@article{MartensHerderShiba1999, author = {Martens, William L. and Herder, Jens and Shiba, Yoshiki}, title = {A filtering model for efficient rendering of the spatial image of an occluded virtual sound source}, series = {The Journal of the Acoustical Society of America}, volume = {105}, journal = {The Journal of the Acoustical Society of America}, number = {2}, doi = {10.1121/1.425354}, pages = {980}, year = {1999}, abstract = {Rendering realistic spatial sound imagery for complex virtual environments must take into account the effects of obstructions such as reflectors and occluders. It is relatively well understood how to calculate the acoustical consequence that would be observed at a given observation point when an acoustically opaque object occludes a sound source. But the interference patterns generated by occluders of various geometries and orientations relative to the virtual source and receiver are computationally intense if accurate results are required. In many applications, however, it is sufficient to create a spatial image that is recognizable by the human listener as the sound of an occluded source. In the interest of improving audio rendering efficiency, a simplified filtering model was developed and its audio output submitted to psychophysical evaluation. Two perceptually salient components of occluder acoustics were identified that could be directly related to the geometry and orientation of a simple occluder. Actual occluder impulse responses measured in an anechoic chamber resembled the responses of a model incorporating only a variable duration delay line and a low-pass filter with variable cutoff frequency.}, language = {en} } @article{RyskeldievCohenHerder2018, author = {Ryskeldiev, Bektur and Cohen, Michael and Herder, Jens}, title = {StreamSpace: Pervasive Mixed Reality Telepresence for Remote Collaboration on Mobile Devices}, series = {Journal of Information Processing}, volume = {26}, journal = {Journal of Information Processing}, publisher = {J-STAGE}, doi = {10.2197/ipsjjip.26.177}, pages = {177 -- 185}, year = {2018}, abstract = {We present a system that exploits mobile rotational tracking and photospherical imagery to allow users to share their environment with remotely connected peers "on the go." We surveyed related interfaces and developed a unique groupware application that shares a mixed reality space with spatially-oriented live video feeds. Users can collaborate through realtime audio, video, and drawings in a virtual space. The developed system was tested in a preliminary user study, which confirmed an increase in spatial and situational awareness among viewers as well as reduction in cognitive workload. Believing that our system provides a novel style of collaboration in mixed reality environments, we discuss future applications and extensions of our prototype.}, subject = {Ubiquitous Computing}, language = {en} } @inproceedings{BrettschneiderHerderdeMooijetal.2019, author = {Brettschneider, Nico and Herder, Jens and de Mooij, Jeroen and Ryskeldiev, Bektur}, title = {Audio vs. Visual Avatars as Guides in Virtual Environments}, series = {21th International Conference on Human and Computer, HC-2018, March 27-28, 2019, Shizuoka University, Hamamatsu, Japan.}, booktitle = {21th International Conference on Human and Computer, HC-2018, March 27-28, 2019, Shizuoka University, Hamamatsu, Japan.}, editor = {Herder, Jens}, publisher = {Hochschule D{\"u}sseldorf}, address = {D{\"u}sseldorf}, organization = {Hochschule D{\"u}sseldorf}, doi = {10.20385/0hrj-qc02}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:due62-opus-23859}, pages = {9}, year = {2019}, abstract = {Through constant technical progress, multi-user virtual reality is transforming towards a social activity that is no longer only used by remote users, but also in large-scale location-based experiences. We evaluate the usage of realtime-tracked avatars in co-located business-oriented applications in a "guide-user-scenario" in comparison to audio only instructions. The present study examined the effect of an avatar-guide on the user-related factors of Spatial Presence, Social Presence, User Experience and Task Load in order to propose design guidelines for co-located collaborative immersive virtual environments. Therefore, an application was developed and a user study with 40 participants was conducted in order to compare both guiding techniques of a realtime-tracked avatar guide and a