
Automatic Layout of Graphs for
LOEWE Automated Testing System

Master Thesis

at the University of Applied Sciences Hof
Faculty IT

Master of Software Engineering for Industrial Applications

Presented to

Prof. Dr. Schaller

Alfons-Goppel-Platz 1

95028 Hof

Germany

Presented by

Markus Koenig

Fichtelgebirgsstrasse 9

95173 Schoenwald

Germany

19th June 2007

Contents

I. Introduction x

1. Introduction 1
1.1. LOEWE Automated Testing System . 2
1.2. Definitions . 3
1.3. Graphical Notations . 5

1.3.1. Element Symbol . 5
1.3.2. Control-Flow Operators . 5
1.3.3. LAUTS Elements . 5

1.4. Problem Definition . 6
1.5. Project Aims . 6
1.6. Overview . 6

2. Basics of Graph Drawing 7
2.1. Diagram Language . 7
2.2. Aspects of Graph Drawing . 8
2.3. Details of Graph Drawing Parameters . 10

2.3.1. Graph Types . 10
2.3.2. Drawing Conventions . 11
2.3.3. Aesthetic Drawing Rules . 12

2.4. Graph Drawing Approaches . 13
2.4.1. Topology-Shape-Metrics Approach 13
2.4.2. The Hierarchical Approach . 14
2.4.3. The Force-Directed Approach . 16
2.4.4. The Divide and Conquer Approach 16

II. Graph Drawing 17

3. Classification of Graph Type 18
3.1. Definition given by LAUTS Structure . 18
3.2. Classification . 20

3.2.1. Special Case Sequence . 21
3.2.2. Conclusion of Classification . 21

3.3. Planarity . 21

ii

Contents

4. Graph Transformations 23
4.1. Defect-Draw-Repair . 23
4.2. Cycle Removal . 24
4.3. Cycle Substitution . 25

4.3.1. Additional Definitions . 25
4.3.2. The Algorithm of Cycle Substitution 26

4.4. Bi-Treeing . 27
4.4.1. Augmentation . 28
4.4.2. Drawing . 28
4.4.3. Reverse Conversion . 29

5. Prearrangements for Rating Algorithms 31
5.1. Rating of Graph Drawing Algorithms . 31
5.2. Arrangements for the Test Objects . 32
5.3. Characteristics of the Graphs used as Test Objects 32

5.3.1. Shape of the Graph . 32
5.3.2. Size of the Graph . 33

5.4. Set of Graphs to Test . 34

6. Graph Drawing Algorithms 36
6.1. Leaf-First-Layering . 36

6.1.1. Overview . 36
6.1.2. Mode of Operation . 36
6.1.3. Complexity . 40
6.1.4. Results . 40
6.1.5. Evaluation . 41

6.2. Dominance-Straight-Line . 42
6.2.1. Overview . 42
6.2.2. Mode of Operation . 43
6.2.3. Complexity . 45
6.2.4. Results . 45
6.2.5. Evaluation . 45

6.3. Improved Walker . 47
6.3.1. Overview . 47
6.3.2. Mode of Operation . 47
6.3.3. Complexity . 53
6.3.4. Results . 54
6.3.5. Evaluation . 54

6.4. Magnetic Spring Model - Centric . 55
6.4.1. Overview . 55
6.4.2. Mode of Operation . 56
6.4.3. Complexity . 59
6.4.4. Results . 59
6.4.5. Evaluation . 60

iii

Contents

7. Analysis and Perspectives 62
7.1. Comparison of the Algorithms . 62

7.1.1. Transformers . 62
7.1.2. Graph Drawing Algorithms . 65

7.2. Further Work and Perspectives . 67
7.2.1. Perspectives . 67
7.2.2. Further Work . 67

III. Appendix 68

A. Tree Diagram Style Guide 69
A.1. Placement of Vertices . 69

A.1.1. Vertical Vertex Layout . 69
A.1.2. Horizontal Vertex Layout . 70

A.2. Spacing . 70
A.2.1. Vertical Spacing . 70
A.2.2. Horizontal Spacing . 70

A.3. Edges . 71
A.3.1. Inter-Layer Edges . 71
A.3.2. Inner-Layer Edges . 71
A.3.3. Orthogonal Edges . 72

B. Set of Graphs used as Test Objects 73
B.1. Details of the Test Objects . 73

B.1.1. Minimal Decision . 73
B.1.2. Minimal Sequence . 74
B.1.3. Minimal Other . 74
B.1.4. Pure Decision . 75
B.1.5. Pure Sequence . 75
B.1.6. Pure Other . 76
B.1.7. Special Case with 96 Vertices - Special (100) 76
B.1.8. Special Case with 10,450 Vertices - Special (10000) 77
B.1.9. Small Graph with g+G = 5 - 1 (563) 77
B.1.10.Huge Graph with g+G = 5 - 1 (10139) 78
B.1.11. Small Graph with g+G = 50 - 2 (471) 78
B.1.12.Huge Graph with g+G = 50 - 2 (7311) 79
B.1.13. Small Graph with g+G = 20 - 3 (670) 79
B.1.14.Huge Graph with g+G = 20 - 3 (9551) 80
B.1.15. Small Graph with g+G = 3 - 4 (564) 80
B.1.16.Huge Graph with g+G = 3 - 4 (9787) 81

iv

Contents

C. Results of Drawings 82
C.1. Leaf-First-Layering . 82

C.1.1. Min Decision . 82
C.1.2. Min Other . 82
C.1.3. Min Sequence . 82
C.1.4. Pure Decision . 82
C.1.5. Pure Other . 82
C.1.6. Pure Sequence . 82
C.1.7. Special(100) . 83
C.1.8. Special(10000) . 83
C.1.9. 1 (10139) . 84
C.1.10. 1 (563) . 84
C.1.11. 2 (471) . 84
C.1.12. 2 (7311) . 84
C.1.13. 3 (670) . 84
C.1.14. 3 (9551) . 84
C.1.15. 4 (564) . 85
C.1.16. 4 (9787) . 85

C.2. Dominance Straight Line . 85
C.2.1. Min Decision . 85
C.2.2. Min Other . 85
C.2.3. Min Sequence . 85
C.2.4. Pure Decision . 86
C.2.5. Pure Other . 86
C.2.6. Pure Sequence . 87
C.2.7. Special(100) . 87
C.2.8. Special(10000) . 88
C.2.9. 1 (10139) . 88
C.2.10. 1 (563) . 89
C.2.11. 2 (471) . 90
C.2.12. 2 (7311) . 91
C.2.13. 3 (670) . 92
C.2.14. 3 (9551) . 93
C.2.15. 4 (564) . 94
C.2.16. 4 (9787) . 95

C.3. Improved Walker . 95
C.3.1. Min Decision . 95
C.3.2. Min Other . 95
C.3.3. Min Sequence . 95
C.3.4. Pure Decision . 96
C.3.5. Pure Other . 96
C.3.6. Pure Sequence . 96
C.3.7. Special(100) . 96
C.3.8. Special(10000) . 97

v

Contents

C.3.9. 1 (10139) . 97
C.3.10. 1 (563) . 97
C.3.11. 2 (471) . 97
C.3.12. 2 (7311) . 97
C.3.13. 3 (670) . 97
C.3.14. 3 (9551) . 98
C.3.15. 4 (564) . 98
C.3.16. 4 (9787) . 98

C.4. Magnetic Spring Model - Centric . 98
C.4.1. Min Decision . 98
C.4.2. Min Other . 98
C.4.3. Min Sequence . 98
C.4.4. Pure Decision . 102
C.4.5. Pure Other . 103
C.4.6. Pure Sequence . 103
C.4.7. Special(100) . 104
C.4.8. Special(10000) . 104
C.4.9. 1 (10139) . 105
C.4.10. 1 (563) . 106
C.4.11. 2 (471) . 106
C.4.12. 2 (7311) . 107
C.4.13. 3 (670) . 107
C.4.14. 3 (9551) . 108
C.4.15. 4 (564) . 109
C.4.16. 4 (9787) . 110

D. Definitions 111

E. CD 116

F. Affidavit 117

vi

List of Figures

2.1. Examples for the four basic language types. 7
2.2. A composite of net and region type. 7
2.3. An example that shows the two competitive rules clear symmetry and

minimal number of edge crossings. 9
2.4. One possible classification of graphs. 10
2.5. Different drawings of the same graph with different edge drawing conven-

tions. 11
2.6. Drafts for Vertex Placement Conventions. 12
2.7. Steps of the topology-shape-metrics approach. 14
2.8. Steps of the hierarchical graph drawing approach. 15

3.1. An example of a part of a test in the LAUTS’ structure. 19
3.2. Difference regarding the Control-Flow Operator Sequence between the

LAUTS structure and the drawn graph. 20
3.3. Kuratowski graphs. 22
3.4. Proofing planarity of Sequence. 22

4.1. Operating principle of the Transformers. 23
4.2. Edges that can be removed by Defect-Draw-Repair method. 24
4.3. Conversion of a graph with Cycle Removal method. 25
4.4. Process of Cycle Substitution. 27
4.5. Cases to distinguish for bi-tree conversion. 28
4.6. Process of bi-treeing. 29
4.7. Reverse Conversion of the bi-tree. 30

5.1. Influence of a Sequence to tree-depth. 34

6.1. Minimum- and maximum-layer-approach for Leaf-First-Layering. 37
6.2. Placement of bends in upward and downward edges for Leaf-First-Layering. 39
6.3. Exemplary results of the Leaf-First-Layering algorithm. 41
6.4. The lower right vertex is reachable via two connections. 43
6.5. Exemplary results of the Dominance-Straight-Line algorithm. 46
6.6. Edge length differences at one node. 47
6.7. Illustration of thread-pointer in Improved-Walker algorithm. 48
6.8. Inner and outer contours of two subgraphs. 50
6.9. The worst case for the apportion-procedure of Improved Walker algorithm. 53
6.10. The ideal case for the apportion-procedure of Improved Walker algorithm. 53

vii

List of Figures

6.11. The drawings of the smallest graphs done by Improved Walker. 54
6.12. Required area and edge lengths are less at graphs with crossings. 55
6.13. Illustration of the Magnetic Spring Model. 56
6.14. Common types of magnetic fields. 56
6.15. Preprocessing for Magnetic Spring Model. 57
6.16. Five drawings of the same graph with Magnetic Spring Model - Centric. . 60

7.1. Problem of drawings done after Defect-Draw-Repair method. 64
7.2. Complexity of graph drawing algorithms. 66

A.1. Layer-oriented appearance. 69
A.2. Height optimization problem. 70
A.3. Inter-layer edges with a Sequence as cycle root. 72

viii

List of Tables

1.1. Symbols used for Control-Flow Operators. 5
1.2. Symbols used for LAUTS Elements. 5

6.1. Result of Leaf-First-Layering. 41
6.2. Result of the Dominance-Straight-Line. 46
6.3. Result of the Improved Walker algorithm. 54
6.4. Average result of Magnetic Spring Model with a centric magnetic field. . 60

A.1. Appearance of edges subject to the preceding node. 71

C.1. Result of first run of Magnetic Spring Model with a centric magnetic field. 99
C.2. Result of second run of Magnetic Spring Model with a centric magnetic

field. 99
C.3. Result of third run of Magnetic Spring Model with a centric magnetic field.100
C.4. Result of fourth run of Magnetic Spring Model with a centric magnetic

field. 100
C.5. Result of fifth run of Magnetic Spring Model with a centric magnetic field.101

ix

Part I.

