations of such applications in evaluating, presenting and promoting architectural designs.}, language = {en} } @inproceedings{LadwigHerderGeiger2017, author = {Ladwig, Philipp and Herder, Jens and Geiger, Christian}, title = {Towards Precise, Fast and Comfortable Immersive Polygon Mesh Modelling: Capitalising the Results of Past Research and Analysing the Needs of Professionals}, series = {ICAT-EGVE 2017 - International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments}, booktitle = {ICAT-EGVE 2017 - International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments}, publisher = {The Eurographics Association}, doi = {10.2312/egve.20171360}, pages = {22 -- 24}, year = {2017}, abstract = {More than three decades of ongoing research in immersive modelling has revealed many advantages of creating objects in virtual environments. Even though there are many benefits, the potential of immersive modelling has only been partly exploited due to unresolved problems such as ergonomic problems, numerous challenges with user interaction and the inability to perform exact, fast and progressive refinements. This paper explores past research, shows alternative approaches and proposes novel interaction tools for pending problems. An immersive modelling application for polygon meshes is created from scratch and tested by professional users of desktop modelling tools, such as Autodesk Maya, in order to assess the efficiency, comfort and speed of the proposed application with direct comparison to professional desktop modelling tools.}, language = {en} } @inproceedings{BrosdaDaemenDjuderijaetal.2012, author = {Brosda, Constantin and Daemen, Jeff and Djuderija, Sascha and Joeres, Stephan and Langer, Oleg and Schweitzer, Andre and Wilhelm, Andreas and Herder, Jens}, title = {TouchPlanVS Lite - A Tablet-based Tangible Multitouch Planning System for Virtual TV Studio Productions}, series = {Proceedings of the 2012 Joint International Conference on Human-Centered Computer Environments}, booktitle = {Proceedings of the 2012 Joint International Conference on Human-Centered Computer Environments}, publisher = {ACM}, address = {New York}, isbn = {978-1-4503-1191-5}, pages = {64 -- 67}, year = {2012}, abstract = {This paper presents a mobile approach of integrating tangible user feedback in today's virtual TV studio productions. We describe a tangible multitouch planning system, enabling a single user to prepare and customize scene flow and settings. Users can view and interact with virtual objects by using a tangible user interface on a capacitive multitouch surface. In a 2D setting created TV scenes are simultaneously rendered as separate view using a production/target renderer in 3D. Thereby the user experiences a closer reproduction of a final production and set assets can be reused. Subsequently, a user can arrange scenes on a timeline while maintaining different versions/sequences. The system consists of a tablet and a workstation, which does all application processing and rendering. The tablet is just an interface connected via wireless LAN.}, language = {en} } @inproceedings{HerderBrosdaDjuderijaetal.2011, author = {Herder, Jens and Brosda, Constantin and Djuderija, Sascha and Drochtert, Daniel and Genc, {\"O}mer and Joeres, Stephan and Kellerberg, Patrick and Looschen, Simon and Geiger, Christian and W{\"o}ldecke, Bj{\"o}rn}, title = {TouchPlanVS - A Tangible Multitouch Planning System for Virtual TV Studio Productions}, series = {2011 IEEE Symposium on 3D User Interfaces (3DUI)}, booktitle = {2011 IEEE Symposium on 3D User Interfaces (3DUI)}, publisher = {IEEE}, address = {Singapore}, isbn = {978-1-4577-0064-4}, doi = {10.1109/3DUI.2011.5759226}, pages = {103 -- 104}, year = {2011}, abstract = {This article presents a new approach of integrating tangible user feedback in todays virtual TV studio productions. We describe a tangible multitouch planning system, enabling multiple users to prepare and customize scene flow and settings. Users can collaboratively view and interact with virtual objects by using a tangible user interface on a shared multitouch surface. The in a 2D setting created TV scenes are simultaneously rendered on an external monitor, using a production/target renderer in 3D. Thereby the user experiences a closer reproduction of a final production. Subsequently, users are able to join together the scenes into one complex plot. Within the developing process, a video prototype of the system shows the user interaction and enables early reviews and evaluations. The requirement analysis is based on expert interviews.}, language = {en} } @inproceedings{Herder1997, author = {Herder, Jens}, title = {Tools and widgets for spatial sound authoring}, series = {CompuGraphics ' 97, Sixth International Conference on Computational Graphics and Visualization Techniques: Graphics in the Internet Age, Vilamoura, Portugal}, booktitle = {CompuGraphics ' 97, Sixth International Conference on Computational Graphics and Visualization Techniques: Graphics in the Internet Age, Vilamoura, Portugal}, address = {Portugal}, isbn = {972-8342-02-0}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:due62-opus-896}, pages = {87 -- 95}, year = {1997}, abstract = {Broader use of virtual reality environments and sophisticated animations spawn a need for spatial sound. Until now, spatial sound design has been based very much on experience and trial and error. Most effects are hand-crafted, because good design tools for spatial sound do not exist. This paper discusses spatial sound authoring and its applications, including shared virtual reality environments based on VRML. New utilities introduced by this research are an inspector for sound sources, an interactive resource manager, and a visual soundscape manipulator. The tools are part of a sound spatialization framework and allow a designer/author of multimedia content to monitor and debug sound events. Resource constraints like limited sound spatialization channels can also be simulated.}, language = {en} } @article{Herder1998, author = {Herder, Jens}, title = {Tools and Widgets for Spatial Sound Authoring}, series = {Computer Networks \& ISDN Systems}, volume = {30}, journal = {Computer Networks \& ISDN Systems}, number = {20-21}, publisher = {Elsevier}, pages = {1933 -- 1940}, year = {1998}, language = {en} } @inproceedings{AmanoMatsushitaYanagawaetal.1996, author = {Amano, Katsumi and Matsushita, Fumio and Yanagawa, Hirofumi and Cohen, Michael and Herder, Jens and Koba, Yoshiharu and Tohyama, Mikio}, title = {The Pioneer sound field control system at the University of Aizu Multimedia Center}, series = {RO-MAN '96 Tsukuba}, booktitle = {RO-MAN '96 Tsukuba}, publisher = {IEEE}, address = {Piscataway}, isbn = {0-7803-3253-9}, doi = {10.1109/ROMAN.1996.568887}, pages = {495 -- 499}, year = {1996}, abstract = {The PSFC, or Pioneer sound field control system, is a DSP-driven hemispherical 14-loudspeaker array, installed at the University of Aizu Multimedia Center. Collocated with a large screen rear-projection stereographic display the PSFC features realtime control of virtual room characteristics and direction of two separate sound channels, smoothly steering them around a configurable soundscape. The PSFC controls an entire sound field, including sound direction, virtual distance, and simulated environment (reverb level, room size and liveness) for each source. It can also configure a dry (DSP-less) switching matrix for direct directionalization. The PSFC speaker dome is about 14 m in diameter, allowing about twenty users at once to comfortably stand or sit near its sweet spot.