non-visualised guide with otherwise constant conditions. Results reveal that the avatar-guide enhanced and stimulated communicative processes while facilitating interaction possibilities and creating a higher sense of mental immersion for users. Furthermore, the avatar-guide appeared to make the storyline more engaging and exciting while helping users adapt to the medium of virtual reality. Even though no assertion could be made concerning the Task Load factor, the avatar-guide achieved a higher subjective value on User Experience. Due to the results, avatars can be considered valuable social elements in the design of future co-located collaborative virtual environments.}, language = {en} } @inproceedings{HerderLadwigVermeegenetal.2018, author = {Herder, Jens and Ladwig, Philipp and Vermeegen, Kai and Hergert, Dennis and Busch, Florian and Klever, Kevin and Holthausen, Sebastian and Ryskeldiev, Bektur}, title = {Mixed Reality Experience - How to Use a Virtual (TV) Studio for Demonstration of Virtual Reality Applications}, series = {GRAPP 2018 - 13th International Conference on Computer Graphics Theory and Applications}, booktitle = {GRAPP 2018 - 13th International Conference on Computer Graphics Theory and Applications}, publisher = {INSTICC}, address = {Setubal - Portugal}, isbn = {978-989-758-287-5}, doi = {10.5220/0006637502810287}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:due62-opus-15823}, pages = {281 -- 287}, year = {2018}, abstract = {The article discusses the question of "How to convey the experience in a virtual environment to third parties?" and explains the different technical implementations which can be used for live streaming and recording of a mixed reality experience. The real-world applications of our approach include education, entertainment, e- sports, tutorials, and cinematic trailers, which can benefit from our research by finding a suitable solution for their needs. We explain and outline our Mixed Reality systems as well as discuss the experience of recorded demonstrations of different VR applications, including the need for calibrated camera lens parameters based on realtime encoder values.}, language = {en} } @inproceedings{VermeegenHerder2018, author = {Vermeegen, Kai and Herder, Jens}, title = {A Lighthouse-based Camera Tracking System for Professional Virtual Studios}, series = {Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realit{\"a}t - 15. Workshop der GI-Fachgruppe VR/AR}, booktitle = {Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realit{\"a}t - 15. Workshop der GI-Fachgruppe VR/AR}, editor = {Herder, Jens and Geiger, Christian and D{\"o}rner, Ralf and Grimm, Paul}, publisher = {Shaker Verlag}, address = {Herzogenrath}, isbn = {978-3-8440-6215-1}, doi = {10.2370/9783844062151}, pages = {19 -- 26}, year = {2018}, abstract = {This article describes the possibilities and problems that occur using the SteamVR tracking 2.0 system as a camera tracking system in a virtual studio and explains an approach for implementation and calibration within a professional studio environment. The tracking system allows for cost effective deployment. Relevant application fields are also mixed reality recording and streaming of AR and VR experiences.}, language = {en} } @inproceedings{RyskeldievIgarashiZhangetal.2018, author = {Ryskeldiev, Bektur and Igarashi, Toshiharu and Zhang, Junjian and Ochiai, Yoichi and Cohen, Michael and Herder, Jens}, title = {Spotility: Crowdsourced Telepresence for Social and Collaborative Experiences in Mobile Mixed Reality}, series = {ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW '18)}, booktitle = {ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW '18)}, publisher = {ACM}, address = {New York}, isbn = {978-1-4503-6018-0}, doi = {10.1145/3272973.3274100}, pages = {373 -- 376}, year = {2018}, abstract = {Live video streaming is becoming increasingly popular as a form of interaction in social applications. One of its main advantages is an ability to immediately create and connect a community of remote users on the spot. In this paper we discuss how this feature can be used for crowdsourced completion of simple visual search tasks (such as finding specific objects in libraries and stores, or navigating around live events) and social interactions through mobile mixed reality telepresence interfaces. We present a prototype application that allows users to create a mixed reality space with a photospherical imagery as a background and interact with other connected users through viewpoint, audio, and video sharing, as well as realtime annotations in mixed reality space. Believing in the novelty of our system, we conducted a short series of interviews with industry professionals on the possible applications of our system. We discuss proposed use-cases for user evaluation, as well as outline future extensions of our system.