Introduction

x

1. Introduction

More and more of todays electronical equipment contains microprocessors. This starts
with devices of daily use like toasters [16] and ends with highly automated factories.
With devices more complex than toasters, one microprocessor alone is not enough any-
more. Normally, it is not enough to just have some processors - they also have to work
together. This means they have to communicate with each other which is typically done
via electric signals. Unfortunately, many problems arise with that. Different temperat-
ures and humidity, broken cables or interferences diversifying the signal due to induction
are only some examples of physical disturbances which have to be handled.
A microprocessor on its own does nothing. Software is needed to define the instruc-
tions. However, with the employment of software further problems appear. In addition
to bugs like infinite loops or wrong memory allocations which are noticed relatively easy
in a crash or a not responding of the processor, there are errors which are hard to find.
For example, a fault in a rarely used part of a module’s implementation which does not
lead to a crash but causes wrong results would be a worst case.
We are quite used to have software problems frequently with our personal computers
(which is annoying enough). But with the increasing number of microprocessors in daily
used devices, these problems arise there, too. While a crashing clock radio might still
be an annoyance, a failing processor in a car can matter of life and death.
In case of TV set, the effects of a crashing processor or a software failure are at
first sight not that critical. However for a company like LOEWE, which produces high
quality and luxury TV sets, such errors would have a negative impact on the image of
the company. In TV sets, the number of embedded processors has increased significantly
during the last few years. The growing display size, High-Definition Television (HDTV)
and digital television are only some of the reasons for that.
Problems arise even if there were changes to only one module of the device. It is
not only necessary to ensure that the module itself works fine but also that the overall
system containing this module still works like before. Tests have to be done to ensure
that the whole hardware and software works fine. As always, testing is a long-winded,
often tedious process and as such it costs a lot of money. This is even more annoying
when considering the fact that the test cases for one product are very similar all the
time. For instance the test for switching the program would not change only because
there was a software update for image processor.
Processes that are always the same are predestined to be automated. This holds true
both for assembly belts and software. For that purpose, the LOEWE Automated Testing
System (LAUTS) is developed within project “Software Platform for Intelligent Con-
sumer Electronics” in a cooperation of LOEWE and the University of Applied Sciences
Hof. LAUTS is able to execute and evaluate test cases. One of the major demands is

1

1. Introduction

that the software is usable without knowledge about (textual) programming languages.
Therefore, a graphical representation (diagram) of the test cases is used.

1.1. LOEWE Automated Testing System (LAUTS)

LAUTS is a software which is used mainly for testing TV sets but is not limited to this
appliance. It is capable of executing and evaluating test cases on every command-based
system. The main focus is on devices with bus-based communication where LAUTS acts
as an additional module connected to this bus. It listens to all of the communication on
the bus and is able to emit own commands for testing if the necessary reactions occur.
However, LAUTS is also able to handle direct connections (which are seen as a buses
with only two modules). Additionally, it can handle different communication channels
simultaneously.
Another possible application area is the simulation of modules at least in some degree.
This was never an objective and is actually a by-product. Nevertheless it might be useful
in the development of new systems, where not all modules yet exist. Moreover, it could
be used to test single modules by simulating the others to ensure that this module works
as specified.
Two types of commands are distinguished in LAUTS. A command sent by LAUTS is
termed “Action” as it is an activity done by LAUTS on the bus of the “System Under
Test” (SUT). Accordingly a command originating from one of the other modules is
named “Reaction”. Those two types are mapped to the Action-Node and the Reaction-
Node in LAUTS’ diagrams. From all the elements in a LAUTS’ diagram these two are
closest to the SUT (low-level).
Opposite these two nodes, TestSuite-Node depicts an executable test (highest level).
There may only be one TestSuite-Node per test at maximum as it in fact represents
the whole test itself. To be able to reuse parts of the tests, TestCase-Node and the
Function-Node were introduced. Both are in between the TestSuite- and the Action-
respectively Reaction-Node. One TestCase-Node (including its inferior nodes) can be
reused in several tests at once. The same is true for the Function. This node additionally
allows to pass parameters which is useful if the same part is used in several contexts.
Those two node types facilitate the maintainability of existing tests as well as the creation
of new tests as those can use already existing components.
Up to now, only containers (TestSuite, TestCase and Function) and actors (Action and
Reaction) have been addressed. To model the interdependency, Control-Flow-Operators
are used. Each of these elements has exactly one parent node and all except one have
an arbitrary number of child nodes. The one exception is mentioned below. Three basic
types are necessary. The first one is the Sequence-Node. It implies that the child nodes
are handled in exactly the order given by the user.
The second one is Random-Node which selects its child nodes randomly. Random
exists in three characteristics: RandomAll-Node which assures that each of its child
nodes is chosen exactly once, RandomPutBack-Node picks out a specified number of
child nodes whereas some children may occur several times while others occur not at all.

2

1. Introduction

In its pure form a specified number of its children is randomly chosen at which each one
may occur only once.
The exception mentioned before is the Decision-Node which has exactly two child
nodes. The one to use is chosen by a boolean expression1 (e.g. x > 5).
To model the tests all those elements, or more precisely their graphical representations,
are arranged in diagrams. LAUTS is open to support different diagram types. As a start
tree(like)2 diagrams are used. The elements represent the nodes and the relations are
mapped as connections between them.
Especially if large tests are modelled, the need to automatically layout the diagram
becomes clear. The user should be able to focus on modelling the test itself instead of
wasting much time with arranging the nodes. Although layout is not important for the
functionality, a clearly laid out diagram is crucial for understanding its meaning. This
is important for example during maintenance of the test pictured by the diagram. This
thesis discusses and evaluates different techniques and algorithms to layout the special
kind of graph used by LAUTS’ diagrams.

1.2. Definitions

This section defines most of the terms used in this thesis. For a complete mathematical
definition have a look at Appendix D.

• Graph: A graph is a structure consisting of a finite set of vertices (or nodes) which
are connected by edges (also called connections, links, or arcs). The mathematical
definition is as follows3: A Graph G consists of an ordered pair G := (V,E) where
V 6= ∅ and V ∩ E = ∅ . V (vertex) and E (edge) are a finite set each.

• Drawing: For this thesis a drawing Γ is (one) representation of a graph. A
graph itself has the information about nodes and the connections between them.
However, nothing is given about the position, shape or size of any of them. So
a drawing is in its simplest case the result of a function mapping each vertex
v to a distinct point Γ(v) and each edge (u, v) to a line Γ(u, v). A graph has
an unlimited number of drawings. If no distinction between the graph and the
drawing is required, the term ”the edge (u, v) is ...” and ”the drawing Γ(u, v) is
...” are the same [4].

• Diagram: Diagram is used in three contexts. Firstly, it is a synonym for drawing
and secondly, it is used as a short version of ”diagram type”. Thirdly, it describes
the space in which the drawing is placed. If the distinction between these meanings

1A boolean expression means that the result is of type boolean. The operands may be of any other
type.

2The diagram is not really a tree diagram as by definition there are no cycles allowed in a tree while
this diagram type is able to display such for the Sequence-Nodes. This topic is discussed in detail
in chapter 3.

3The definition given here is a shortened one for undirected graphs. For the complete definition and
the definition of directed graphs have a look at appendix D.

3

1. Introduction

is not clear on the basis of the context, it will be specially mentioned which types
of diagram is meant.

• Diagram Language: The diagram language is the sum of all rules which exist
for creating and reading a diagram type. Thus it can be seen as the definition of
a diagram type.

• Syntactic grammar: The syntactic grammar specifies the rules of arrangement
for the elements in a diagram. For instance, the rules which elements are allowed
to be connected with each other are part of the syntactic grammar.

• Unit of Meaning: The unit of meaning of a diagram defines the elements appear-
ing in the diagram. Together with the syntactic grammar, it forms the Meta-Model
of the diagram.

• Aesthetic Criterium: An aesthetic criterium is a rule concerning the shape of
a drawing to make it ”look good” to the user.

• Vertex, Node: Those two expressions are used for the elements out of the set V
of a graph.

• Edge, Connection, Arc, Link: These four terms refer to the elements out of
the set E of a graph. For directed edges ”outgoing” means that the edge starts
at a vertex and ”incoming” denotes that the edge ends at a vertex. Edges are
visualized in drawings as lines between vertices.

• LAUTS structure: The LAUTS structure describes the elements inside the soft-
ware LAUTS. These elements are the basis for the graph which will be drawn.

• Control-Flow Operator: (short : Control-Flow) is one of the two groups of
elements in the LAUTS structure. It contains the elements: Sequence, Random,
RandomPutBack, RandomAll and Decision.

• LAUTS Element: A LAUTS Element is one of two groups of elements in the
LAUTS structure. It contains the elements: TestSuite, TestCase, Function, Action
and Reaction.

• Top-Down: Top-Down means that something starts at the top and ends at the
bottom. Top and bottom are seen either as coordinates or in terms of graph theory
as root (top) and leafs (bottom).

• Bottom-Up: Bottom-Up means that something starts at the bottom and ends
at the top. Top and bottom are seen either as coordinates or in terms of graph
theory as root (top) and leafs (bottom).

4

1. Introduction

1.3. Graphical Notations

For all diagrams and outlines in this thesis, there are defined common symbols for all
elements of LAUTS.

1.3.1. Element Symbol

A symbol which can be any LAUTS Element or Control-Flow Operator has the following

appearance: something

1.3.2. Control-Flow Operators

Control-Flow Operators are represented by a sign surrounded by a circle (e.g. & for
Sequence). Table 1.1 shows all the symbols.

Symbol Control-Flow Operator
& Sequence

Random
RandomPutBack

A RandomAll
Y Decision

Table 1.1.: Symbols used for Control-Flow Operators.

1.3.3. LAUTS Elements

LAUTS Elements are shown as rectangles surrounding the written type (e.g. TestCase).
Table 1.2 shows all the symbols.

Symbol LAUTS Element

TestSuite TestSuite

TestCase TestCase

Function Function

Action Action

Reaction Reaction

Table 1.2.: Symbols used for LAUTS Elements.

5

1. Introduction

1.4. Problem Definition

This thesis is assigned to LAUTS, a software for automated testing developed in the
SPLICE project at the University of Applied Sciences Hof. More precisely, the thesis
is about automatically drawing the graphs which represent the structure of tests in
LAUTS.
As these structures may become very big, it has to be possible to automatically layout
the graph. This has to be done both in good time and in a user-friendly layout.

