@inproceedings{BaranowskiUtzigFischeretal.2018, author = {Baranowski, Artur and Utzig, Sebastian and Fischer, Philipp and Gerndt, Andreas and Herder, Jens}, title = {3D spacecraft configuration using immersive AR technology}, series = {Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realit{\"a}t - 15. Workshop der GI-Fachgruppe VR/AR}, booktitle = {Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realit{\"a}t - 15. Workshop der GI-Fachgruppe VR/AR}, editor = {Herder, Jens and Geiger, Christian and D{\"o}rner, Ralf and Grimm, Paul}, publisher = {Shaker Verlag}, address = {Herzogenrath}, isbn = {978-3-8440-6215-1}, doi = {10.2370/9783844062151}, pages = {71 -- 82}, year = {2018}, abstract = {In this paper we propose an integrated immersive augmented reality solution for a software tool supporting spacecraft design and verification. The spacecraft design process relies on expertise in many domains, such as thermal and structural engineering. The various subsystems of a spacecraft are highly interdependent and have differing requirements and constraints. In this context, interactive visualizations play an important role in making expert knowledge accessible. Recent immersive display technologies offer new ways of presenting and interacting with computer-generated content. Possibilities and challenges for spacecraft configuration employing these technologies are explored and discussed. A user interface design for an application using the Microsoft HoloLens is proposed. To this end, techniques for selecting a spacecraft component and manipulating its position and orientation in 3D space are developed and evaluated. Thus, advantages and limitations of this approach to spacecraft configuration are revealed and discussed.}, language = {en} } @inproceedings{RyskeldievOchiaiCohenetal.2018, author = {Ryskeldiev, Bektur and Ochiai, Yoichi and Cohen, Michael and Herder, Jens}, title = {Distributed Metaverse: Creating Decentralized Blockchain-based Model for Peer-to-peer Sharing of Virtual Spaces for Mixed Reality Applications}, series = {Proceedings of the 9th Augmented Human International Conference}, booktitle = {Proceedings of the 9th Augmented Human International Conference}, publisher = {ACM}, isbn = {978-1-4503-5415-8}, doi = {10.1145/3174910.3174952}, pages = {7 -- 9}, year = {2018}, abstract = {Mixed reality telepresence is becoming an increasingly popular form of interaction in social and collaborative applications. We are interested in how created virtual spaces can be archived, mapped, shared, and reused among different applications. Therefore, we propose a decentralized blockchain-based peer-to-peer model of distribution, with virtual spaces represented as blocks. We demonstrate the integration of our system in a collaborative mixed reality application and discuss the benefits and limitations of our approach.}, language = {en} } @inproceedings{LadwigHerderGeiger2017, author = {Ladwig, Philipp and Herder, Jens and Geiger, Christian}, title = {Towards Precise, Fast and Comfortable Immersive Polygon Mesh Modelling: Capitalising the Results of Past Research and Analysing the Needs of Professionals}, series = {ICAT-EGVE 2017 - International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments}, booktitle = {ICAT-EGVE 2017 - International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments}, publisher = {The Eurographics Association}, doi = {10.2312/egve.20171360}, pages = {22 -- 24}, year = {2017}, abstract = {More than three decades of ongoing research in immersive modelling has revealed many advantages of creating objects in virtual environments. Even though there are many benefits, the potential of immersive modelling has only been partly exploited due to unresolved problems such as ergonomic problems, numerous challenges with user interaction and the inability to perform exact, fast and progressive refinements. This paper explores past research, shows alternative approaches and proposes novel interaction tools for pending problems. An immersive modelling application for polygon meshes is created from scratch and tested by professional users of desktop modelling tools, such as Autodesk Maya, in order to assess the efficiency, comfort and speed of the proposed application with direct comparison to professional desktop modelling tools.