}, language = {en} } @inproceedings{HerderDaemenHaufsBrusbergetal.2015, author = {Herder, Jens and Daemen, Jeff and Haufs-Brusberg, Peter and Abdel Aziz, Isis}, title = {Four Metamorphosis States in a Distributed Virtual (TV) Studio: Human, Cyborg, Avatar, and Bot - Markerless Tracking and Feedback for Realtime Animation Control}, series = {Virtual Realities: International Dagstuhl Seminar, Dagstuhl Castle, Germany, June 9-14, 2013, Revised Selected Papers}, volume = {LNCS, 8844}, booktitle = {Virtual Realities: International Dagstuhl Seminar, Dagstuhl Castle, Germany, June 9-14, 2013, Revised Selected Papers}, editor = {Brunnett, Guido and Coquillart, Sabine and van Liere, Robert and Welch, Gregory and V{\´a}ša, Libor}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-17042-8}, doi = {10.1007/978-3-319-17043-5_2}, pages = {16 -- 32}, year = {2015}, language = {en} } @inproceedings{FiedlerRillingBogenetal.2015, author = {Fiedler, Jannik and Rilling, Stefan and Bogen, Manfred and Herder, Jens}, title = {Multimodal interaction techniques in scientific data visualization: An analytical survey}, series = {In Proceedings of the 10th International Conference on Computer Graphics Theory and Applications (GRAPP-2015)}, booktitle = {In Proceedings of the 10th International Conference on Computer Graphics Theory and Applications (GRAPP-2015)}, editor = {Braz, Jos{\´e}}, publisher = {SCITEPRESS}, address = {s. l.}, isbn = {978-989-758-087-1}, doi = {10.5220/0005296404310437}, pages = {431 -- 437}, year = {2015}, abstract = {The interpretation process of complex data sets makes the integration of effective interaction techniques crucial. Recent work in the field of human-computer interaction has shown that there is strong evidence that multimodal user interaction, i.e. the integration of various input modalities and interaction techniques into one comprehensive user interface, can improve human performance when interacting with complex data sets. However, it is still unclear which factors make these user interfaces superior to unimodal user interfaces. The contribution of this work is an analytical comparison of a multimodal and a unimodal user interface for a scientific visualization application. We show that multimodal user interaction with simultaneously integrated speech and gesture input improves user performance regarding efficiency and ease of use.}, language = {en} } @inproceedings{SimschHerder2014, author = {Simsch, Jonathan and Herder, Jens}, title = {SpiderFeedback - Visual Feedback for Orientation in Virtual TV Studios}, series = {ACE'14, 11th Advances in Computer Entertainment Technology Conference, ACM, Funchal, Portugal}, booktitle = {ACE'14, 11th Advances in Computer Entertainment Technology Conference, ACM, Funchal, Portugal}, editor = {Chisik, Yoram}, publisher = {ACM}, address = {New York}, isbn = {978-1-4503-2945-3}, doi = {10.1145/2663806.2663830}, pages = {8}, year = {2014}, abstract = {A visual and spatial feedback system for orientation in virtual sets of virtual TV studios was developed and evaluated. It is based on a green proxy object, which moves around in the acting space by way of four transparent wires. A separate unit controls four winches and is connected to an engine, which renders the virtual set. A new developed plugin registers a virtual object's position with the proxy object which imitates the virtual object's movement on stage. This will allow actors to establish important eye contact with a virtual object and feel more comfortable in a virtual set. Furthermore, interaction with the virtual object and its proxy can be realised through a markerless actor tracking system. Several possible scenarios for user application were recorded and presented to experts in the broadcast industry, who evaluated the potential of SpiderFeedback in interviews and by questionnaires.