1.5. Project Aims

This thesis aims to find an algorithm or a combination of algorithms which create a
visual representation of the structure of information used in LAUTS to represent tests
in easily comprehendible layout and reasonable time.

1.6. Overview

The thesis is divided into three parts. In the introduction, common definitions and
graphical notations as well as the problem definition and the aim of the thesis are given.
Furthermore, the basics of graph drawing are described to provide the fundamental
knowledge about this topic which is necessary to understand the subject matter discussed
in the following chapters.
In the second part, the different graph drawing algorithms will be analyzed and eval-
uated. For drawing graphs, it first has to be clarified which kind of graph is used for
describing the test structure. Chapter 4 deals with methods to convert one graph type
into another offering the possibility to apply graph drawing algorithms, which are not
applicable to this type of graph without that conversion. Subsequently, the possibilities
of rating algorithms are discussed so that different algorithms can be compared to each
other. In chapter 6, graph drawing algorithms are explained, the results are presented
and finally evaluated. The thesis culminates in a final discussion of the most appropriate
algorithm for LAUTS’ specific graph type.
The appendix forms the third part of the thesis. Appendix A contains a style guide
describing the goal of the drawing process. All aesthetic rules for the graph drawing
algorithms are derived from this description. In appendix B, the set of graphs which are
used as input for the algorithms are described. This is followed by appendix C containing
the results of the drawings produced by the tested algorithms. Finally, appendix D
contains the mathematical definitions which provide the basis for this thesis.

6

2. Basics of Graph Drawing

2.1. Diagram Language

A diagram is an environment for the drawing of a graph with clearly defined rules. The
process of producing a drawing (Γ) out of a graph (G) is called graph drawing. The
rules of how to draw are defined in the diagram language. This language consists of two
parts. The units of meaning which define the elements of the diagram and the syntactic
grammar which specifies the rules of arrangement of the elements [12]. Together they
define the meta-model of the diagram.
Referencing [12], there are four basic types of diagram languages: matrix, net, region
and coordinate type. Figure 2.1 shows examples of these types. Normally, diagrams are
not a pure type but rather a mixture of those basic types. Figure 2.2 shows an example
for a composite of net and region type.

Figure 2.1.: Examples of the four basic language types (cp. [12], p. 2): (a) matrix type;
(b) net type; (c) region type; (d) coordinate type.

Figure 2.2.: A composite of net and region type (cp. [12], p. 2).

7

2. Basics of Graph Drawing

2.2. Aspects of Graph Drawing

For graph drawing, the following aspects have to be taken into account ([12] chapter 2,
[4] chapter 2):

• Drawing Object: Defines the type of graph which is the object to draw. This
has to be taken into consideration because not every graph drawing algorithm can
handle every type of graph (see 2.3.1 Graph Types for further detail).

• Drawing Conventions: These are the conventions concerning the placement of
vertices and the routing of the edges which must be fulfilled. As the conventions
concerning vertices are quite different from those for edges, there is a distinction
between placement conventions and routing conventions. Drawing conventions are
discussed in more detail in section 2.3.2. The drawing conventions for edges are
defined in table A.1 in the Style Guide.

• (Aesthetic) Drawing Rules: While drawing conventions only generally define
the possible placement of vertices and routing of edges for each possible graph,
drawing rules define the concrete placement and routing for a specific graph. These
rules are often referred to as ”Aesthetic Rules” because they decide on how the
graph will look like and if it looks ”nice”. The graph is determined by different
types of rules:

– Static Rules: The rules that are applied if the graph is drawn for the first
time.

∗ Semantic Rules: Derive the placement (vertex) and routing (edge) rules
from the meaning of the vertex or edge. The meaning has to be defined
in some way (e.g. the root-node is placed on the topmost layer).

∗ Structural Rules: Do not take the meaning of the vertex or an edge
into account. These rules consider each vertex or edge to be equal. The
only factor considered is the graph-theoretic features of the graph to draw
(e.g. If vertex a follows vertex b, draw vertex b below vertex a).

– Dynamic Rules: Are used if the (already) drawn graph is redrawn because
of a change. Those rules are not of interest for this thesis.

In addition to these types, there are four axis of classification used for drawing
rules.

1. Determination if the rule has a unique solution.

2. Determination whether the rule is topological, shape-oriented or metric.

3. Determination whether the rule applies to the whole graph (globally) or only
to parts of the graph (locally).

4. Determination if the rule is hierarchical, flat or both.

8

2. Basics of Graph Drawing

Normally the aesthetic rules are an optimisation of something, for example, a
minimisation of the total number of edge crossings or the maximum symmetry. A
variety of possible drawing rules is given in chapter 2.3.3.

Normally the aesthetic criteria are conflicting. And even if not, it is difficult for
the algorithm to deal with all of them at once (cf. [4], p. 17). Thus there has to
be an order which defines the importance of a rule / convention. This is called
Priority Relationship.

• Priority Relationship: It might not be possible to reconcile all the rules /
conventions at once. For example, a first rule is that the graph should have a clear
symmetry and the second is to have as few edge crossings as possible. Both rules
might be possible on their own. But if both rules should be applied simultaneously,
there would not be a solution (see figure 2.3). This is why there have to be priorities
for rules and conventions defining which rule should be applied first in such cases.

Figure 2.3.: An example that shows the two competitive rules clear symmetry and
minimal number of edge crossings. On left side the minimal number of edge
crossing and on the right side clear symmetry has the higher priority (cp.
[5]).

In addition to the priorities which have to be set individually for each graph type,
there is one global rule: drawing conventions have a higher priority than drawing
rules. This is obvious because by definition drawing conventions always have to
be fulfilled whilst drawing rules are goals which should be fulfilled.

• Features of Drawing Algorithms: According to [12] page 17, algorithms can
be divided into five categories:

1. ”Algorithms that use graph theory and graph algorithm.”

2. ”Heuristic algorithms.”

3. ”Those that use force directed models (such as the ring and spring model),
thermodynamics models (simulated annealing), bioinformatics model (genetic

9

2. Basics of Graph Drawing

algorithm) and other simulations.”1

4. ”AI algorithms such as layout by example.”

5. ”Hybrid algorithms combining different types of algorithms mentioned above.”

• Computational Efficiency: Efficiency is nothing directly seen by the user. De-
pending on the field of application it is more or less important. If the algorithm
has to do the drawing in real-time, it is fundamental that the result comes up fast.
On the other hand, if the computation may take several hours, the computational
efficiency is not as crucial.

Of course this is neither the only way to classify algorithms for graph drawing nor is it
an official standard. This classification is used in this thesis to have a single framework
to classify and evaluate the algorithms.

2.3. Details of Graph Drawing Parameters

2.3.1. Graph Types

Depending on its properties, a graph is assigned a type. Image 2.4 shows the different
classes of graphs. It has to be noted that a graph may be a combination of more than one
class. For example a binary rooted tree with directed edges is a binary tree as well as a
directed graph (digraph) which is of course acyclic by definition. As those classifications
are standard in graph theory, they will not be explained here in detail.

Figure 2.4.: The classification of graphs which is used in this thesis (cp. [12], p. 8).

1In this thesis, such algorithms will be summarized as natural law algorithms, as they emulate the
laws of nature inside a computer to do the layout.

10

2. Basics of Graph Drawing

2.3.2. Drawing Conventions

Normally, there are a lot of drawing conventions for vertices but only a few conventions
for edges.

2.3.2.1. Edge Drawing Conventions

The drawing conventions presented here are adopted from [12] page 9 - 11 and [4] page
12 - 17.

Poly-line Drawing The edges are drawn as a chain of straight lines. The end points
of such straight lines which are neither the beginning nor ending of the whole edge are
called via or bend. An example is shown in figure 2.6(a).

Straight-line Drawing Edges are drawn as one straight line connecting the two incident
vertices. Figure 2.6(b) shows an example.

Orthogonal Drawing Edges are drawn as poly-lines altering horizontal and vertical
segments. An example is shown in figure 2.6(c).

Directed Drawing This is usable for directed graphs only. It tries to draw the graph
so that (most of) the edges point to the same direction (upward, downward, left, right).
If all edges point to the same direction it is called strict directed drawing.

Figure 2.5.: Drawings of the same graph with different edge drawing conventions: (a)
poly-line; (b) straight-line; (c) orthogonal. ([4], p. 13).

2.3.2.2. Vertex Drawing Conventions

In [12], frequently used types of vertex drawing conventions are presented . The following
itemization presents the fundamental types of these conventions. Of course combinations
between the types are possible. Figure 2.6 shows examples for these vertex drawing
conventions.

11

2. Basics of Graph Drawing

• Free Placement: This is equivalent to no rules at all because it allows placing
the vertices everywhere.

• Parallel Line Placement: Allows placing the vertices on (or in between) parallel
lines. Naturally, these lines are horizontal or vertical. But the lines are not limited
to that alignment. They can be in any angle to the coordinate axis as long as
the lines are still parallel to each other. The horizontal parallel line placement is
widely used and called layered placement. Figure 2.6(a) shows an example.

• Concentric Circle Placement: The vertices are arranged on (or in between)
concentric circles. Of course variations are possible. For example, a tree drawn
with parallel line placement might only use the lower 180 degrees of the circles.
This convention has the advantage that there is an equal distance between the
root and any vertex on a layer. An example is shown in figure 2.6(b).

• Radial Line Placement: Allows the placement of vertices on (or in between)
radial lines. An example for that is shown in figure 2.6(c).

• Orthogonal Grid Placement: Places the vertices on an orthogonal grid. Either
on the crossing of a horizontal and a vertical line or in the area surrounded by
two neighbouring horizonal and two neighbouring vertical lines. In figure 2.6(d)
an example is shown.

• Polar Grid Placement: This is some kind of mixture between a concentric and
an orthogonal placement. The vertices are placed on the crossings of the concentric
circles and the radial lines. The example is shown in figure 2.6(e).

(a) (b) (c) (d) (e)

Figure 2.6.: Drafts for vertex placement conventions. (a) Parallel Lines, (b) Concentric
Circles, (c) Radial Lines, (d) Orthogonal Grid, (e) Polar Grid.
(cp. [12], p. 9).

2.3.3. Aesthetic Drawing Rules

In the following, the most important aesthetic drawing rules are shortly introduced (cp.
[4], p. 14 - 16).

12

2. Basics of Graph Drawing

Minimisation of Edge Crossings The total number of crossing edges should be as
small as possible. The ideal case would be a planar graph.

Minimisation of Area The area used by the elements of the drawing should be as
narrow as possible. If the area of the drawing becomes too big, it becomes very difficult
to get an overview. There are different options of measuring the area:

• The smallest polygon covering the whole graph (circumscribing polygon).

• The smallest rectangle covering the whole graph (circumscribing rectangle).

• The smallest circle covering the whole graph (circumscribing circle).

Naturally, other ways of measurement are possible. For this thesis, the circumscribing
rectangle will be used because the graphs are drawn for visualisation on computer screens
and for printing, which are both rectangular media.

