@article{StrucksWatermannWeberetal.2021, author = {Strucks, Peter and Watermann, Clara and Weber, Konradin and Kaluza, Stefan}, title = {Systematic Investigations of Vibrational and Fluid-Mechanical Stability of Coated Monolithic Catalysts}, series = {Chemie Ingenieur Technik}, volume = {93}, journal = {Chemie Ingenieur Technik}, number = {5}, publisher = {Wiley}, issn = {1522-2640}, doi = {10.1002/cite.202000233}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:due62-opus-28930}, pages = {1 -- 6}, year = {2021}, abstract = {Heterogeneous catalysts usually consist of porous, inorganic materials. Especially in the mobile application, e.g., in exhaust gas catalysis as a part of the gas line of an engine, there are loads due to vibrations and high gas velocities. It can be assumed that physical stress will lead to a loss of the catalytically active coating. The present contribution describes experimental setups and methods for a systematic and reproducible investigation of the main influences to the mass loss due to vibrational and fluid-mechanical stress caused by particle-free gas flows.}, language = {en} }