}, language = {en} } @inproceedings{BeckerHerder2012, author = {Becker, Thomas and Herder, Jens}, title = {Cost effective tangibles using fiducials for infrared multi-touch frames}, series = {15th International Conference on Human and Computer}, booktitle = {15th International Conference on Human and Computer}, address = {Hamamatsu/Aizu-Wakamatsu/Duesseldorf}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:due62-opus-16011}, pages = {7}, year = {2012}, abstract = {The late immersion of multi-touch sensitive displays enables the use of tangibles on multi-touch screens. There a several wide spread and/or sophisticated solutions to fulfill this need but they seem to have some flaws. One popular system at the time of writing is an overlay frame that can be placed on a normal display with the corresponding size. The frame creates a grid with infrared light emitting diodes. The disruption of this grid can be detected and messages with the positions are sent via usb to a connected computer. This system is quite robust in matters of ambient light insensitivity and also fast to calibrate. Unfortunately it is not created with the recognition of tangibles in mind and printed patterns can not be resolved. This article summarizes an attempt to create fiducials that are recognized by an infrared multi-touch frame as fingers. Those false fingers are checked by a software for known patterns. Once a known pattern (= fiducial) has been recognized its position and orientation are send with the finger positions towards the interactive software. The usability is tested with an example application where tangibles and finger touches are used in combination.}, language = {en} } @inproceedings{DaemenHaufsBrusbergHerder2013, author = {Daemen, Jeff and Haufs-Brusberg, Peter and Herder, Jens}, title = {Markerless Actor Tracking for Virtual (TV) Studio Applications}, series = {2013 International Joint Conference on Awareness Science and Technology \& Ubi-Media Computing (iCAST 2013 \& UMEDIA 2013)}, booktitle = {2013 International Joint Conference on Awareness Science and Technology \& Ubi-Media Computing (iCAST 2013 \& UMEDIA 2013)}, publisher = {IEEE}, address = {Aizu-Wakamatsu}, isbn = {978-1-4799-2364-9}, doi = {10.1109/ICAwST.2013.6765544}, pages = {790 -- 795}, year = {2013}, abstract = {Virtual (tv) studios gain much more acceptance through improvements in computer graphics and camera tracking. Still commercial studios cannot have full interaction between actors and virtual scene because actors data are not completely digital available as well as the feedback for actors is still not sufficient. Markerless full body tracking might revolutionize virtual studio technology as it allows better interaction between real and virtual world. This article reports about using a markerless actor tracking in a virtual studio with a tracking volume of nearly 40 cubic meter enabling up to three actors within the green box. The tracking is used for resolving the occlusion between virtual objects and actors so that the Tenderer can output automatically a mask for virtual objects in the foreground in case the actor is behind. It is also used for triggering functions scripted within the Tenderer engine, which are attached to virtual objects, starting any kind of action (e.g., animation). Last but not least the system is used for controlling avatars within the virtual set. All tracking and rendering is done within a studio frame rate of 50 Hz with about 3 frames delay. The markerless actor tracking within virtual studios is evaluated by experts using an interview approach. The statistical evaluation is based on a questionnaire.}, language = {en} } @inproceedings{LudwigBuechelHerderetal.2012, author = {Ludwig, Philipp and B{\"u}chel, Joachim and Herder, Jens and Vonolfen, Wolfgang}, title = {InEarGuide - A Navigation and Interaction Feedback System using In Ear Headphones for Virtual TV Studio Productions}, series = {9. Workshop Virtuelle und Erweiterte Realit{\"a}t der GI-Fachgruppe VR/AR}, booktitle = {9. Workshop Virtuelle und Erweiterte Realit{\"a}t der GI-Fachgruppe VR/AR}, address = {D{\"u}sseldorf}, year = {2012}, abstract = {This paper presents an approach to integrate non-visual user feedback in today's virtual tv studio productions. Since recent studies showed that systems providing vibro-tactile feedback are not sufficient for replacing the common visual feedback, we developed an audio-based solution using an in ear headphone system, enabling a talent to move, avoid and point to virtual objects in a blue or green box. The system consists of an optical head tracking system, a wireless in ear monitor system and a workstation, which performs all application and audio processing. Using head related transfer functions, the talent gets directional and distance cues. Past research showed, that generating reflections of the sounds and simulating the acoustics of the virtual room helps the listener to conceive the acoustical feedback, we included this technique as well. In a user study with 15 participants the performance of the system was evaluated.