Total Edge Length The sum of the lengths of all edges should be as small as possible.

Maximum Edge Length The maximum length of one edge should be as small as
possible.

Uniform Edge Length The edges should all have approximately the same length.

Cluster A subset of vertices of the graph should appear preferably close together.

Shape A subset of vertices of the graph should be drawn in a predefined shape.

2.4. Graph Drawing Approaches

This section presents some of the standard approaches used for graph drawing. Of
course, these are only a selection from the large number of available algorithms and
methods.

2.4.1. Topology-Shape-Metrics Approach

This method was proposed in [1],[14] and [15]. It constructs orthogonal grid drawings
and facilitates a homogenous treatment of many (aesthetic) rules and criteria. Tree steps
are to be done:

1. Planarization: Determines the topology of the drawing. In this step, the number
of edge crossings is to be reduced as much as possible.

13

2. Basics of Graph Drawing

2. Orthogonalization: Determines the shape of the drawing. Here, orthogonal
representation of the graph has to be created. This means that the vertices do not
yet have concrete coordinates but each edge gets a list of angles.

3. Compaction: Determines the final coordinates of the vertices and the vias of
edges. Normally, the main problem here is minimizing the area for the drawing.

Figure 2.7.: Steps of the Topology-Shape-Metrics approach. (cp. [4], p. 21).

With the Topology-Shape-Metrics approach the minimisation of edge crossings has
the the highest priority, followed by the minimisation of bends. Minimization of the
area needed for drawing has the lowest priority. This is due to the order of the steps.
The step done first has the most influence on the drawing as it has the most freedom.
Each following step has to consider the work done by the steps before. Figure 2.7 shows
the order of the steps graphicly.
This approach is open for additional rules and constraints. The step in which the rules
are applied depends on the influence they should have on the drawing. If, for instance,
the additional rule concerns the initial placement of the vertices, the first step is the one
to choose. A rules affecting the routing of the edges, is to be added to the second step.
And finally, if the rule has an effect on the concrete placement of vertices and bends, it
has to be applied in the third step.

2.4.2. The Hierarchical Approach

The hierarchical approach originally proposed by [13],[3] and [18] is a five-step (for acyclic
digraphs three-step) process. Figure 2.8 shows a draft of this approach. Figure 2.8(a)

14

2. Basics of Graph Drawing

visualizes the process for acyclic graphs and (b) shows the additional steps for cyclic
graphs.

1. Decycling: (Only for cyclic graphs.) As the hierarchical approach only works for
acyclic graphs, cyclic ones have to be converted to acyclic graphs (temporarily).
This is done by reversing edges belonging to the cycles (see 4.2 Cycle Removal).
The set of reversed edges should be as small as possible.

2. Layer Assignment: Produces a layered digraph by assigning the vertices of graph
G to the layers L1, L2, ..., Lh such that if e(u, v) with u ∈ Li and v ∈ Lj then i < j
(inter layer edge). Layering means that all vertices on a layer Lk will have the
same y-coordinate. Next, the insertion of dummy nodes will assure that an edge
only bridges neighbouring layers (j = i+ 1).

3. Crossing Reduction: The task for this step is to find an order for the vertices
on each layer so that the total number of edge crossings is as small as possible.

4. X-Coordinate Assignment: In the prior step, only the order of the vertices
was defined for each layer. Now the assignment of x-coordinates is done, strictly
keeping the horizontal order of the vertices.

5. Recycling: (Only for cyclic graphs.) The edges reversed in step one are set back
to their right direction.

(a) Steps of the hierarchical approach for
loop-less digraphs.

(b) Additional steps for applying the
hierarchical approach to general di-
graphs.

Figure 2.8.: Steps of the hierarchical graph drawing approach. (cp. [4], p. 23 - 25).

15

2. Basics of Graph Drawing

Additional rules and constraints can only be applied in step four. This is because all
steps done before (and afterwards) are strictly defined and normally have no allowance
for additional rules or constraints.

2.4.3. The Force-Directed Approach

Algorithms using this approach simulate a physical system of forces to draw undirected
graphs as straight-line drawings. The task is to find a locally minimum energy config-
uration (cp. [4], p. 303). Of course drawings of directed graphs are also possible for
example, by just ignoring the directions of the edges. If straight-line drawing is not
wanted, this approach can be used too. First, the algorithm is used to layout the draw-
ing. Second, the shape of the edges is considered in an additional step for instance the
edges are drawn in orthogonal style.
This approach has two prerequisites:

1. A force model: for example considering the edges as springs and the vertices as
connections between these springs. This approach is also known as “Rings and
Springs” in literature. Another possibility would be to have a model where the
vertices are considered to be particles of equal charge so that they reject each
other.

2. The technique to find the locally minimum energy configuration. Normally simple
iterative methods are used for this purpose.

Additional rules and constraints can be used at arbitrary positions, for example by
defining special forces to have a set of vertices in a specific region (e.g. clustering).

2.4.4. The Divide and Conquer Approach

Divide and conquer is a technique widely used in computer science and also in graph
drawing. First, the graph is split into subgraphs and then these subgraphs are drawn
recursively. In the end, the subgraphs are glued together to have the drawing of the
complete graph. There are two major steps for trees or tree-like graphs:

1. Layer Assignment: Assign each vertex of the graph to one layer (see chapter
2.4.2).

2. Divide and Conquer: Use the divide and conquer algorithm. For different graph
types, the respective algorithms differ substantially.

16

Part II.

Graph Drawing

17

3. Classification of Graph Type

In order to find a suitable algorithm for graph drawing, it is necessary to ascertain the
type of graph as some graph drawing algorithms work better (or only) for a specific
type of graph. Furthermore, the knowledge about the graph type is helpful to define the
drawing constraints’ combinatorial properties given by the type (cp. [4]).

3.1. Definition given by LAUTS Structure

In LAUTS, there are different elements which occur as vertices in the graph: Test-
Suite, TestCase, Function, Action, Reaction, Sequence, Random, RandomPutBack,
RandomAll and Decision. The connections between these elements are seen as “con-
tains” relationships. Nevertheless, the vertices are referred to as preceding- or parent
vertex for the containing and following- or child vertex for the contained vertex. If a
distinction between these terms becomes necessary, it will explicitly be mentioned.
Rules are defined which element type may follow on a preceding one. Therefore, the
vertices are divided into two groups. Sequence, Random, RandomPutBack, RandomAll
and Decision are termed Control-Flow Operators and TestSuite, TestCase, Function,
Action and Reaction called LAUTS Elements.
To determine the graph type, it is necessary to consider the design of the graph struc-
ture. As the graphical shape of the vertices does not matter, the following itemization
contains the rules concerning the structure of LAUTS’ graphs. Since the connections
between the elements of the pure structure and the connections drawn in the diagram
are not the same, one has to distinguish between preceding (following) and containing
(contained) elements. Containing (contained) will be used to refer to the elements of
the LAUTS structure. Preceding (following) will be used for vertices of the graph which
are visualized in the diagram.

• Rules for vertices:

– A graph begins with one of the following LAUTS Elements: TestSuite, Test-
Case or Function.

– Each leaf of a graph is a LAUTS Element.

– Each LAUTS Element which is not a leaf is followed by exactly one Control-
Flow Operator.

– All Control-Flow Operators except Decision are followed by one or more
LAUTS Elements, Control-Flow Operators or a mixture of both.

18

3. Classification of Graph Type

– Decision is followed by exactly two LAUTS Elements, two Control-Flow Op-
erators or a mixture of both types.

– Each element except the topmost has exactly one preceding element.

– The topmost element has no preceding element.

• Rules for edges:

– Each edge connects exactly two different vertices.

– Depending on the containing element there are different rules which vertices
are allowed to be connected to each other.

∗ Containing element is a LAUTS Element: Each LAUTS Element can
have exactly one undirected1 outgoing connection in LAUTS structure.
(except Reaction which must not have any outgoing edges). This edge
is shown as (1) in figure 3.1. In the graph to draw a containing element
may have a second outgoing connection which is directed. That is the
case if the element is part of a Sequence. Sequences are discussed further
below.

...

Data Element

(1)

A

(2)

element ... element

Figure 3.1.: An example of a part of a test in the LAUTS’ structure.

∗ Containing element is a Control-Flow Operator of any type except Se-
quence: The connection is exactly the same in the graph as in the LAUTS
structure. It is undirected, begins at the containing element (preceding
vertex) and ends at the contained element (following vertex). In figure
3.1 such an edge is labeled with (2).

∗ Containing element is of type Sequence: The Sequence is the only ele-
ment of the LAUTS’ structure where the order of the contained elements
matters. This order is visualized in the diagram by vectors between the
contained elements. This is illustrated in figure 3.2.
In this context, the connections are special in two ways. First of all the
vectors are directed in the graph while the connections from all other
Control-Flow Operators are undirected. Second, the decision which ver-
tex u is connected from one vertex v depends on the position of the ele-
ment represented by v in the list of elements contained by the Sequence

1An undirected edge can be seen as a directed one if this is necessary. The edge is always heading
away from the root.

19

3. Classification of Graph Type

LAUTS structure Drawn graph

...

&

element ... element

...

&

(1)

(2)

(3)

element ... element

Figure 3.2.: Difference regarding the Control-Flow Operator Sequence between the
LAUTS structure and the drawn graph.

(see Appendix A). Three cases are possible for the vertices representing
an element of the list:

∙ The element is the first one in the list (cf. A.3.1): Beside the fact
that the edge is directed, this vertex has a normal incoming one from
the Sequence (v) vertex (see (1) in figure 3.2). As the child vertices
of the Sequence (N+G (v)) are connected to each other, there has to
be a second edge (e) for this vertex. It is a directed outgoing edge
ending at the vertex representing the next element in the list of child
nodes of the Sequence (α(e) ∈ N+G ∧ ω(e) ∈ N

+
G) (see (2) in figure

3.2). The only exception is a Sequence having only one child node
(w). In that case the second edge (f) connects the child node with
the Sequence (α(f) = w ∧ ω(f) = v).

∙ The element is in between the first and the last element of the list (cf.
A.3.2): These vertices are each connected to the vertex representing
the next element of the list by a directed outgoing edge (α(e) ∈
N+G ∧ ω(e) ∈ N

+
G).

∙ The element is the last one of the list (cf. A.3.1): The last vertex has
a directed outgoing edge back to the vertex representing the Sequence
(α(f) ∈ N+G ∧ ω(f) = v). (see (3) in figure 3.2).

3.2. Classification

The graph is classified using the rules defined in the section before. The original LAUTS
structure is an n ary tree which makes sense as it represents a hierarchic structure
with single-parent elements. Furthermore, there is one node (r) which has no parent
node (g−G(r) = 0)

2. This vertex is called root and makes the graph a rooted tree.
Unfortunately, the graph to draw is different from the LAUTS structure it represents

2The tree is seen as a directed graph to be able to refer to edges leading to a lower depth as incoming
edges and edges leading to a higher depth as outgoing edges.