}, language = {en} } @article{HerderCohen2002, author = {Herder, Jens and Cohen, Michael}, title = {The Helical Keyboard: Perspectives for Spatial Auditory Displays and Visual Music}, series = {Journal of New Music Research}, volume = {31}, journal = {Journal of New Music Research}, number = {3}, pages = {269 -- 281}, year = {2002}, abstract = {Auditory displays with the ability to dynamically spatialize virtual sound sources under real-time conditions enable advanced applications for art and music. A listener can be deeply immersed while interacting and participating in the experience. We review some of those applications while focusing on the Helical Keyboard project and discussing the required technology. Inspired by the cyclical nature of octaves and helical structure of a scale, a model of a piano-style keyboard was prepared, which was then geometrically warped into a helicoidal configuration, one octave/revolution, pitch mapped to height and chroma. It can be driven by MIDI events, real-time or sequenced, which stream is both synthesized and spatialized by a spatial sound display. The sound of the respective notes is spatialized with respect to sinks, avatars of the human user, by default in the tube of the helix. Alternative coloring schemes can be applied, including a color map compatible with chromastereoptic eyewear. The graphical display animates polygons, interpolating between the notes of a chord across the tube of the helix. Recognition of simple chords allows directionalization of all the notes of a major triad from the position of its musical root. The system is designed to allow, for instance, separate audition of harmony and melody, commonly played by the left and right hands, respectively, on a normal keyboard. Perhaps the most exotic feature of the interface is the ability to fork one{\~A}­s presence, replicating subject instead of object by installing multiple sinks at arbitrary places around a virtual scene so that, for example, harmony and melody can be separately spatialized, using two heads to normalize the octave; such a technique effectively doubles the helix from the perspective of a single listener. Rather than a symmetric arrangement of the individual helices, they are perceptually superimposed in-phase, co-extensively, so that corresponding notes in different registers are at the same azimuth.}, language = {en} } @incollection{HerderJaenschHorstetal.2004, author = {Herder, Jens and Jaensch, Kai and Horst, Bruno and Novotny, Thomas}, title = {Testm{\"a}rkte in einer Virtuellen Umgebung - Die Bestimmung von Preisabsatzfunktionen zur Unterst{\"u}tzung des Innovationsmanagements}, series = {Augmented and Virtual Reality in der Produktentstehung}, volume = {149}, booktitle = {Augmented and Virtual Reality in der Produktentstehung}, editor = {Gausemeier, J{\"u}rgen and Grafe, Michael}, publisher = {Heinz Nixdorf Institut, Universit{\"a}t Paderborn}, address = {Paderborn}, isbn = {3-935433-58-1}, pages = {97 -- 110}, year = {2004}, abstract = {Multimediale Technologien werden in der Marktforschung immer st{\"a}rker eingesetzt, um flexible und kosteng{\"u}nstige Studien durchzuf{\"u}hren. Im Innovationsprozess kann dabei auf die langj{\"a}hrigen Erfahrungen zur{\"u}ckgegriffen werden, die durch den Einsatz der Computersimulation in der technischen Produktentwicklung zustande gekommen sind. In sehr fr{\"u}hen Phasen des Innovationsprozesses k{\"o}nnen durch Einsatz der neuen Technologien die Markteinf{\"u}hrungskonzepte f{\"u}r neue Produkte getestet werden. Die Applikationen der virtuellen Realit{\"a}t bieten ein einzigartiges Potential, neue Produkte einschlie{\"i}‚lich des Marketingkonzeptes zu testen, ohne dass dieses Produkt bereits physisch vorhanden sein muss. Am Beispiel eines Elementes des Marketingkonzeptes, der Preispolitik, zeigt die vorliegende Studie auf, welches Potential die virtuelle Kaufsituation von Produkten bietet. Der Fokus des Projektes liegt auf der interaktiven Produktpr{\"a}sentation in einer virtuellen Umgebung, die in eine Online-Befragung mit zus{\"a}tzlichen Werbefilmen eingebettet ist. Visuell hochwertige 3D-Produktpr{\"a}sentationen versetzen den Probanden in eine virtuelle Einkaufsumgebung, die einem realen Szenario entspricht. Die virtuellen Produkte werden in mehreren Kaufentscheidungsrunden zu unterschiedlichen Preisen angeboten. Der Preisuntersuchung geht eine Pr{\"a}sentation ausgew{\"a}hlter Werbespots sowie eine produktbezogene Befragung voraus. Im Anschluss an die virtuellen Preisentscheidungen werden die Eindr{\"u}cke sowie einige Kontrollgr{\"o}en abgefragt. In weitergehenden Studien dieser Art k{\"o}nnen die Wirkungen mehrerer Marketing-Instrumente zu einem Zeitpunkt untersucht werden, in dem sich die Produkte noch im Entwicklungsprozess befinden. Auf diesem Weg lassen sich auch Wettbewerbsvorteile bestehender Produkte effizienter erkennen und nutzen. Mit den hoch entwickelten Computer- und Visualisierungstechnologien ist ein m{\"a}chtiges Werkzeug entstanden, das bereits f{\"u}r kommerzielle Pr{\"a}sentationen und Produktstudien eingesetzt wird. Zuk{\"u}nftig kann es auch in Kombination mit Internetanwendungen und klassischen Methoden der Marktforschung zu einem sehr fr{\"u}hen Zeitpunkt umfassende Erkenntnisse {\"u}ber ein Produkt liefern.}, language = {en} } @incollection{CohenHerder1998, author = {Cohen, Michael and Herder, Jens}, title = {Symbolic representations of exclude and include for audio sources and sinks: Figurative suggestions of mute/solo \& cue and deafen/confide \& harken}, series = {Virtual Environments '98, Proceedings of the Eurographics Workshop}, booktitle = {Virtual Environments '98, Proceedings of the Eurographics Workshop}, editor = {G{\"o}bel, Martin and Landauer, J{\"u}rgen and Lang, Ulrich and Wapler, Matthias}, publisher = {Springer-Verlag}, address = {Stuttgart}, isbn = {3-211-83233-5}, doi = {10.1007/978-3-7091-7519-4_23}, pages = {235 -- 242}, year = {1998}, language = {en} } @inproceedings{HerderBuentigDaemenetal.2014, author = {Herder, Jens and B{\"u}ntig, Fabian and Daemen, Jeff and Lang, Jaroslaw and L{\"u}ck, Florian and S{\"a}ger, Mitja and S{\"o}rensen, Roluf and Hermanni, Markus and Vonolfen, Wolfgang}, title = {Subtle Animations using Talent Tracking in a Virtual (TV) Studio}, series = {17th International Conference on Human and Computer}, booktitle = {17th International Conference on Human and Computer}, address = {Hamamatsu/Aizu-Wakamatsu/Duesseldorf}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:due62-opus-16009}, pages = {6}, year = {2014}, abstract = {Markerless talent tracking is widely used for interactions and animations within virtual environments. In a virtual (tv) studio talents could be overburden by interaction tasks because camera and text require extensive attention. We take a look into animations and inter- actions within a studio, which do not require any special attention or learning. We show the generation of an artificial shadow from a talent, which ease the keying process, where separation of real shadows from the background is a difficult task. We also demonstrate animations of footsteps and dust. Furthermore, capturing talents' height can also be used to adjust the parameters of elements in the virtual environment, like the position and scaling of a virtual display. In addition to the talents, a rigid body was tracked as placeholder for graphics, easing the interaction tasks for a talent. Two test productions show the possibilities, which subtle animations offer. In the second production, the rendering was improved (shadows, filtering, normal maps, ...) and instead of using the rigid body to move an object (a flag), the animation was only controlled by the hand's position.}, language = {en} } @inproceedings{WoeldeckeVierjahnFlaskoetal.2009, author = {W{\"o}ldecke, Bj{\"o}rn and Vierjahn, Tom and Flasko, Matthias and Herder, Jens and Geiger, Christian}, title = {Steering actors through a virtual set employing vibro-tactile feedback}, series = {TEI '09 Proceedings of the 3rd International Conference on Tangible and Embedded Interaction}, booktitle = {TEI '09 Proceedings of the 3rd International Conference on Tangible and Embedded Interaction}, publisher = {ACM}, address = {New York}, isbn = {978-1-60558-493-5}, doi = {10.1145/1517664.1517703}, pages = {169 -- 174}, year = {2009}, abstract = {Actors in virtual studio productions are faced with the challenge that they have to interact with invisible virtual objects because these elements are rendered separately and combined with the real image later in the production process. Virtual sets typically use static virtual elements or animated objects with predefined behavior so that actors can practice their performance and errors can be corrected in the post production. With the demand for inexpensive live recording and interactive TV productions, virtual objects will be dynamically rendered at arbitrary positions that cannot be predicted by the actor. Perceptive aids have to be employed to support a natural interaction with these objects. In our work we study the effect of haptic feedback for a simple form of interaction. Actors are equipped with a custom built haptic belt and get vibrotactile feedback during a small navigational task (path following). We present a prototype of a wireless vibrotactile feedback device and a small framework for evaluating haptic feedback in a virtual set environment. Results from an initial pilot study indicate that vibrotactile feedback is a suitable non-visual aid for interaction that is at least comparable to audio-visual alternatives used in virtual set productions.}, language = {en} } @inproceedings{RyskeldievIgarashiZhangetal.2018, author = {Ryskeldiev, Bektur and Igarashi, Toshiharu and Zhang, Junjian and Ochiai, Yoichi and Cohen, Michael and Herder, Jens}, title = {Spotility: Crowdsourced Telepresence for Social and Collaborative Experiences in Mobile Mixed Reality}, series = {ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW '18)}, booktitle = {ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW '18)}, publisher = {ACM}, address = {New York}, isbn = {978-1-4503-6018-0}, doi = {10.1145/3272973.3274100}, pages = {373 -- 376}, year = {2018}, abstract = {Live video streaming is becoming increasingly popular as a form of interaction in social applications. One of its main advantages is an ability to immediately create and connect a community of remote users on the spot. In this paper we discuss how this feature can be used for crowdsourced completion of simple visual search tasks (such as finding specific objects in libraries and stores, or navigating around live events) and social interactions through mobile mixed reality telepresence interfaces. We present a prototype application that allows users to create a mixed reality space with a photospherical imagery as a background and interact with other connected users through viewpoint, audio, and video sharing, as well as realtime annotations in mixed reality space. Believing in the novelty of our system, we conducted a short series of interviews with industry professionals on the possible applications of our system. We discuss proposed use-cases for user evaluation, as well as outline future extensions of our system.}, language = {en} } @inproceedings{SimschHerder2014, author = {Simsch, Jonathan and Herder, Jens}, title = {SpiderFeedback - Visual Feedback for Orientation in Virtual TV Studios}, series = {ACE'14, 11th Advances in Computer Entertainment Technology Conference, ACM, Funchal, Portugal}, booktitle = {ACE'14, 11th Advances in Computer Entertainment Technology Conference, ACM, Funchal, Portugal}, editor = {Chisik, Yoram}, publisher = {ACM}, address = {New York}, isbn = {978-1-4503-2945-3}, doi = {10.1145/2663806.2663830}, pages = {8}, year = {2014}, abstract = {A visual and spatial feedback system for orientation in virtual sets of virtual TV studios was developed and evaluated. It is based on a green proxy object, which moves around in the acting space by way of four transparent wires. A separate unit controls four winches and is connected to an engine, which renders the virtual set. A new developed plugin registers a virtual object's position with the proxy object which imitates the virtual object's movement on stage. This will allow actors to establish important eye contact with a virtual object and feel more comfortable in a virtual set. Furthermore, interaction with the virtual object and its proxy can be realised through a markerless actor tracking system. Several possible scenarios for user application were recorded and presented to experts in the broadcast industry, who evaluated the potential of SpiderFeedback in interviews and by questionnaires.}, language = {en} } @incollection{HerderNovotny2003, author = {Herder, Jens and Novotny, Thomas}, title = {Spatial Sound Design and Interaction for Virtual Environments in the Promotion of Architectural Designs}, series = {Third International Workshop on Spatial Media}, booktitle = {Third International Workshop on Spatial Media}, address = {Aizu-Wakamatsu}, pages = {7 -- 11}, year = {2003}, abstract = {Virtual environment walkthrough applications are generally enhanced by a user's interactions within a simulated architectural space, but the enhancement that stems from changes in spatial sound that are coupled with a user's behavior are particularly important, especially within regard to creating a sense of place. When accompanied by stereoscopic image synthesis, spatial sound can immerse the user in a high-realism virtual copy of the real world. An advanced virtual environment that allow users to change realtime rendering features with a few manipulations has been shown to enable switching between different versions of a modeled space while maintaining sensory immersion. This paper reports on an experimental project in which an architectural model is being integrated into such an interactive virtual environment. The focus is on the spatial sound design for supporting interaction, including demonstrations of both the possibilities and limitations of such applications in presenting and promoting architectural designs, as well as in three-dimensional sketching.