}, language = {en} } @inproceedings{BallesterRipollHerderLadwigetal.2016, author = {Ballester Ripoll, Marina and Herder, Jens and Ladwig, Philipp and Vermeegen, Kai}, title = {Comparison of two Gesture Recognition Sensors for Virtual TV Studios}, series = {GI-VRAR, Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realit{\"a}t - 13. Workshop der GI-Fachgruppe VR/AR,}, booktitle = {GI-VRAR, Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realit{\"a}t - 13. Workshop der GI-Fachgruppe VR/AR,}, editor = {Pfeiffer, Thies and Fr{\"o}hlich, Julia and Kruse, Rolf}, publisher = {Shaker Verlag}, address = {Herzogenrath}, isbn = {978-3-8440-4718-9}, year = {2016}, abstract = {In order to improve the interactivity between users and computers, recent technologies focus on incorporating gesture recognition into interactive systems. The aim of this article is to evaluate the effectiveness of using a Myo control armband and the Kinect 2 for recognition of gestures in order to interact with virtual objects in a weather report scenario. The Myo armband has an inertial measurement unit and is able to read electrical activity produced by skeletal muscles, which can be recognized as gestures, which are trained by machine learning. A Kinect sensor was used to build up a dataset which contains motion recordings of 8 different gestures and was also build up by a gesture training machine learning algorithm. Both input methods, the Kinect 2 and the Myo armband, were evaluated with the same interaction patterns in a user study, which allows a direct comparison and reveals benefits and limits of each technique.}, language = {en} } @inproceedings{DaemenHerderKochetal.2016, author = {Daemen, Jeff and Herder, Jens and Koch, Cornelius and Ladwig, Philipp and Wiche, Roman and Wilgen, Kai}, title = {Semi-Automatic Camera and Switcher Control for Live Broadcast}, series = {TVX '16 Proceedings of the ACM International Conference on Interactive Experiences for TV and Online Video, Chicago, Illinois, USA — June 22 - 24, 2016}, booktitle = {TVX '16 Proceedings of the ACM International Conference on Interactive Experiences for TV and Online Video, Chicago, Illinois, USA — June 22 - 24, 2016}, publisher = {ACM}, address = {New York}, isbn = {978-1-4503-4067-0}, doi = {10.1145/2932206.2933559}, pages = {129 -- 134}, year = {2016}, abstract = {Live video broadcasting requires a multitude of professional expertise to enable multi-camera productions. Robotic systems allow the automation of common and repeated tracking shots. However, predefined camera shots do not allow quick adjustments when required due to unpredictable events. We introduce a modular automated robotic camera control and video switch system, based on fundamental cinematographic rules. The actors' positions are provided by a markerless tracking system. In addition, sound levels of actors' lavalier microphones are used to analyse the current scene. An expert system determines appropriate camera angles and decides when to switch from one camera to another. A test production was conducted to observe the developed prototype in a live broadcast scenario and served as a video-demonstration for an evaluation.}, language = {en} } @inproceedings{BurgaDaemenDjuderijaetal.2013, author = {Burga, Jose and Daemen, Jeff and Djuderija, Sascha and Gnehr, Maren and Goossens, Lars and Hartz, Sven and Haufs-Brusberg, Peter and Herder, Jens and Ibrahim, Mohammed and Koop, Nikolas and Leske, Christophe and Meyer, Laurid and M{\"u}ller, Antje and Salgert, Bj{\"o}rn and Schroeder, Richard and Thiele, Simon}, title = {Four Metamorphosis States in a Distributed Virtual (TV) Studio: Human, Cyborg, Avatar, and Bot}, series = {10th International Conference on Visual Media Production (CVMP 2013), London}, booktitle = {10th International Conference on Visual Media Production (CVMP 2013), London}, address = {London}, year = {2013}, abstract = {The major challenge in virtual studio technology is the interaction between the actor and virtual objects. Within a distributed live production, two locally separated markerless tracking systems where used simultaneously alongside a virtual studio. The production was based on a fully tracked actor, cyborg (half actor, half graphics), avatar, and a bot. All participants could interact and throw a virtual disc. This setup is compared and mapped to Milgram's continuum and technical challenges are described.}, language = {en} } @inproceedings{DeppeNemitzHerder2018, author = {Deppe, Robert and Nemitz, Oliver and Herder, Jens}, title = {Augmented reality for supporting manual non-destructive ultrasonic testing of metal pipes and plates}, series = {Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realit{\"a}t - 15. Workshop der GI-Fachgruppe VR/AR}, booktitle = {Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realit{\"a}t - 15. Workshop der GI-Fachgruppe VR/AR}, editor = {Herder, Jens and Geiger, Christian and D{\"o}rner, Ralf and Grimm, Paul}, publisher = {Shaker Verlag}, address = {Herzogenrath}, isbn = {978-3-8440-6215-1}, doi = {10.2370/9783844062151}, pages = {45 -- 52}, year = {2018}, abstract = {We describe an application of augmented reality technology for non-destructive testing of products in the metal-industry. The prototype is created with hard- and software, that is usually employed in the gaming industry, and delivers positions for creating ultra- sonic material scans (C-scans). Using a stereo camera in combination with an hmd enables realtime visualisation of the probes path, as well as the setting of virtual markers on the specimen. As a part of the implementation the downhill simplex optimization algorithm is implemented to fit the specimen to a cloud of recorded surface points. The accuracy is statistically tested and evaluated with the result, that the tracking system is accurate up to ca. 1-2 millimeters in well set-up conditions. This paper is of interest not only for research institutes of the metal-industry, but also for any areas of work, in which the enhancement with augmented reality is possible and a precise tracking is necessary.