}, language = {en} } @inproceedings{BrosdaDaemenDjuderijaetal.2012, author = {Brosda, Constantin and Daemen, Jeff and Djuderija, Sascha and Joeres, Stephan and Langer, Oleg and Schweitzer, Andre and Wilhelm, Andreas and Herder, Jens}, title = {TouchPlanVS Lite - A Tablet-based Tangible Multitouch Planning System for Virtual TV Studio Productions}, series = {Proceedings of the 2012 Joint International Conference on Human-Centered Computer Environments}, booktitle = {Proceedings of the 2012 Joint International Conference on Human-Centered Computer Environments}, publisher = {ACM}, address = {New York}, isbn = {978-1-4503-1191-5}, pages = {64 -- 67}, year = {2012}, abstract = {This paper presents a mobile approach of integrating tangible user feedback in today's virtual TV studio productions. We describe a tangible multitouch planning system, enabling a single user to prepare and customize scene flow and settings. Users can view and interact with virtual objects by using a tangible user interface on a capacitive multitouch surface. In a 2D setting created TV scenes are simultaneously rendered as separate view using a production/target renderer in 3D. Thereby the user experiences a closer reproduction of a final production and set assets can be reused. Subsequently, a user can arrange scenes on a timeline while maintaining different versions/sequences. The system consists of a tablet and a workstation, which does all application processing and rendering. The tablet is just an interface connected via wireless LAN.}, language = {en} } @inproceedings{MarinosGeigerHerder2012, author = {Marinos, Dionysios and Geiger, Christian and Herder, Jens}, title = {Large-Area Moderator Tracking and Demonstrational Configuration of Position Based Interactions for Virtual Studio}, series = {EuroITV '12 Proceedings of the 10th European Conference on Interactive TV and Video}, booktitle = {EuroITV '12 Proceedings of the 10th European Conference on Interactive TV and Video}, publisher = {ACM}, address = {New York}, isbn = {978-1-4503-1107-6}, doi = {10.1145/2325616.2325639}, pages = {105 -- 114}, year = {2012}, abstract = {In this paper we introduce a system for tracking persons walking or standing on a large planar surface and for using the acquired data to easily configure position based interactions for virtual studio productions. The tracking component of the system, radarTRACK, is based on a laser scanner device capable of delivering interaction points on a large configurable plane. By using the device on the floor it is possible to use the delivered data to detect feet positions and derive the position and orientation of one or more users in real time. The second component of the system, named OscCalibrator, allows for the easy creation of multidimensional linear mappings between input and output parameters and the routing of OSC messages within a single modular design environment. We demonstrate the use of our system to flexibly create position-based interactions in a virtual studio environment.}, language = {en} } @inproceedings{FlaskoPogschebaHerderetal.2011, author = {Flasko, Matthias and Pogscheba, Patrick and Herder, Jens and Vonolfen, Wolfgang}, title = {Heterogeneous binocular camera-tracking in a Virtual Studio}, series = {8. Workshop Virtuelle und Erweiterte Realit{\"a}t der GI-Fachgruppe VR/AR}, booktitle = {8. Workshop Virtuelle und Erweiterte Realit{\"a}t der GI-Fachgruppe VR/AR}, address = {Wedel}, year = {2011}, abstract = {This paper presents a tracking of parts of a human body in a virtual TV studio environment. The tracking is based on a depth camera and a HD studio camera and aims at a realistic interaction between the actor and the computer generated environment. Stereo calibration methods are used to match corresponding pixels of both cameras (HD color and depth image). Hence the images were rectified and column aligned. The disparity is used to correct the depth image pixel by pixel. This image registration results in