}, language = {de} } @inproceedings{GarbeHerbstHerder2007, author = {Garbe, Katharina and Herbst, Iris and Herder, Jens}, title = {Spatial Audio for Augmented Reality}, series = {10th International Conference on Human and Computer}, booktitle = {10th International Conference on Human and Computer}, address = {D{\"u}sseldorf, Aizu-Wakamatsu}, pages = {53 -- 58}, year = {2007}, abstract = {Using spatial audio successfully for augmented reality (AR) applications is a challenge, but is awarded with an improved user experience. Thus, we have extended the AR/VR framework \sc Morgan with spatial audio to improve users orientation in an AR application. In this paper, we investigate the users' capability to localize and memorize spatial sounds (registered with virtual or real objects). We discuss two scenarios. In the first scenario, the user localizes only sound sources and in the second scenario the user memorizes the location of audio-visual objects. Our results reflect spatial audio performance within the application domain and show which technology pitfalls still exist. Finally, we provide design recommendations for spatial audio AR environments.}, language = {en} } @inproceedings{HerderCohen1997, author = {Herder, Jens and Cohen, Michael}, title = {Sound Spatialization Resource Management in Virtual Reality Environments}, series = {ASVA'97 -- Int. Symp. on Simulation, Visualization and Auralization for Acoustic Research and Education}, booktitle = {ASVA'97 -- Int. Symp. on Simulation, Visualization and Auralization for Acoustic Research and Education}, address = {Tokyo}, pages = {407 -- 414}, year = {1997}, abstract = {In a virtual reality environment users are immersed in a scene with objects which might produce sound. The responsibility of a VR environment is to present these objects, but a system has only limited resources, including spatialization channels (mixels), MIDI/audio channels, and processing power. The sound spatialization resource manager controls sound resources and optimizes fidelity (presence) under given conditions. For that a priority scheme based on human psychophysical hearing is needed. Parameters for spatialization priorities include intensity calculated from volume and distance, orientation in the case of non-uniform radiation patterns, occluding objects, frequency spectrum (low frequencies are harder to localize), expected activity, and others. Objects which are spatially close together (depending on distance and direction) can be mixed. Sources that can not be spatialized can be treated as a single ambient sound source. Important for resource management is the resource assignment, i.e., minimizing swap operations, which makes it desirable to look-ahead and predict upcoming events in a scene. Prediction is achieved by monitoring objects' speed and past evaluation values. Fidelity is contrasted for Zifferent kind of resource restrictions and optimal resource assignment based upon unlimited dynamic scene look-ahead. To give standard and comparable results, the VRML 2.0 specification is used as an application programmer interface. Applicability is demonstrated with a helical keyboard, a polyphonic MIDI stream driven animation including user interaction (user moves around, playing together with programmed notes). The developed sound spatialization resource manager gives improved spatialization fidelity under runtime constraints. Application programmers and virtual reality scene designers are freed from the burden of assigning and predicting the sound sources.}, language = {en} } @inproceedings{Herder1998, author = {Herder, Jens}, title = {Sound Spatialization Framework: An Audio Toolkit for Virtual Environments}, series = {First International Conference on Human and Computer, Aizu-Wakamatsu, September 1998}, booktitle = {First International Conference on Human and Computer, Aizu-Wakamatsu, September 1998}, address = {Aizu}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:due62-opus-788}, pages = {6}, year = {1998}, abstract = {The Sound Spatialization Framework is a C++ toolkit and development environment for providing advanced sound spatialization for virtual reality and multimedia applications. The Sound Spatialization Framework provides many powerful display and user-interface features not found in other sound spatialization software packages. It provides facilities that go beyond simple sound source spatialization: visualization and editing of the soundscape, multiple sinks, clustering of sound sources, monitoring and controlling resource management, support for various spatialization backends, and classes for MIDI animation and handling.}, language = {en} } @article{Herder1998, author = {Herder, Jens}, title = {Sound Spatialization Framework: An Audio Toolkit for Virtual Environments}, series = {Journal of the 3D-Forum Society}, volume = {12}, journal = {Journal of the 3D-Forum Society}, number = {3}, pages = {17 -- 22}, year = {1998}, abstract = {The Sound Spatialization Framework is a C++ toolkit and development environment for providing advanced sound spatialization for virtual reality and multimedia applications. The Sound Spatialization Framework provides many powerful display and user-interface features not found in other sound spatialization software packages. It provides facilities that go beyond simple sound source spatialization: visualization and editing of the soundscape, multiple sinks, clustering of sound sources, monitoring and controlling resource management, support for various spatialization backends, and classes for MIDI animation and handling. Keywords: sound spatialization, resource management, virtual environments, spatial sound authoring, user interface design, human-machine interfaces}, language = {en} } @article{StruchholzHerderLeckschat2006, author = {Struchholz, Holger and Herder, Jens and Leckschat, Dieter}, title = {Sound radiation simulation of musical instruments based on interpolation and filtering of multi-channel recordings}, series = {Journal of the 3D-Forum Society}, volume = {20}, journal = {Journal of the 3D-Forum Society}, number = {1}, pages = {41 -- 47}, year = {2006}, abstract = {With the virtual environment developed here, the characteristic sound radiation patterns of musical instruments can be experienced in real-time. The user may freely move around a musical instrument, thereby receiving acoustic and visual feedback in real-time. The perception of auditory and visual effects is intensified by the combination of acoustic and visual elements, as well as the option of user interaction. The simulation of characteristic sound radiation patterns is based on interpolating the intensities of a multichannel recording and offers a near-natural mapping of the sound radiation patterns. Additionally, a simple filter has been developed, enabling the qualitative simulation of an instrument's characteristic sound radiation patterns to be easily implemented within real-time 3D applications. Both methods of simulating sound radiation patterns have been evaluated for a saxophone with respect to their functionality and validity by means of spectral analysis and an auditory experiment.