}, language = {en} } @inproceedings{RyskeldievIgarashiZhangetal.2018, author = {Ryskeldiev, Bektur and Igarashi, Toshiharu and Zhang, Junjian and Ochiai, Yoichi and Cohen, Michael and Herder, Jens}, title = {Spotility: Crowdsourced Telepresence for Social and Collaborative Experiences in Mobile Mixed Reality}, series = {ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW '18)}, booktitle = {ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW '18)}, publisher = {ACM}, address = {New York}, isbn = {978-1-4503-6018-0}, doi = {10.1145/3272973.3274100}, pages = {373 -- 376}, year = {2018}, abstract = {Live video streaming is becoming increasingly popular as a form of interaction in social applications. One of its main advantages is an ability to immediately create and connect a community of remote users on the spot. In this paper we discuss how this feature can be used for crowdsourced completion of simple visual search tasks (such as finding specific objects in libraries and stores, or navigating around live events) and social interactions through mobile mixed reality telepresence interfaces. We present a prototype application that allows users to create a mixed reality space with a photospherical imagery as a background and interact with other connected users through viewpoint, audio, and video sharing, as well as realtime annotations in mixed reality space. Believing in the novelty of our system, we conducted a short series of interviews with industry professionals on the possible applications of our system. We discuss proposed use-cases for user evaluation, as well as outline future extensions of our system.}, language = {en} } @inproceedings{PaulHerder2018, author = {Paul, Felix and Herder, Jens}, title = {A model-based filtering approach for real-time human motion data}, series = {Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realit{\"a}t - 15. Workshop der GI-Fachgruppe VR/AR}, booktitle = {Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realit{\"a}t - 15. Workshop der GI-Fachgruppe VR/AR}, editor = {Herder, Jens and Geiger, Christian and D{\"o}rner, Ralf and Grimm, Paul}, publisher = {Shaker Verlag}, address = {Herzogenrath}, isbn = {978-3-8440-6215-1}, doi = {10.2370/9783844062151}, pages = {37 -- 44}, year = {2018}, abstract = {Acquiring human motion data from video images plays an important role in the field of computer vision. Ground truth tracking systems require markers to create high quality motion data. But in many applications it is desired to work without markers. In recent years affordable hardware for markerless tracking systems was made available at a consumer level. Efficient depth camera systems based on Time-of-Flight sensors and structured light systems have made it possible to record motion data in real time. However, the gap between the quality of marker-based and markerless systems is high. The error sources of a markerless motion tracking pipeline are discussed and a model-based filter is proposed, which adapts depending on spatial location. The proposed method is then proven to be more robust and accurate than the unfiltered data stream and can be used to visually enhance the presence of an actor within a virtual environment in live broadcast productions.}, language = {en} } @inproceedings{VermeegenHerder2018, author = {Vermeegen, Kai and Herder, Jens}, title = {A Lighthouse-based Camera Tracking System for Professional Virtual Studios}, series = {Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realit{\"a}t - 15. Workshop der GI-Fachgruppe VR/AR}, booktitle = {Workshop Proceedings / Tagungsband: Virtuelle und Erweiterte Realit{\"a}t - 15. Workshop der GI-Fachgruppe VR/AR}, editor = {Herder, Jens and Geiger, Christian and D{\"o}rner, Ralf and Grimm, Paul}, publisher = {Shaker Verlag}, address = {Herzogenrath}, isbn = {978-3-8440-6215-1}, doi = {10.2370/9783844062151}, pages = {19 -- 26}, year = {2018}, abstract = {This article describes the possibilities and problems that occur using the SteamVR tracking 2.0 system as a camera tracking system in a virtual studio and explains an approach for implementation and calibration within a professional studio environment. The tracking system allows for cost effective deployment. Relevant application fields are also mixed reality recording and streaming of AR and VR experiences.}, language = {en} }