20

3. Classification of Graph Type

(see the Style Guide in Appendix A). In fact the problem exists only with one single
Control-Flow Operator, the Sequence.

3.2.1. Special Case Sequence

The Sequence is different compared to the other elements as it needs an additional
piece of information - the order of the contained elements. Looking at the structure, it
becomes clear that the Sequence is really the only element of which the sequence of its
child elements is important.
LAUTS Elements have only one child either and with only one element there naturally
is no sequence. Random, RandomPutBack and RandomAll represent disjunction (coll.
”or”) relationships which are not order-sensitive. (Concerning propositional logic: (A ∨
B) is exactly the same as (B ∨ A).
Of course it would be possible to realize the Sequence with weighted edges (e.g. each
edge gets a number which tells the position of the vertex in the sequence. However, such
an approach would not be user friendly. This is why it is defined in another way in the
Style Guide (see Appendix A Tree Diagram Style Guide) of the tree diagram (see figure
4.2 on page 24). Because of this, the sequence is shown directly in the graph visualized
via vectors between the subordinated vertices of the Sequence-node.
From this it follows that the graph could not be a tree anymore but is a simple general
directed graph. Further considerations on how to convert the structure to a tree again
are made in chapter 4.

3.2.2. Conclusion of Classification

Despite the fact that the graph to draw seems to be a rooted tree on the first look it
turns out that, it is a general directed graph because of the special case of Sequence. In
spite of that the graph could be drawn as an at least tree-like structure.

3.3. Planarity

According to the major publications on graph drawing (e.g. [12],[4],[6]), the minimization
of edge crossings is defined as an aesthetic criterion of high importance. The ideal case
would be a drawing with no edge crossings at all. A graph which can be drawn without
edge crossings is called planar (as stated in the definition section). A tree is always planar
(see [9] for a proof). Now the question arises whether the tree-like graph considered here
is also planar.
Referring Kuratowski’s theorem a graph is planar if it does not contain one of the
following subgraphs:

• The complete graph of five vertices (see figure 3.3 K5).

• The complete bipartite graph with six vertices where three vertices per partition
(see figure 3.3 K3,3).

21

3. Classification of Graph Type

K5 K3,3

Figure 3.3.: Kuratowski graphs.

As the graph without Sequences is a tree (which is planar as well), only Sequence
has to be analysed for planarity. Even if one or more of the cycle sub vertices contain
further elements (e.g. vertex 3 in figure 3.4(a)), it would not have any influence on
the planarity considerations. This is because any additional incident edge is an inter-
layer edge, defined by the LAUTS structure (see chapter 3.1). This fact also means
that vertex 1 of the figure does not have any meaning concerning the planarity of the
Sequence. Due to this reasons only the subgraph G′ ⊂ G containing vertices 2 to 6 and
the edges between those vertices have to be analysed. G′ is shown in figure 3.4(b).

(a) (b)

...

1

2

3 4 5 6

G

...

2

3 4 5 6

G′

Figure 3.4.: Proofing planarity of Sequence.

With these conditions it is clear that each tree like graph G is planar. Without the
Sequence the graph is planar as well. A Sequence represented by the graph G′ ⊂ G is
planar because:

g(v) = 2∀v ∈ V (G′) (3.1)

∧ V (G′) = V (P)

∧ ∃P |α(P) = v ∧ ω(P) = v with n(P) > 1

This means that each vertex has a degree of two (the incoming and the outgoing edge)
and there exists a path P which starts and ends at the same point (cycle) and has the
same set of vertices as G’ which has to contain more than one vertex.
This ensures not only that the Sequence is a cycle but also that it is possible to draw
it planar. That is because with these constraints there is no possibility that K5 or K3,3
may occur. This proofs that each possible graph of LAUTS is a planar graph.

22

4. Graph Transformations

In the preceding chapter, the graph was classified to be a general directed graph. Un-
fortunately, not every graph drawing algorithm can handle this class of graphs.
But this does not mean that there is no way of using them. If the necessary graph
type is not too different, the graph can be converted temporally to fit the algorithm.
The following techniques are presented in this thesis:

1. Defect-Draw-Repair: This method converts a (self-)loop less general graph into
a rooted tree (see 4.1).

2. Cycle Removal: Converts a general directed loop-less graph into an acyclic
graph. This method is proposed by [4] page 23 - 25 (see 4.2).

3. Cycle Substitution: Converts a general directed loop-less graph into a tree (see
4.3).

4. Bi-Treeing: Converts an n ary tree into a binary tree. (see 4.4).

The principle of operation is the same for all transformations. In the first step the
graph is transformed. Then the graph is drawn by any graph drawing algorithm and
after that the Transformer is again in charge to correct the graph. Transformation
and correction are not two separate tasks but they are connected. For example the
information about removed or added edges in the transformation step are used during
the correction phase. Figure 4.1 illustrates the operating principle of the Transformers.

Graph drawing algorithm

Correction

Transformation

Figure 4.1.: Operating principle of the Transformers.

4.1. Defect-Draw-Repair

To convert a general graph without (self-)loops into a tree, the circuits have to be
removed. This can be done by the following three-step process:

23

4. Graph Transformations

1. Place a defect to generate a tree (transformation).

2. Do graph drawing.

3. Repair the defects (correction).

(a)

(b) (c)

(d) (e)

&

(1)

(2) (3)

(4)

element element element

&

element element element

&

element element element

&

element element element

&

element element element

Figure 4.2.: Edges that can be removed by Defect-Draw-Repair method.

Transformation: In this case, a defect is a missing edge. Removing a single edge of
the cycle will solve the problem as shown in Figure 4.2. For graph theoretic reasons,
it does not matter which edge is removed. But for readability reasons the last edge is
removed ((4) in figure 4.2 (a)). This has two reasons. The first one is that ideally all
edges should point in the same direction, which is downward here. Second, sub nodes
are in the same subtree of the Sequence. Thereby, the former loop becomes a partial
tree (or in case of the figure, if no child element of the Sequence has children of its own,
it will be a branch).

Drawing: Drawing done by the graph drawing algorithm (see chapter 6).

Correction: To repair the defect, the removed edge just has to be added to the graph.
Unfortunately, this may produce edge crossings. That means even if the graph was
drawn planar by the graph drawing algorithm there might be edge crossings after the
correction step of the Transformer.

4.2. Cycle Removal

This technique converts a general (self-)loop-less directed graph into an acyclic one. The
idea proposed in [4] page 23 - 25 is simple: Invert the direction of one edge of a circuit
and do so as long as there are any circuits. For reasons of optimisation, the set of

24

4. Graph Transformations

inverted edges should be kept as small as possible, as depicted in figure Figure 4.3. The
problem of which edge to invert is the same as it was for Defect-Draw-Repair. Any edge
of a cycle will solve the problem. The solution is again to invert the edge from the last
cycle sub node back to the cycle root (edge (4) in figure 4.2(a)).

Figure 4.3.: Conversion of a graph with Cycle Removal method. Modification from [4]
page 24.

4.3. Cycle Substitution

In contrast to the other Transformers discussed above, this one has the advantage that
it affects the drawing algorithms which use layering so that the cycle sub vertices are
not placed on different layers by default. In an ideal case, all vertices will be placed on
the same layer. Furthermore, this Transformer keeps the order of the nodes. These two
attributes make this Transformer more compliant with the style guide than the methods
proposed above.
Like all Transformers, this one also is a three step process:

• Substitute the cycles (transformation)

• Draw the graph

• Reconstruct the cycles (correction)

4.3.1. Additional Definitions

While both preceding methods change only one of the edges of the cycle, the Cycle
Substitution changes all edges except one. Some definitions have to be made for the

25

4. Graph Transformations

cycle C of G:

(i) C v G|αC = ωC (4.1)

(ii) s ∈ V (G) ∧ g−G(s) = 0

(iii) O = {P v G|αP = s ∧ ωP ∈ V (C)}

(iv) c = ωQ with Q ∈ O|min{|V (Q)|}

Formula 4.1 defines that the cycle root (c) is the ending vertex of the shortest path
(Q) out of the set of paths between the graphs root (s) and the vertices of the cycle (C).
In other words, the vertex which is closest to the graphs root is called cycle root.
A second definition has to be made for cycle vertices (v) and the set cycle sub vertices
(F):

v ∈ V (C) (4.2)

F (C) ⊂ V (C)\{c} (4.3)

So the term cycle vertices refers to all vertices of the cycle while cycle sub vertices
refers to all vertices except the cycle root.

4.3.2. The Algorithm of Cycle Substitution

In Cycle Substitution, the cycle is converted to a rooted subtree with a depth of one. The
cycle root will be the root of the subtree and the cycle sub vertices are the successors.

1. Transformation: Remove all edges (D) of the cycle (C) which do not start at
the cycle root (c) and replace them by edges (A) connecting the cycle root with
each of its successors directly:

D = {e ∈ R(C)|α(e) 6= c} (4.4)

W = {v ∈ V (C)\{c, ω(s)} | α(s) = c} with s ∈ R(C) (4.5)

A : ∃r ∈ A | α(r) = c ∧ ω(r) = x ∀x ∈ W

Set D contains all edges of the cycle except one. That means n(D) = n(R(C))−1.
This is because there is only one edge which has its starting point at the cycle root
by default. The proof of this is given by the definition of a cycle. A cycle is a path
(P) with αP = ωP . As g+P (v) = 1∀v ∈ P there can only be one edge starting at
the cycle root which is part of the path.

Set W contains all cycle sub vertices except the vertex already connected to the
root. The cardinal number of A is two fewer than the one of D. (n(A) = n(D)−2).
This is because the graph is still connected which means one connection per cycle
sub vertex which reduces the cardinal number by one. And the edge (s) with
α(s) = c is not in A as it already exists and has not to be added.

26

4. Graph Transformations

It is important that the sequence of cycle sub nodes stays the same during the
whole process. Otherwise edge crossings will occur during the correction step.

Figure 4.4(a) shows the cycle before the transformation with all edges of D colored
red. Illustration 4.4(b) shows the former cycle after transformation with all edges
of A colored red.

cycle root

cycle sub vertices

(a) Before Transformation (b) After transformation

Figure 4.4.: Process of Cycle Substitution.

2. Drawing: The graph is drawn by a graph drawing algorithm.

3. Correction: After the drawing is done, the transformation is done the other way
around to correct the graph. The edges of set A are removed and replaced by those
of set D. Again it is really important that the sequence of the cycle sub vertices
is kept the same to avoid edge crossings.

Looking at these facts, it becomes clear that the price for better matching the rules of
style concerning the layout of Sequence is complexity. While the other transformations
only have to change one edge two times1 independently from the number of cycle vertices,
this Transformer has to do 2∙n(F)−1 changes. This does not only mean that the effort is
higher but it even grows linearly dependent on the number of cycle sub vertices instead
of being constant as with the other methods. As the algorithm only depends on the
number of cycle vertices, the complexity can be defined as linear: O(n) and Ω(n).