}, language = {en} } @inproceedings{HerderWilkeHeimbachetal.2009, author = {Herder, Jens and Wilke, Michael and Heimbach, Julia and G{\"o}bel, Sebastian and Marinos, Dionysios}, title = {Simple Actor Tracking for Virtual TV Studios Using a Photonic Mixing Device}, series = {12th International Conference on Human and Computer}, booktitle = {12th International Conference on Human and Computer}, address = {Hamamatsu / Aizu-Wakamatsu / D{\"u}sseldorf}, year = {2009}, abstract = {Virtual TV studios use actor tracking systems for resolving the occlusion of computer graphics and studio camera image. The actor tracking delivers the distance between actor and studio camera. We deploy a photonic mixing device, which captures a depth map and a luminance image at low resolution. The renderer engines gets one depth value per actor using the OSC protocol. We describe the actor recognition algorithm based on the luminance image and the depth value calculation. We discuss technical issues like noise and calibration.}, language = {en} } @inproceedings{DaemenHerderKochetal.2016, author = {Daemen, Jeff and Herder, Jens and Koch, Cornelius and Ladwig, Philipp and Wiche, Roman and Wilgen, Kai}, title = {Semi-Automatic Camera and Switcher Control for Live Broadcast}, series = {TVX '16 Proceedings of the ACM International Conference on Interactive Experiences for TV and Online Video, Chicago, Illinois, USA — June 22 - 24, 2016}, booktitle = {TVX '16 Proceedings of the ACM International Conference on Interactive Experiences for TV and Online Video, Chicago, Illinois, USA — June 22 - 24, 2016}, publisher = {ACM}, address = {New York}, isbn = {978-1-4503-4067-0}, doi = {10.1145/2932206.2933559}, pages = {129 -- 134}, year = {2016}, abstract = {Live video broadcasting requires a multitude of professional expertise to enable multi-camera productions. Robotic systems allow the automation of common and repeated tracking shots. However, predefined camera shots do not allow quick adjustments when required due to unpredictable events. We introduce a modular automated robotic camera control and video switch system, based on fundamental cinematographic rules. The actors' positions are provided by a markerless tracking system. In addition, sound levels of actors' lavalier microphones are used to analyse the current scene. An expert system determines appropriate camera angles and decides when to switch from one camera to another. A test production was conducted to observe the developed prototype in a live broadcast scenario and served as a video-demonstration for an evaluation.}, language = {en} } @incollection{DavinHerder2021, author = {Davin, Till and Herder, Jens}, title = {Real-Time Relighting of Video Streams for Augmented Virtuality Scenes}, series = {GI VR / AR Workshop. Gesellschaft f{\"u}r Informatik e.V.}, booktitle = {GI VR / AR Workshop. Gesellschaft f{\"u}r Informatik e.V.}, editor = {Weier, Martin and Bues, Matthias and Wechner, Reto}, publisher = {Gesellschaft f{\"u}r Informatik e.V. (GI)}, address = {Bonn}, doi = {10.18420/vrar2021_6}, publisher = {Hochschule D{\"u}sseldorf}, pages = {16}, year = {2021}, language = {en} } @inproceedings{WoeldeckeMarinosPogschebaetal.2011, author = {W{\"o}ldecke, Bj{\"o}rn and Marinos, Dionysios and Pogscheba, Patrick and Geiger, Christian and Herder, Jens and Schwirten, Tobias}, title = {radarTHEREMIN - Creating Musical Expressions in a Virtual Studio Environment}, series = {2011 IEEE International Symposium on VR Innovation}, booktitle = {2011 IEEE International Symposium on VR Innovation}, publisher = {IEEE}, address = {Singapore}, isbn = {978-1-4577-0055-2}, doi = {10.1109/ISVRI.2011.5759671}, pages = {345 -- 346}, year = {2011}, abstract = {In this paper we describe a prototypical system for live musical performance in a virtual studio environment. The performer stands in front of the studio camera and interacts with an infrared-laser-based multi-touch device. The final TV image shows the performer interacting with a virtual screen which is augmented in front of herself. To overcome the problem of the performer not seeing this virtual screen in reality, we use a special hexagonal grid to facilitate the performer's awareness of this novel Theremin-like virtual musical instrument.}, language = {en} } @inproceedings{MartensHerder1999, author = {Martens, William L. and Herder, Jens}, title = {Perceptual criteria for eliminating reflectors and occluders from the rendering of environmental sound}, series = {137th Regular Meeting of the Acoustical Society of America and the 2nd Convention of the European Acoustics Association}, booktitle = {137th Regular Meeting of the Acoustical Society of America and the 2nd Convention of the European Acoustics Association}, publisher = {Acoustical Society of America, European Acoustics Association}, address = {Berlin}, year = {1999}, abstract = {Given limited computational resources available for the rendering of spatial sound imagery, we seek to determine effective means for choosing whatcomponents of the rendering will provide the most audible differences in the results. Rather than begin with an analytic approach that attempts to predict audible differences on the basis of objective parameters, we chose to begin with subjective tests of how audibly different the rendering result may be heard to be when that result includes two types of sound obstruction: reflectors and occluders. Single-channel recordings of 90 short speech sounds were made in an anechoic chamber in the presence and absence of these two types of obstructions, and as the angle of those obstructions varied over a 90 degree range. These recordings were reproduced over a single loudspeaker in that anechoic chamber, and listeners were asked to rate how confident they were that the recording of each of these 90 stimuli included an obstruction. These confidence ratings can be used as an integral component in the evaluation function used to determine which reflectors and occluders are most important for rendering.