row and column aligned images where ghost regions are in the depth image resulting from occlusion. Both images are used to generate foreground masks with chroma and depth keying. The color image is taken for skin color segmentation to determine and distinguish the actor's hands and face. In the depth image the flesh colored regions were used to determine their spatial position. The extracted positions were augmented by virtual objects. The scene is rendered correctly with virtual camera parameters which were calculated from the camera calibration parameters. Generated computer graphics with alpha value are combined with the HD color images. This compositing shows interaction with augmented objects for verification. The additional depth information results in changing the size of objects next to the hands when the actor moves around.}, language = {en} } @inproceedings{WoeldeckeMarinosPogschebaetal.2011, author = {W{\"o}ldecke, Bj{\"o}rn and Marinos, Dionysios and Pogscheba, Patrick and Geiger, Christian and Herder, Jens and Schwirten, Tobias}, title = {radarTHEREMIN - Creating Musical Expressions in a Virtual Studio Environment}, series = {2011 IEEE International Symposium on VR Innovation}, booktitle = {2011 IEEE International Symposium on VR Innovation}, publisher = {IEEE}, address = {Singapore}, isbn = {978-1-4577-0055-2}, doi = {10.1109/ISVRI.2011.5759671}, pages = {345 -- 346}, year = {2011}, abstract = {In this paper we describe a prototypical system for live musical performance in a virtual studio environment. The performer stands in front of the studio camera and interacts with an infrared-laser-based multi-touch device. The final TV image shows the performer interacting with a virtual screen which is augmented in front of herself. To overcome the problem of the performer not seeing this virtual screen in reality, we use a special hexagonal grid to facilitate the performer's awareness of this novel Theremin-like virtual musical instrument.}, language = {en} } @inproceedings{HerderBrosdaDjuderijaetal.2011, author = {Herder, Jens and Brosda, Constantin and Djuderija, Sascha and Drochtert, Daniel and Genc, {\"O}mer and Joeres, Stephan and Kellerberg, Patrick and Looschen, Simon and Geiger, Christian and W{\"o}ldecke, Bj{\"o}rn}, title = {TouchPlanVS - A Tangible Multitouch Planning System for Virtual TV Studio Productions}, series = {2011 IEEE Symposium on 3D User Interfaces (3DUI)}, booktitle = {2011 IEEE Symposium on 3D User Interfaces (3DUI)}, publisher = {IEEE}, address = {Singapore}, isbn = {978-1-4577-0064-4}, doi = {10.1109/3DUI.2011.5759226}, pages = {103 -- 104}, year = {2011}, abstract = {This article presents a new approach of integrating tangible user feedback in todays virtual TV studio productions. We describe a tangible multitouch planning system, enabling multiple users to prepare and customize scene flow and settings. Users can collaboratively view and interact with virtual objects by using a tangible user interface on a shared multitouch surface. The in a 2D setting created TV scenes are simultaneously rendered on an external monitor, using a production/target renderer in 3D. Thereby the user experiences a closer reproduction of a final production. Subsequently, users are able to join together the scenes into one complex plot. Within the developing process, a video prototype of the system shows the user interaction and enables early reviews and evaluations. The requirement analysis is based on expert interviews.}, language = {en} } @inproceedings{AytenHerderVonolfen2010, author = {Ayten, H{\"u}seyin and Herder, Jens and Vonolfen, Wolfgang}, title = {Visual Acceptance Evaluation of Soft Shadow Algorithms for Virtual TV Studios}, series = {HC '10 Proceedings of the 13th International Conference on Humans and Computers}, booktitle = {HC '10 Proceedings of the 13th International Conference on Humans and Computers}, publisher = {University of Aizu Press}, address = {Aizu-Wakamatsu}, pages = {66 -- 71}, year = {2010}, abstract = {Shadows in computer graphics are an important rendering aspect for spatial objects. For realtime computer applications such as games, it is essential to represent shadows as accurate as possible. Also, various tv stations work with virtual studio systems instead of real studio sets. Especially for those systems, a realistic impression of the rendered and mixed scene is important. One challenge, hence, is the creation of a natural shadow