4.4. Bi-Treeing

There are many elegant drawing algorithms available for binary trees (bi-trees). The
problem with those algorithms is simply that they only work for bi-trees. This section
describes a method for drawing an n ary tree using bi-tree algorithms. Section 4.1
already described an approach to generate a general (n ary) tree out of a general graph
without self-loops. Combining those two techniques it would even be possible to draw
general (self-)loop-less graphs with bi-tree drawing algorithms.
The idea behind this procedure is to temporarily reduce the outer degree of the vertices
by adding nodes to the graph. Those will be called dummy nodes. Three steps are
necessary:

1Two times because it has to be inverted/removed and after the drawing added/inverted again.

27

4. Graph Transformations

1. Augmentation: Generate a bi-tree out of the n ary tree by adding (dummy)
nodes and connections (transformation).

2. Drawing: Apply the graph drawing algorithm.

3. Reverse Conversion: Generate the drawing back to an n ary tree (correction).

4.4.1. Augmentation

A vertex belonging to a binary tree has at maximum two child nodes (g+G ≤ 2). All
nodes have to fulfill this constraint. This means each node of the tree has to be checked,
which is done by a top-down approach.
For each node v of the graph G, the cases shown in figure 4.5 are possible:

(a) No child (b) One child (c) Two children (d) Even number
of children

(e) Odd number
of children

Figure 4.5.: Cases to distinguish for bi-tree conversion.

In case (a), (b) and (c) nothing has to be done because the nodes already match with
the constraints. But cases (d) and (e) are not consistent. In (d), dummy nodes have to
be introduced, each of them with two child nodes. This is shown in figure 4.6(a). It is
easy to see this is not yet a bi-tree conform node. Therefore, the procedure has to be
repeated for v until it is conform. Figure 4.6(a) also shows that even if the number of
child nodes of v is even this does not mean that the number of introduced dummy nodes
is even, too. This is only the case if the number of child nodes n(N+G (v)) is in 2

i with
i ∈ N, i > 1.
Picture (e) of figure 4.5 shows the case that n(N+G (v)) is odd. The solution is simple:
the dummy node added last has only one child node. Figure 4.6(b) shows an example
of this case. The alternative would be not to add a dummy node for the single vertex.
But the problem coming up with this approach is that the (real) child nodes of v appear
on different layers. This is something which is not desired as it reduces the readability
of the graph. Unfortunately, this happens if v has more than four child nodes because
at least one additional dummy node layer has to be introduced. The effect can be seen
in figure 4.6(c).

4.4.2. Drawing

After the conversion step, the graph drawing algorithm is applied. As there are ad-
ditional vertices, the resulting drawing is not the one representing the original graph.
Therefore, the reverse conversion step is necessary.

28

4. Graph Transformations

(a) First bi-treeing
step for six child
nodes.

⇒

(b) Bi-treeing for three nodes.

(c) Not inserting
a dummy node
for the remaining
node.

Figure 4.6.: Process of bi-treeing.

4.4.3. Reverse Conversion

After the drawing is finished, the dummy nodes have to be removed. In contrast to the
conversion step, this time a bottom-up approach is used. A distinction has to be made
if the dummy node is a leaf or not. If the node is a leaf, it is removed including the
adjacent edge. If it is not, the Reverse Conversion is a little more complex. First of all,
the edges have to be corrected. Figures 4.7(a) to (c) show this process. Let v be the
parent node, un the (original) child nodes of v and d, the dummy node. To remove d
the following steps have to be taken2:

1. Deletion of d and the edges (v, d), (d, u1), (d, u2).

2. Insertion of the edges (v, u1) and (v, u2).

After correcting the edges, the layers used by the dummy nodes during the drawing
are empty and expand the area needed for the graph. Sometimes it is possible to readjust
the layering of the nodes as shown in figure 4.7(d). But considering another example
shown in 4.7(e), it becomes clear that this technique works only for special cases because
vertices which should be moved upward may overlap. Therefore this technique is not
taken into the bi-treeing approach by default. However it might be used if possible.

2In cases where one of the child nodes of v has been deleted, the procedure is almost the same except
the fact that already deleted edges and nodes of course do not have to be considered anymore.

29

4. Graph Transformations

v

d

u1 u2

(a) The Bi-tree
for reverse con-
version.

(b) Childless
dummy nodes
have been re-
moved.

(c) Dummy
nodes are re-
moved and edges
are corrected.

(d) Correcting
the layers.

⇒ ⇒

(e) An example where layer correction does not work.

Figure 4.7.: Reverse Conversion of the bi-tree.

30

5. Prearrangements for Rating
Algorithms

This chapter contains the prearrangements which are needed to tests and evaluate al-
gorithms. First of all, the aspects rated have to be defined. Secondly, the common
rules for the subjects under test are set up. Thirdly, the necessary characteristics of the
subjects under test are defined. Finally, the set of graphs to test is specified.

5.1. Rating of Graph Drawing Algorithms

The analysis is done concerning four topics:

1. Quality of the drawing.

2. Maximum complexity of the algorithm (O).

3. Minimum complexity of the algorithm (Ω).

Measuring the complexity of an algorithm is comparatively easy as this is done by
a theoretic analysis of the algorithm. When it comes to the quality of the drawing,
however, an evaluation is not that easy. As the quality of different algorithms has to
be compared, there has to be a measurement which delivers numbers representing the
quality. These numbers define what is good and bad quality in a graph drawing; in other
words whether a graph looks ”nice”.
To calculate the quality of a graph drawing, the following attributes are considered:

• Number of edge crossings.

• Size of the area needed for the drawing.

• Total edge length.

• Difference between the longest and shortest edge adjacent to one vertex.

• Difference between the longest and shortest edge of the whole graph.

• Minimum clearance between two vertices in the graph (gap).

All rated algorithms have to draw the same graphs to achieve a meaningful result.
This is because different graphs may vary in their complexity. Furthermore, one graph
might be easy to draw for an algorithm A and hard for B and for a different graph it
might be the other way around. To avoid such cases, one algorithm has to draw many
graphs before being evaluated.

31

5. Prearrangements for Rating Algorithms

5.2. Arrangements for the Test Objects

To achieve meaningful results, three arrangements are made concerning the subjects
under test:

• Many test objects (graphs in this case).

• Carefully chosen test objects.

• Using the same test objects for all the algorithms.

Many test objects Using only one or very few test objects, the result is under no
circumstances representative. The algorithm may coincidentally perform very well for
one test object while it performs badly for most other cases as this object may be an
ideal case for that algorithm. To relativise such cases, many different test objects are
tested. Thus, it is very unlikely that the tested algorithm performs well (or badly) by
chance only for the tested cases.

Carefully chosen test objects The test objects have to be chosen carefully as it makes
no sense if the same constellation of nodes is tested again and again. The different
objects should cover as many different cases as possible. The problem is to find those
cases that affect a difference in the behavior of the algorithms. This is not easy as it
requires extensive knowledge of the workings of the algorithms. An even harder problem
is the fact that there are many different algorithms which could be tested. It would not
be possible to examine all of them and create test objects based on all algorithms.
Therefore, the graph structure is considered, recurring components are identified and
a large number of combinations of these components will be used to assemble the test
objects to get representative results.

Using the same test objects for all algorithms Like for all (non-destructive) meas-
urements the test objects have to stay the same for all algorithms tested. Changing the
objects between testing the algorithms would make it impossible to to draw significant
conclusions in the end.

5.3. Characteristics of the Graphs used as Test Objects

5.3.1. Shape of the Graph

Looking at the LAUTS structure, it becomes clear that on an abstract level only three
components have to be considered. In this context, “abstract” means that except for the
root vertex of the graph the type of the node is not considered. This means all vertices
are equal. In contrast, the edges will be considered as they play a role for the type of
the graph. The components are:

32

5. Prearrangements for Rating Algorithms

• Sequence

...

• Decision

...

• Others

...

Each graph consists of those three components. The set of graphs that are to be
tested can be divided into two subsets: the smaller one consisting purely of one of
the components and the bigger one containing graphs consisting of a mixture of the
components. Pure graphs will point out if an algorithm has problems with one of the
components while the mixed graphs present a more realistic scenario as a graph with
only one component is very unlikely to occur in reality.

5.3.2. Size of the Graph

In addition to the shape of the graph, its size affects the performance of graph drawing
algorithms. Therefore, graphs of different sizes will be selected for testing. Before doing
so, however, one question has to be clarified: ”What is the size of a graph ?”
Size is not a single value but it is a combination of:

• Number of nodes (n(G) := |V (G)|)

• Number of edges (m(G) := |R(G)|)

• Depth of the spanning tree of the graph (max(n(P(G)))

The first two items are simple. However, the third one should be considered in more
detail. As defined in section 3.2, the LAUTS graph is a general directed graph. The
problem with this type of graph is that there might be several spanning trees with
different depths. In the same section, it is pointed out that the LAUTS graph is not
a tree due to the Sequence. This means that the Sequence-Nodes have to be changed
during construction of the spanning tree. This can be done with the Defect-Draw-
Repair method described in 4.1 or the Cycle Substitution specified in 4.3. The problem
which arises if the Sequence has more than one child node is that it has an unintended
influence on the depth of the tree. Depending on the employed Transformer, the depth
of the spanning tree will be different (as illustrated in figure 5.1).

33

5. Prearrangements for Rating Algorithms

(a) Target depth = 2. (b) Defect-Draw-
Repair method:
Depth = 5.

(c) Cycle Substitution:
Depth = 2.

Figure 5.1.: Influence of a Sequence to tree-depth.

Just removing the vertices in between the first and the last child of the Sequence is
no solution either because these nodes may contain child nodes themselves which have
to be considered when measuring the depth of the graph.
This means if the measurement of tree depth should be done automatically based
on graph theory, the Sequence has to be transformed back to the style it had in the
LAUTS structure. This is done by Cycle Substitution. This change is only done for the
measurement and not permanently. Only thus can the depth be measured correctly.

5.4. Set of Graphs to Test

As the graphs need very much space, they can be found at least partly in Appendix
C and completely on the CD. As mentioned before, the graphs are divided into pure
component graphs and mixed component graphs.

Pure Component Graphs: As Sequence and Decision are Control-Flow operators, they
may neither be the root nor one of the leafs of the graph. Due to this, a pure component
graph for these two components has to have LAUTS Elements as root and leaf nodes.
For each of the components, there are two graphs of different sizes built:

• A minimal graph containing only one of the components (six nodes)

• A big graph containing a lot of components (roughly 10,000 nodes)

Mixed Component Graphs: As graphs containing only one of the components have
already been covered, the mixed component graphs contain a mixture of all three com-
ponents. Except for one special case, all graphs are randomly created.
This special case is that the graph is an acyclic path. This means each element of
the graph contains exactly one other element except the last one. For the Control-
Flow Operators only Random, RandomPutBack and RandomAll can be used. This is

34

5. Prearrangements for Rating Algorithms

because Sequence is not possible as the path is acyclic and Decision has to have exactly
two following nodes.
For mixed component graphs, two different sizes are considered:

• A graph with about 100 nodes.