}, language = {en} } @inproceedings{CohenHerderMartens2001, author = {Cohen, Michael and Herder, Jens and Martens, William}, title = {Panel: Eartop computing and cyberspatial audio technology}, series = {IEEE-VR2001: IEEE Virtual Reality}, booktitle = {IEEE-VR2001: IEEE Virtual Reality}, publisher = {IEEE}, address = {Yokohama}, isbn = {0-7695-0948-7}, pages = {322 -- 323}, year = {2001}, language = {en} } @inproceedings{Herder1999, author = {Herder, Jens}, title = {Optimization of Sound Spatialization Resource Management through Clustering}, series = {Second International Conference on Human and Computer}, booktitle = {Second International Conference on Human and Computer}, address = {Aizu-Wakamatsu}, pages = {1 -- 7}, year = {1999}, abstract = {Level-of-detail is a concept well-known in computer graphics to reduce the number of rendered polygons. Depending on the distance to the subject (viewer), the objects' representation is changed. A similar concept is the clustering of sound sources for sound spatialization. Clusters can be used to hierarchically organize mixels and to optimize the use of resources, by grouping multiple sources together into a single representative ource. Such a clustering process should minimize the error of position allocation of elements, perceived as angle and distance, and also differences between velocity relative to the sink (i.e., Doppler shift). Objects with similar direction of motion and speed (relative to sink) in the same acoustic resolution cone and with similar distance to a sink can be grouped together.}, language = {en} } @article{JensHerder1999, author = {Jens Herder,}, title = {Optimization of Sound Spatialization Resource Management through Clustering}, series = {Journal of the 3D-Forum Society}, volume = {13}, journal = {Journal of the 3D-Forum Society}, number = {3}, pages = {59 -- 65}, year = {1999}, abstract = {Level-of-detail is a concept well-known in computer graphics to reduce the number of rendered polygons. Depending on the distance to the subject (viewer), the objects' representation is changed. A similar concept is the clustering of sound sources for sound spatialization. Clusters can be used to hierarchically organize mixelsand to optimize the use of resources, by grouping multiple sources together into a single representative source. Such a clustering process should minimize the error of position allocation of elements, perceived as angle and distance, and also differences between velocity relative to the sink (i.e., Doppler shift). Objects with similar direction of motion and speed (relative to sink) in the same acoustic resolution cone and with similar distance to a sink can be grouped together.}, language = {de} } @inproceedings{FiedlerRillingBogenetal.2015, author = {Fiedler, Jannik and Rilling, Stefan and Bogen, Manfred and Herder, Jens}, title = {Multimodal interaction techniques in scientific data visualization: An analytical survey}, series = {In Proceedings of the 10th International Conference on Computer Graphics Theory and Applications (GRAPP-2015)}, booktitle = {In Proceedings of the 10th International Conference on Computer Graphics Theory and Applications (GRAPP-2015)}, editor = {Braz, Jos{\´e}}, publisher = {SCITEPRESS}, address = {s. l.}, isbn = {978-989-758-087-1}, doi = {10.5220/0005296404310437}, pages = {431 -- 437}, year = {2015}, abstract = {The interpretation process of complex data sets makes the integration of effective interaction techniques crucial. Recent work in the field of human-computer interaction has shown that there is strong evidence that multimodal user interaction, i.e. the integration of various input modalities and interaction techniques into one comprehensive user interface, can improve human performance when interacting with complex data sets. However, it is still unclear which factors make these user interfaces superior to unimodal user interfaces. The contribution of this work is an analytical comparison of a multimodal and a unimodal user interface for a scientific visualization application. We show that multimodal user interaction with simultaneously integrated speech and gesture input improves user performance regarding efficiency and ease of use.}, language = {en} } @inproceedings{HerderLadwigVermeegenetal.2018, author = {Herder, Jens and Ladwig, Philipp and Vermeegen, Kai and Hergert, Dennis and Busch, Florian and Klever, Kevin and Holthausen, Sebastian and Ryskeldiev, Bektur}, title = {Mixed Reality Experience - How to Use a Virtual (TV) Studio for Demonstration of Virtual Reality Applications}, series = {GRAPP 2018 - 13th International Conference on Computer Graphics Theory and Applications}, booktitle = {GRAPP 2018 - 13th International Conference on Computer Graphics Theory and Applications}, publisher = {INSTICC}, address = {Setubal - Portugal}, isbn = {978-989-758-287-5}, doi = {10.5220/0006637502810287}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:due62-opus-15823}, pages = {281 -- 287}, year = {2018}, abstract = {The article discusses the question of "How to convey the experience in a virtual environment to third parties?" and explains the different technical implementations which can be used for live streaming and recording of a mixed reality experience. The real-world applications of our approach include education, entertainment, e- sports, tutorials, and cinematic trailers, which can benefit from our research by finding a suitable solution for their needs. We explain and outline our Mixed Reality systems as well as discuss the experience of recorded demonstrations of different VR applications, including the need for calibrated camera lens parameters based on realtime encoder values.}, language = {en} } @inproceedings{HerderTakedaVermeegenetal.2019, author = {Herder, Jens and Takeda, Shinpei and Vermeegen, Kai and Davin, Till and Berners, Dominique and Ryskeldiev, Bektur and Zimmer, Christian and Druzetic, Ivana and Geiger, Christian}, title = {Mixed Reality Art Experiments - Immersive Access to Collective Memories}, series = {ISEA2019, Proceedings, 25th International Symposium on Electronic Art, Gwangju, South Korea, June 22-28, 2019}, booktitle = {ISEA2019, Proceedings, 25th International Symposium on Electronic Art, Gwangju, South Korea, June 22-28, 2019}, publisher = {IESA}, address = {Gwangju}, pages = {334 -- 341}, year = {2019}, abstract = {We report about several experiments on applying mixed reality technology in the context of accessing collective memories from atomic bombs, Holocaust and Second World War. We discuss the impact of Virtual Reality, Augmented Virtuality and Augmented Reality for specific memorial locations. We show how to use a virtual studio for demonstrating an augmented reality application for a specific location in a remote session within a video conference. Augmented Virtuality is used to recreate the local environment, thus providing a context and helping the participants recollect emotions related to a certain place. This technique demonstrates the advantages of using virtual (VR) and augmented (AR) reality environments for rapid prototyping and pitching project ideas in a live remote setting.