impression. This paper presents the results of an empirical study to compare the performance and quality of different shadow mapping methods. For this test, a prototype studio renderer was developed. A percentage closer filter (pcf) with a number of specific resolutions is used to minimize the aliasing issue. More advanced algorithms which generate smooth shadows like the percentage closer soft shadow (pcss) method as well as the variance shadow maps (vsm) method are analysed. Different open source apis are used to develop the virtual studio renderer, giving the benefit of permanent enhancement. The Ogre 3D graphic engine is used to implement the rendering system, benefiting from various functions and plugins. The transmission of the tracking data is accomplished with the vrpn server/client and the Intersense api. The different shadow algorithms are compared in a virtual studio environment which also casts real shadows and thus gives a chance for a direct comparison throughout the empirical user study. The performance is measured in frames per secon}, language = {en} } @inproceedings{KlapdohrWoeldeckeMarinosetal.2010, author = {Klapdohr, Monika and W{\"o}ldecke, Bj{\"o}rn and Marinos, Dionysios and Herder, Jens and Geiger, Christian and Vonolfen, Wolfgang}, title = {Vibrotactile Pitfalls: Arm Guidance for Moderators in Virtual TV Studios}, series = {HC '10 Proceedings of the 13th International Conference on Humans and Computers}, booktitle = {HC '10 Proceedings of the 13th International Conference on Humans and Computers}, publisher = {University of Aizu Press}, address = {Aizu-Wakamatsu}, pages = {72 -- 80}, year = {2010}, abstract = {For this study, an experimental vibrotactile feedback system was developed to help actors with the task of moving their arm to a certain place in a virtual tv studio under live conditions. Our intention is to improve interaction with virtual objects in a virtual set, which are usually not directly visible to the actor, but only on distant displays. Vibrotactile feedback might improve the appearance on tv because an actor is able to look in any desired direction (camera or virtual object) or to read text on a teleprompter while interacting with a virtual object. Visual feedback in a virtual studio lacks spatial relation to the actor, which impedes the adjustment of the desired interaction. The five tactors of the implemented system which are mounted on the tracked arm give additional information like collision, navigation and activation. The user study for the developed system shows that the duration for reaching a certain target is much longer in case no visual feedback is given, but the accuracy is similar. In this study, subjects reported that an activation signal indicating the arrival at the target of a drag \& drop task was helpful. In this paper, we discuss the problems we encountered while developing such a vibrotactile display. Keeping these pitfalls in mind could lead to better feedback systems for actors in virtual studio environments.}, language = {en} } @inproceedings{GeigerHerderGoebeletal.2010, author = {Geiger, Christian and Herder, Jens and G{\"o}bel, Sebastian and Heinze, Christin and Marinos, Dionysios}, title = {Design and Virtual Studio Presentation of a Traditional Archery Simulator}, series = {Proceedings of the Entertainment Interfaces Track 2010 at Interaktive Kulturen, Duisburg, Germany, September 12-15, 2010}, booktitle = {Proceedings of the Entertainment Interfaces Track 2010 at Interaktive Kulturen, Duisburg, Germany, September 12-15, 2010}, address = {Duisburg}, pages = {37 -- 44}, year = {2010}, abstract = {In this paper we describe the design of a virtual reality simulator for traditional intuitive archery. Traditional archers aim without a target figure. Good shooting results require an excellent body-eye coordination that allows the user to perform identical movements when drawing the bow. Our simulator provides a virtual archery experience and supports the user to learn and practice the motion sequence of traditional archery in a virtual environment. We use an infrared tracking system to capture the user's movements in order to correct his movement. To provide a realistic haptic feedback a real bow is used as interaction device. Our system provides a believable user experience and supports the user to learn how to shoot in the traditional way. Following a user-centered iterative design approach we developed a number of prototypes and evaluated them for refinement in sequent iteration cycles. For illustration purposes we created a short video clip in our virtual studio about this project that presents the main ideas in an informative yet entertaining way.