• A graph with roughly 10,000 nodes.

To avoid using a test object which represents a special case of an algorithm, eight
different mixed component graphs are used (in addition to the two graphs for the special
case). The difference made during the creation of those eight graphs is the maximum of
the outer degree of the vertices. The eight graphs are divided into four pairs. Each pair
has the same maximal outer degree. In one pair there is one graph with about 500 and
one with about 10,000 vertices. The following maximal outer degrees are used: 3, 5, 20,
50. This makes 16 graphs altogether. For a detailed description, see Appendix B.

35

6. Graph Drawing Algorithms

6.1. Leaf-First-Layering

6.1.1. Overview

The Leaf-First-Layering algorithm is a very simple algorithm which uses a bottom up
approach to draw rooted trees. It produces layered orthogonal poly-line drawings. Fur-
thermore, it guarantees the minimal distance between two vertices and creates a very
compact drawing concerning space. The time complexity is linear.

6.1.2. Mode of Operation

The drawing is a three-step process:

• Preprocessing

• Vertex placement

• Edge orthogonalization

Two constants have to be defined in advance for the algorithm:

• Vertex separation: Defines the minimal horizontal spacing between two nodes
on the same layer (set to 14 for the tests).

• Layer separation: Defines the vertical spacing between two neighbouring layers
(set to 14 for the tests).

1. Preprocessing: The preprocessing step has three major tasks:

a) Order the leaving edges of each vertex

b) Identify leafs of the graph

c) Identify parent of each vertex

d) Set the depth of each node

a) First of all the children of each vertex have to be ordered counterclockwise.
Therefore each vertex v contains a list of its child nodes out(v) which contains
the end-nodes of its leaving edges in that order. This means if v is on layer l
and the vertices following v (w0..wk) are on layer l+1, w0 will be the leftmost

36

6. Graph Drawing Algorithms

and wk the rightmost vertex. In other words, the order is from left to right.
This is done by a depth first strategy. Looking at the LAUTS structure,
this step is important to avoid edge crossing inside a Sequence. Fortunately,
the Transformers (described in chapter 4) already take care of that and the
resulting order is counterclockwise. This fact makes this step unnecessary, at
least for the described Transformers. Due to this fact, the algorithm described
and shown as pseudo-code below is adjusted as it leaves this step out.

b) The identification of the leafs can be done on the same run as the ordering.
The leafs are stored in a list (leafList). It contains all the leaf nodes ordered
in counterclockwise sequence.

c) Identifying the parent of each node is also done during the run ordering the
vertices. The parent of v is addressed as parent(v). As by definition of a
rooted tree, each vertex has exactly one parent except the root which has no
parent.

d) The last information retrieved in preprocessing step is the layer of each vertex.
This can also be done at the same run. There is a list for each layer which
contains the nodes belonging to it. A layer list is addressed by layerList(x),
where x is the number of the layer. It starts at 0 (for the root) and has a
maximum value of depth−1 where depth is the depth of the tree. The process
begins at the leaf nodes and is done upwards to the root (bottom up). This
has an important influence on the resulting drawing as it defines if the layer
of a vertex is maximal or minimal. The algorithm measured in this thesis uses
the maximal-layer approach. The result in the drawing is that the inner nodes
are as close to the leaf-layer as possible. Figure 6.1 (a) shows a draft for the
results of a maximum-layer- and (b) the one for a minimum-layer-approach.

(a) Maximum-layer-approach. (b) Minimum-layer-approach.

Figure 6.1.: Minimum- and maximum-layer-approach for Leaf-First-Layering.

depth = 0;

procedure preprocessing(v:vertex,layer:int)

37

6. Graph Drawing Algorithms

begin

if(depth <= layer) // Find out max depth

then depth+1;

if(out(v).length=0) // if v is a leaf

then leafList + v; // add it to leafList

else // if v is an inner node

layerList(layer)+v; // assign the vertex to the layerList

foreach(u of out(v)) // call perprocessing recursively ...

preprocessing(u,layer+1); // for all child nodes

end;

2. Vertex placement: The placement of vertices is done in two steps:

a) Leaf placement

b) Inner node placement

The steps in detail:

a) The first step places all the leaf nodes to the lowest layer (depth − 1). As
they are ordered from left to right, they are simply placed one after the
other separated by vertexSeparation in x-direction. The y-value of each
vertex is defined by the layer it belongs to. As this is the lowest one: y =
(depth − 1) ∗ layerSeparation. The lowest layer is depth − 1 because depth
starts at 1 while layers start at 0.

b) In a second step, all inner nodes of the tree are placed. This is done by the
depth first approach too, which means that the placement is done bottom
up. Each node v ∈ V (G) is placed at the center of its child nodes. For the
calculation of the center only the outer child nodes have to be considered.
The x-coordinate is: x(v) = w0(v) +

x(wk(v))−x(w0(v))
2

with k = number of
sub nodes of v minus one. The y-coordinate is defined by the layer of v:
y(v) = layer(v) ∗ layerSeparation.

layerSeparation = 14;

nodeSeparation = 14;

procedure layout()

begin

i = 0;

// Place leaf nodes

foreach(v of leafList)

y(v)=depth*layerSeparation;

x(v)=i*nodeSeparation;

i++;

38

6. Graph Drawing Algorithms

// Place inner nodes

foreach(i from depth-2 to 0)

foreach(v of layerList(i))

y(v)=i*layerSeparation;

x(v)=x(out(v).first)+(x(out(v).first-x(out(v).last))/2;

i--;

end;

3. Orthogonalize: This last step converts the drawing from a single-line to a poly-
line drawing. To be more precise, the drawing is converted to an orthogonal poly-
line drawing as the edges are right-angled to each other. Therefore, each edge (e)
of the graph is considered and two bends are added per edge. The list of all edges
of the graph is referred to as list. The x-coordinate of both bends is simple as it is
x(α(e)) for the first and x(ω(e)) for the second one.

Since this step is independent from the graph type, it considers edges with: y(α(e)) <
y(ω(e)) (downward edges) as well as edges of the other direction: y(α(e)) > y(ω(e))
(upward edges). The y-coordinates for both bends are equal by definition as it has
to be orthogonal. But if y is chosen exactly in the middle between α(e) and ω(e), it
would not be visible if an edge is moving upward or downward (see figure 6.2(b)).

(a) State before or-
thogonalization.

(b) Bend in the
middle between α(e)
and ω(e).

(c) Bends at 2
3 for

downward and 1
3 of

y-distance for upward
edges.

Figure 6.2.: Placement of bends in upward and downward edges for Leaf-First-Layering.

procedure orthogonalize(list:connectionList)

begin

foreach(c:connection of list)

if(y(c.begin) < y(c.end))

x(bend1) = x(c.begin);

y(bend1) = y(c.begin) + layerSeparation*2/3;

x(bend2) = x(c.end);

y(bend2) = y(c.begin) + layerSeparation*2/3;

else

x(bend1) = x(c.begin);

39

6. Graph Drawing Algorithms

y(bend1) = y(c.end) + layerSeparation/3;

x(bend2) = x(c.end);

y(bend2) = y(c.end) + layerSeparation/3;

end;

6.1.3. Complexity

The preprocessing step is executed one time and considers each vertex exactly once
which produces a complexity of O(n) and Ω(n).
This is true for the second step, the vertex placement, also. The sequence in which
the vertices are treated is different but still each vertex is considered once. Again the
complexity is O(n) and Ω(n).
The orthogonalization needs some more consideration. This is because here the con-
nections are handled. For a (spanning) tree, this would be easy as each vertex except
the root of a tree has an outer degree of one (6.2). The root has an outer degree of 0 (see
formula 6.1). As loops and cycles are not possible in a tree this means that the number
of edges (m) is the number of vertices (n) minus one (the root) (6.5).

|r ∈ V with g+G = 0| = 1 (6.1)

g+G(v) = 1∀v ∈ V \r (6.2)

W = {v ∈ V |g+G(v) = 1} (6.3)

n = |V | (6.4)

⇒m = |W | = n− 1 (6.5)

Unfortunately, int this case, the graph is not a tree anymore as all connections (in-
cluding those removed by the Transformer) have to be orthogonalized. The worst case
to be considered is the fully connected graph which means that every vertex is connected
to every other vertex. This results in a number of edges (m) against vertices(n) from
m = (n− 1) ∙ n

2
which is in fact the progression: 0,1,3,6,10,15,21,28,... . In consequence,

the complexity is O((n − 1)n
2
). Ω(n) is true for the minimum complexity as the ideal

case would be a tree. This is the case if the LAUTS structure does not contain any
Sequences.
In summary, the complexity results in:

O (2n+ (n− 1)
n

2
) (6.6)

Ω (3n)

6.1.4. Results

Due to space limitations, only Minimum Sequence and Minimum Decision are presented
here as an image to illustrate the results of the Leaf-First-Layering algorithm exemplarily.

40

6. Graph Drawing Algorithms

All the other drawings can be found at least partly in Appendix C.1 and completely on
the CD in directory Drawings/LeafFirstLayering. Figure 6.3 shows the resulting
drawings.

(a) Drawing of ”Minimum
Sequence” graph

(b) Drawing of ”Minimum
Decision” graph

Figure 6.3.: Exemplary results of the Leaf-First-Layering algorithm.

6.1.5. Evaluation

Crossings Area Length Diff @ G Diff at v Gap
1 (10139) 1344 73094x252 798225 19370 19370 14
1 (563) 55 4158x168 34165 1535 1311 14
2 (471) 1510 6342x56 116220 3157 3157 14
2 (7311) 16640 98140x70 2204180 45982 45982 14
3 (670) 467 8428x98 69631 3945 3945 14
3 (9551) 9745 119126x98 1792394 57611 57611 14
4 (564) 19 2142x336 24358 618 618 14
4 (9787) 685 36932x504 573347 20478 20478 14
Min Decision 0 14,56 101 14 12 14
Min Other 0 14,56 101 14 12 14
Min Sequence 0 14,56 115 14 14 14
Special(100) 0 0x1344 1456 14 14 14
Special(10000) 0 0x146300 146300 14 14 14
Sequence 0 58226x126 776440 25402 25402 14
Decision 0 150192x294 1728190 46237 46237 14
Other 0 58198x140 552572 15536 15170 14

Table 6.1.: Result of Leaf-First-Layering.