}, language = {en} } @incollection{Herder2006, author = {Herder, Jens}, title = {Matching Light for Virtual Studio TV Productions}, series = {9th International Conference on Human and Computer}, booktitle = {9th International Conference on Human and Computer}, address = {Aizu-Wakamatsu}, pages = {158 -- 162}, year = {2006}, abstract = {High dynamic range environments maps based on still images or video streams are used for computer animation or interactive systems. The task of realistic light setup of scenes using captured environment maps might be eased as well as the visual quality improves. In this article, we discuss the light setting problem for virtual studio (tv) layout and system become more complex to handle this new feature of studio light capturing. The analysis of system requirements identifies the technical challenges.}, language = {en} } @inproceedings{DaemenHaufsBrusbergHerder2013, author = {Daemen, Jeff and Haufs-Brusberg, Peter and Herder, Jens}, title = {Markerless Actor Tracking for Virtual (TV) Studio Applications}, series = {2013 International Joint Conference on Awareness Science and Technology \& Ubi-Media Computing (iCAST 2013 \& UMEDIA 2013)}, booktitle = {2013 International Joint Conference on Awareness Science and Technology \& Ubi-Media Computing (iCAST 2013 \& UMEDIA 2013)}, publisher = {IEEE}, address = {Aizu-Wakamatsu}, isbn = {978-1-4799-2364-9}, doi = {10.1109/ICAwST.2013.6765544}, pages = {790 -- 795}, year = {2013}, abstract = {Virtual (tv) studios gain much more acceptance through improvements in computer graphics and camera tracking. Still commercial studios cannot have full interaction between actors and virtual scene because actors data are not completely digital available as well as the feedback for actors is still not sufficient. Markerless full body tracking might revolutionize virtual studio technology as it allows better interaction between real and virtual world. This article reports about using a markerless actor tracking in a virtual studio with a tracking volume of nearly 40 cubic meter enabling up to three actors within the green box. The tracking is used for resolving the occlusion between virtual objects and actors so that the Tenderer can output automatically a mask for virtual objects in the foreground in case the actor is behind. It is also used for triggering functions scripted within the Tenderer engine, which are attached to virtual objects, starting any kind of action (e.g., animation). Last but not least the system is used for controlling avatars within the virtual set. All tracking and rendering is done within a studio frame rate of 50 Hz with about 3 frames delay. The markerless actor tracking within virtual studios is evaluated by experts using an interview approach. The statistical evaluation is based on a questionnaire.}, language = {en} } @article{JuttnerHerder2006, author = {Juttner, Carsten and Herder, Jens}, title = {Lighting an Interactive Scene in Real-time with a GPU and Video Textures}, series = {Journal of the 3D-Forum Society}, volume = {20}, journal = {Journal of the 3D-Forum Society}, number = {1}, pages = {22 -- 28}, year = {2006}, abstract = {The presentation of virtual environments in real time has always been a demanding task. Specially designed graphics hardware is necessary to deal with the large amounts of data these applications typically produce. For several years the chipsets that were used allowed only simple lighting models and fixed algorithms. But recent development has produced new graphics processing units (GPUs) that are much faster and more programmable than their predecessors. This paper presents an approach to take advantage of these new features. It uses a video texture as part of the lighting calculations for the passenger compartment of a virtual train and was run on the GPU of a recent PC graphics card. The task was to map the varying illumination of a filmed landscape onto the virtual objects and also onto another video texture (showing two passengers), thereby enhancing the realism of the scene.}, language = {en} } @inproceedings{MarinosGeigerHerder2012, author = {Marinos, Dionysios and Geiger, Christian and Herder, Jens}, title = {Large-Area Moderator Tracking and Demonstrational Configuration of Position Based Interactions for Virtual Studio}, series = {EuroITV '12 Proceedings of the 10th European Conference on Interactive TV and Video}, booktitle = {EuroITV '12 Proceedings of the 10th European Conference on Interactive TV and Video}, publisher = {ACM}, address = {New York}, isbn = {978-1-4503-1107-6}, doi = {10.1145/2325616.2325639}, pages = {105 -- 114}, year = {2012}, abstract = {In this paper we introduce a system for tracking persons walking or standing on a large planar surface and for using the acquired data to easily configure position based interactions for virtual studio productions. The tracking component of the system, radarTRACK, is based on a laser scanner device capable of delivering interaction points on a large configurable plane. By using the device on the floor it is possible to use the delivered data to detect feet positions and derive the position and orientation of one or more users in real time. The second component of the system, named OscCalibrator, allows for the easy creation of multidimensional linear mappings between input and output parameters and the routing of OSC messages within a single modular design environment. We demonstrate the use of our system to flexibly create position-based interactions in a virtual studio environment.}, language = {en} } @misc{Herder1992, author = {Herder, Jens}, title = {Konzeption, Implementierung und Integration einer Komponente zur inkrementellen Bezeichner- und Operatoranalyse innerhalb des PSGs}, address = {Darmstadt}, organization = {Technische Hochschule Darmstadt}, year = {1992}, abstract = {Der Programmier System Generator - PSG - des Fachgebiets Praktische Informatik in Darmstadt erzeugt aus einer Sprachdefinition eine sprachspezifische Programmierumgebung. Diese besteht u. a. aus einem Editor, welcher syntaktische und semantische Fehler von Programmfragmenten, die nicht vollst{\"a}ndig sein m{\"u}ssen, erkennen kann. Dem Benutzer werden per Men{\"u} Fehlerkorrekturen angeboten. Neben der freien Texteingabe besteht die M{\"o}glichkeit, den Text nur mit Hilfe von Men{\"u}s zu verfeinern. Teil dieses Editors ist die Bezeichneranalyse. Sie dient als Hilfsmittel f{\"u}r den Benutzer, indem f{\"u}r jede Stelle eines Programmfragmentes die g{\"u}ltigen Bezeichner ausgegeben werden k{\"o}nnen. Die Kontextanalyse setzt die Berechnung auf den von der Bezeichneranalyse erzeugten Daten auf, um semantische Fehler zu erkennen. Die bis zu dieser Arbeit verwendete Bezeichneranalyse im PSG unterst{\"u}tzt nur einfache Sprachkonzepte (z. B. Fortran und Pascal). Die G{\"u}ltigkeitskonzepte der Bezeichner von weiterentwickelten Sprachen (z. B. Modula-2, CHILL, Ada oder Pascal-XT) sind nicht vollst{\"a}ndig modellierbar. Wir stellen ein neues Konzept zur Definition und Berechnung der Bezeichneranalyse vor, das alle uns bekannten Sprachen mit