}, language = {en} } @inproceedings{VierjahnWoeldeckeGeigeretal.2009, author = {Vierjahn, Tom and W{\"o}ldecke, Bj{\"o}rn and Geiger, Christian and Herder, Jens}, title = {Improved Direction Signalization Technique Employing Vibrotactile Feedback}, series = {11th Virtual Reality International Conference, VRIC'2009}, booktitle = {11th Virtual Reality International Conference, VRIC'2009}, isbn = {2-9515730-8-1}, pages = {1 -- 8}, year = {2009}, abstract = {Vibrotactile feedback via body-worn vibrating belts is a common means of direction signalization - e.g. for navigational tasks. Consequently such feedback devices are used to guide blind or visually impaired people but can also be used to support other wayfinding tasks - for instance, guiding actors in virtual studio productions. Recent effort has been made to simplify this task by integrating vibrotactile feedback into virtual studio applications. In this work we evaluate the accuracy of an improved direction signalization technique, utilizing a body-worn vibrotactile belt with a limited number of tactors, and compare it to other work. The results from our user study indicate that it is possible to signalize different directions accurately, even with a small number of tactors spaced by 90°.}, language = {en} } @inproceedings{WoeldeckeVierjahnFlaskoetal.2009, author = {W{\"o}ldecke, Bj{\"o}rn and Vierjahn, Tom and Flasko, Matthias and Herder, Jens and Geiger, Christian}, title = {Steering actors through a virtual set employing vibro-tactile feedback}, series = {TEI '09 Proceedings of the 3rd International Conference on Tangible and Embedded Interaction}, booktitle = {TEI '09 Proceedings of the 3rd International Conference on Tangible and Embedded Interaction}, publisher = {ACM}, address = {New York}, isbn = {978-1-60558-493-5}, doi = {10.1145/1517664.1517703}, pages = {169 -- 174}, year = {2009}, abstract = {Actors in virtual studio productions are faced with the challenge that they have to interact with invisible virtual objects because these elements are rendered separately and combined with the real image later in the production process. Virtual sets typically use static virtual elements or animated objects with predefined behavior so that actors can practice their performance and errors can be corrected in the post production. With the demand for inexpensive live recording and interactive TV productions, virtual objects will be dynamically rendered at arbitrary positions that cannot be predicted by the actor. Perceptive aids have to be employed to support a natural interaction with these objects. In our work we study the effect of haptic feedback for a simple form of interaction. Actors are equipped with a custom built haptic belt and get vibrotactile feedback during a small navigational task (path following). We present a prototype of a wireless vibrotactile feedback device and a small framework for evaluating haptic feedback in a virtual set environment. Results from an initial pilot study indicate that vibrotactile feedback is a suitable non-visual aid for interaction that is at least comparable to audio-visual alternatives used in virtual set productions.}, language = {en} } @inproceedings{RyskeldievCohenHerder2017, author = {Ryskeldiev, Bektur and Cohen, Michael and Herder, Jens}, title = {Applying rotational tracking and photospherical imagery to immersive mobile telepresence and live video streaming groupware}, series = {Proceeding SA '17 SIGGRAPH Asia 2017 Mobile Graphics \& Interactive Applications, Article No. 5}, booktitle = {Proceeding SA '17 SIGGRAPH Asia 2017 Mobile Graphics \& Interactive Applications, Article No. 5}, publisher = {ACM}, address = {New York}, isbn = {978-1-4503-5410-3}, doi = {10.1145/3132787.3132813}, pages = {2}, year = {2017}, abstract = {Mobile live video streaming is becoming an increasingly popular form of interaction both in social media and remote collaboration scenarios. However, in most cases the streamed video does not take mobile devices' spatial data into account (e.g., the viewers do not know the spatial orientation of a streamer), or use such data only in specific scenarios (e.g., to navigate around a spherical video stream).}, language = {en} }