statischer Typbindung unterst{\"u}tzt. Hierf{\"u}r haben wir die Sprache BIS - Bezeichneridentifikationssprache - definiert. Die Methode ist verwandt mid dem Zwischencode f{\"u}r geordnete Attributierte Grammatiken. F{\"u}r jeden Knoten des Abstrakten Syntaxbaumes wird mit Hilfe von BIS ein Code f{\"u}r eine abstrakte Maschine, welche die Bezeichneranalyse durchf{\"u}hrt, geschrieben. Im Gegensatz zu herk{\"o}mlichen Methoden (verkettete Symboltabellen) wird f{\"u}r jeden Punkt innerhalb eines Programmes for der Anfrage durch den Benutzer oder der Kontextanalyse die Menge der g{\"u}ltigen Bezeichner berechnet. Die Kosten f{\"u}r eine Anfrage sind dadurch minimal. Diese abstrakte Maschine teilt sich in zwei unabh{\"a}ngige Maschinen auf, zum einen in die S-Maschine, die die speziellen Operationen der Bezeichneranalyse durchf{\"u}hrt, und zum anderen in die G-Maschine, die den Datenfluss und die Auswertung steuert. Diese Aufteilung erm{\"o}glicht den Austausch der S-Maschine durch eine andere, welche neue Anwendungsgebiete erschliesst, z. B. die eines Praeprozessors. Die G-Maschine arbeitet inkrementell; es werden nur die Codeschablonen neu ausgewertet, deren geerbten Attribute sich ge{\"a}ndert haben. Dazu m{\"u}ssen die Daten, die in einer Codeschablone hinein- und hinausfliessen, abgelegt werden. Dies ergibt bei grossen Programmfragmenten eine immense Rechenzeiteinsparung auf Kosten des Speicherplatzes. Die Funktionsweise wird an einer kleinen Beispielsprache demonstriert, die zu Pascal {\"a}hnlich ist. Diese besitzt Konstrukte zum Import und Export von Daten und Datentypen zwischen Programmfragmenten. Im Prototyp kann die inkrementelle Arbeitsweise abgeschaltet werden und erm{\"o}glicht einen guten Vergleich der Verfahren.}, language = {de} } @incollection{HerderKronenwettLambertzetal.2006, author = {Herder, Jens and Kronenwett, Ralf and Lambertz, Simone and Kiefer, Georg and Freihoff, Johann}, title = {Interaktive Echtzeit-3D-Visualisierung Webbasierte Darstellung: Mobilisierung und Homing von Blutstammzellen}, series = {Mensch and Computer 2006: Mensch und Computer im Struktur Wandel}, booktitle = {Mensch and Computer 2006: Mensch und Computer im Struktur Wandel}, editor = {Heinecke, A. M. and Paul, H.}, publisher = {Oldenbourg Verlag}, address = {M{\"u}nchen}, pages = {405 -- 409}, year = {2006}, abstract = {Die interaktive Echtzeit 3D-Visualisierung Mobilisierung und Homing von Blutstammzellen wurde konzipiert, um ein sehr komplexes medizinisches Wissen mit den Mitteln der 3-dimensionalen Visualisierung in Echtzeit und des Internets sowie der daraus resultierenden Interaktivit{\"a}t aufzubereiten. Dies musste auf einer Ebene geschehen, die es hinterher auch jedem Nicht-Mediziner erlaubt, die grundlegenden biologischen und medizinischen Sachverhalte nachzuvollziehen. Das Resultat: Eine informative und didaktische Anwendung, aus einer Mischung von interaktiven 3D-Stationen und erkl{\"a}renden 3D-Animationen. Diskutiert werden die Methodik der Konzeptionsphase und die Interaktionstechniken.}, subject = {Visualisierung}, language = {de} } @inproceedings{HerderVonolfenGriesertetal.2004, author = {Herder, Jens and Vonolfen, Wolfgang and Griesert, Arnfried and Heuer, Stefan and Hoffmann, Ansgar and H{\"o}ppner, Bernd}, title = {Interactive Virtual Set Applications for Post Production}, series = {University of Aizu 2004 - Seventh International Conference on Human}, booktitle = {University of Aizu 2004 - Seventh International Conference on Human}, address = {Aizu-Wakamatsu}, year = {2004}, abstract = {Virtual set environments for broadcasting become more sophisticated as well as the visual quality improves. Realtime interaction and production-specific visualization implemented through plugin mechanism enhance the existing systems like the 3DK. This work presents the integration of the Intersense IS-900 SCT camera tracking and 3D interaction into the 3DK virtual studio environment. The main goal of this work is the design of a virtual studio environment for post productions, which includes video output as well as media streaming formats such as MPEG-4. The systems allows high quality offline rendering during post production and 3D interaction by the moderator during the recording.}, language = {en} } @misc{Herder2000, author = {Herder, Jens}, title = {Interactive Sound Spatialization - a Primer}, series = {MM News, University of Aizu Multimedia Center}, volume = {8}, journal = {MM News, University of Aizu Multimedia Center}, pages = {8 -- 12}, year = {2000}, abstract = {Sound spatialization is a technology which puts sound into the three dimensional space, so that it has a perceivable direction and distance. Interactive means mutually or reciprocally active. Interaction is when one action (e.g., user moves mouse) has direct or immediate influence to other actions (e.g., processing by a computer: graphics change in size). Based on this definition an introduction to sound reproduction using DVD and virtual environments is given and illustrated by applications (e.g., virtual converts).}, language = {mul} } @article{GriesertWalczakHerder2003, author = {Griesert, Arnfried and Walczak, Oliver and Herder, Jens}, title = {Interactive Realtime Terrain Visualization for Virtual Set Applications}, series = {Journal of the 3D-Forum Society}, volume = {17}, journal = {Journal of the 3D-Forum Society}, number = {4}, pages = {20 -- 26}, year = {2003}, abstract = {Virtual set environments for broadcasting become more sophisticated as well as the visual quality improves. Realtime interaction and production-specific visualization implemented through plugin mechanism enhance the existing systems like the virtual studio software 3DK. This work presents an algorithm which can dynamically manage textures of high resolution by prefetching them depending on their requirement in memory and map them on a procedural mesh in realtime. The main goal application of this work is the virtual representation of a flight over a landscape as part of weather reports in virtual studios and the interaction by the moderator.}, language = {en} } @inproceedings{Herder2001, author = {Herder, Jens}, title = {Interactive Content Creation with Virtual Set Environments}, series = {Fourth International Conference on Human and Computer}, booktitle = {Fourth International Conference on Human and Computer}, publisher = {University of Aizu}, address = {Aizu-Wakamatsu}, year = {2001}, abstract = {Digital broadcasting enables interactive \sc tv, which presents new challenges for interactive content creation. Besides the technology for streaming and viewing, tools and systems are under development that extend traditional \sc tv studios with virtual set environments. This presentation reviews current technology and describes the requirements for such systems. Interoperability over the production, streaming, and viewer levels requires open interfaces. As the technology allow more interaction, it becomes inherent difficult to control the quality of the viewers experience}, language = {en} }