The results of the Leaf-First-Layering algorithm (cp. table 6.1) show that the clearance
is always exactly the desired value.
Considering the number of edge crossings, it turns out that it works fine for all pure
graphs independently from their size. However, graphs of mixed elements cause edge
crossings. The reason for that is definitely not the size of the graph as 4 9787 which
has much more vertices but less edge crossings than 2 7311. Comparing the types of
elements of those two graphs, 4 9787 has many Control-Flow Operators and few LAUTS

41

6. Graph Drawing Algorithms

Elements while 2 7311 has mostly LAUTS Elements and only a small amount of Control-
Flow Operators. But this alone can not be the explanation for this phenomenon. Two
possible explanations exist: Either 2 7311 has more crossings because a LAUTS Element
has only one child vertex whilst Control-Flow Operators may have more. Or the reason
for the crossings lies in the number of leaf vertices which is directly related to the
maximum number of child nodes (maximum outer degree) per vertex.
The first possibility does not seem to be plausible because if the algorithm has a
problem with vertices having only one child it would have been visible at the pure-
element graphs before.
The edge crossings do also not seem to be a stochastical effect. The number of child
nodes of a graph seems to be correlated to the number of crossings. 2 471 has by far the
most crossings in the group of graphs with some hundreds of nodes. Similarly 2 7311
has by far the most edge crossings in the group of graphs with some thousands of nodes.
Both have a maximum outer degree of 50. The graphs with only a maximum of three
(4 564 and 4 9787) have on their side also in both groups by far the smallest number of
edge crossings. Summing up, it could be said that the algorithm seems to have problems
with graphs containing vertices with a high outer degree.
The area needed for the drawing is relatively low. All the drawings are very wide in
comparison to their height. As the required space is smaller compared to the Dominance-
Straight-Line algorithm (see 6.2), the total edge length is also several times smaller. A
possible reason for that is given in section 6.3.5 on page 55.

6.2. Dominance-Straight-Line

6.2.1. Overview

The Dominance Drawing algorithm proposed by [4] is used for planar digraphs. It
creates a drawing with straight line connections, detects and displays symmetries and
the geometric description of the transitive closure by the dominance relation between
the points (coordinates) and vertices.
The problem concerning directed graphs compared with trees is that one vertex may
be reachable by more than one path (see figure 6.4). This has to be taken into account
in the algorithm traversing the tree. Otherwise, vertices might be considered multiple
times instead of only once or the algorithm might run into an infinite loop. For this
problem, many solutions are possible, for example simply a list which stores the vertices
which were already considered. The algorithm presented here uses a different approach.
It only considers the vertex if it was reached by the first incoming connection. This
assumes that the connections are in some kind of order. It does not matter which order
this is. The only thing that matters is that it does not change during the time the
algorithm is working.

42

6. Graph Drawing Algorithms

Figure 6.4.: The lower right vertex is reachable via two connections.

6.2.2. Mode of Operation

The algorithm is a three-step process. The first step, Preprocessing, transforms the
data structure representing the graph into the right format, the second one, Preliminary
Layout, places the vertices to a distinct point (x- and y- coordinate) and the third,
Compaction, makes the drawing compact.

1. Preprocessing: The data structure for the graph to draw is transformed so that
each vertex v has a list of outgoing edges sorted according to their clockwise
sequence around v. It is possible to move inside this list by next(e) (for next vertex)
and pred(e) (for preceding vertex). If an invalid position of the list is addressed,
the result is nil1. firstout(v) and lastout(v) referes to the leftmost respectively
rightmost edge leaving v. The other way around firstin(v) and lastin(v) refer to
the first respectively last incoming edge of v. At least one edge e = (u, v) refers to
v as head(e).

2. Preliminary Layout: In this step coordinates are assigned to each vertex. First,
all the x- and then the y-coordinates are determined by incrementing a counter
and setting its value as the coordinate value. This is done for x- and y-coordinates
separately.

The following pseudo code, which is similar to the description of the algorithm in
[4], chapter 4.7, clarifies this step.

First of all, the setting of x-coordinates:

count = 0;

GRID = 15; // Distance between the coordinates.

procedure LabelX(v:vertex)

begin

X(v)=0;

count++;

e=firstout(v);

1nil = not in list.

43

6. Graph Drawing Algorithms

repeat

w=head(e);

if(e=lastin(w)) // This is used to not consider one node twice.

then LabelX(w);

e=next(e);

until e=nil;

end;

Then the setting of the y-coordinates:

count = 0;

GRID = 15; // Distance between the coordinates.

procedure LabelY(v:vertex);

begin

Y(v)=0;

count++;

e = firstout(v);

repeat

w = head(e);

if(e=firstin(w)) // This is used to not consider one node twice.

then LabelY(w)

e=pred(e);

until e=nil;

end;

3. Compaction: This last step makes the graph compact and assigns the final co-
ordinates to the vertices. This is done according to the following scheme.

Let u and v be a pair of vertices with consecutive x-coordinates. In case that
∃e(u, v), x is not incremented except g+G(u) = 1 ∧ g

−
G(v) = 1. In the remaining

cases, the x-coordinate is incremented. The assignment of the y-coordinates is done
in the same way. The following pseudo code is also similar to the one presented in
[4], chapter 4.7.

u = the vertex with X(u) = 0;

x(u) = 0;

procedure assignX()

begin

while nextX(u)!=0

v = nextX(u);

if(Y(u)>Y(v) or (firstout(u) = lastout(u) and firstin(v) = lastin(v))

then x(v) = x(u) + 1;

else x(v) = x(u);

u = v;

44

6. Graph Drawing Algorithms

end;

u = vertex with Y(u)=0;

y(u) = 0;

while nextY(u) != 0

v = nextY(u);

if(X(u) > X(v) or (firstout(u) = lastout(u) and firstin(v) = lastin(v)

then y(v) = y(u) + 1;

else y(v) = y(u);

u = v;

end;

6.2.3. Complexity

The preprocessing step does not contribute to the complexity as the graph is already in
a right shape. The calculation of preliminary layout itself is done in two procedures: one
for the x and one for the y-coordinates. As the functionality could be seen to be the same
the complexity is the same too and will be considered together here. The complexity is
simply O(n) and Ω(n) per procedure because each vertex is addressed exactly once. For
the whole preliminary layout step, this makes a complexity of O(2n) and Ω(2n).
The compaction step is again mostly the same for x- and y-coordinates which allows
considering both procedures at once, too. First of all, there have to be two lists of vertices
sorted by increasing x- respectively y-coordinates. Therefore a quick sort algorithm is
used. Its complexity is O(n2) and Ω(n ∙ log(n)) (cp. [11]). As the sorted lists are
traversed exactly once each, the complexity is O(n) and Ω(n) for each of the compaction
step procedures. This means that the compaction step (without the sorting) has O(2n)
and Ω(2n).
In summary, this results in the following complexity:

O (4n+ 2n2) (6.7)

Ω (4n+ 2n ∙ log(n))

6.2.4. Results

In this chapter the drawing of the Minimum Sequence-graph is used to exemplary illus-
trate the result of the Dominance-Straight-Line algorithm. Figure 6.5(a) shows the ori-
ginal outcome of the algorithm. To better match the aesthetic criteria, 6.5(b) shows the
outcome rotated clockwise by 45◦ . The other drawings can be found in Appendix C.2 and
in more detail on the appended CD in directory Drawings/DominanceStraightLine.

6.2.5. Evaluation

As clearly can be seen in the table, the algorithm produces planar drawings in all cases.
Furthermore, the clearance is absolutely stable at the desired value. Looking at the

45

6. Graph Drawing Algorithms

(a) Original drawing of Minimum
Sequence graph.

(b) Rotated by 45 degrees clock-
wise.

(c) Original drawing of Minimum De-
cision graph.

(d) Rotated by 45 degrees clock-
wise.

Figure 6.5.: Exemplary results of the Dominance-Straight-Line algorithm.

Crossings Area Length Diff @ G Diff at v Gap
1 (10139) 0 74031x74031 1374675 59740 59735 14
1 (563) 0 4101x4101 49168 2740 2736 14
2 (471) 0 4541x4541 232988 4515 4515 14
2 (7311) 0 70241x70241 4924043 66640 66635 14
3 (670) 0 6111x6111 119167 6000 5995 14
3 (9551) 0 86521x86521 3476549 86500 86496 14
4 (564) 0 4101x4101 43551 3410 3406 14
4 (9787) 0 71481x71481 1350468 51638 51638 14
Min Decision 0 41x41 82 6 6 14
Min Other 0 41x41 82 6 6 14
Min Sequence 0 41x41 111 14 14 14
Special100 0 951x951 1457 0 0 14
Special 10000 0 104491x104491 147771 0 0 14
Sequence 0 86111x86111 1461827 82716 82716 14
Decision 0 107291x107291 1965484 75510 75510 14
Other 0 85941x85941 1657962 62566 62566 14

Table 6.2.: Result of the Dominance-Straight-Line.

required area, it turns out that the drawings are all quadratic. Unfortunately, the
drawings need several times the space the other arithmetic algorithms need. Even if not
the circumscribing rectangle but the area needed for the transitive closure is considered
(which is roughly half of the space), the Dominance-Straight-Line algorithm still needs
much more space.
The total edge length is also high in comparison to Improved Walker(6.3) and Leaf-
First-Layering(6.1). One characteristic visible in all layered drawings is visible here, too.

46

6. Graph Drawing Algorithms

The length differences between two edges of the whole graph and at one vertex are very
tiny or even equal. This effect occurs as the tree gets broader from root to the leafs on
the one hand and because superior vertices are placed in the barry center of their child
vertices. As all the vertices of one layer are placed on one line, the length of the edges
from those vertices to their superior node(s) differs. The differences increase more the
closer the layer is to the layer 0 (which contains the root-vertex). Figure 6.6 illustrates
that fact. An opportunity to have less edge length differences would be to use centric
layers instead of straight lines.

Figure 6.6.: The greatest difference in edge lengths at one node is at connections starting
at the root node.

6.3. Improved Walker

6.3.1. Overview

The algorithm called Improved Walker has been improved many times. Its origin is the
Wetherell-Shannon algorithm [19] introduced in 1979. It is a linear time algorithm for
binary trees. This was improved by Reingold and Tilford [10] in 1981. It still runs in
linear time and adds some additional aesthetic features as example symmetry. In 1990,
Walker extended this algorithm to handle rooted ordered trees of unbound degree [17].
Unfortunately, this algorithm has a quadratic runtime [2]. The adjustment presented in
[2] corrects this problem. Regrettably, it seems that these changes were at the expense
of planarity. As the results show, planarity is not given in all cases anymore.
The basic idea is to do the drawing bottom up by a depth-first strategy. After the
placement of each node, it is figured out if there is a conflict with the subtree neigh-
bouring to the left and to the right. If so, the subtree is not really moved. Instead, the
necessary movement is saved in a variable at the node just placed. Moving the tree at
that point would raise the complexity above linear. To figure out if two subtrees inter-
sect only the contours of both are considered instead of comparing each node of both
trees which would raise the complexity to O(n2). How this works in detail is described
in the next section.

6.3.2. Mode of Operation

The algorithm works in three steps. First of all, some preprocessing initializing the
variables has to be done. Then the two active steps called walks are executed. The first

47

6. Graph Drawing Algorithms

walk calculates preliminary coordinates and the second walk produces the final ones.
Therefore, more information has to be stored per vertex. In addition to the x- and
y-coordinate, these are:

• Modifier referenced as mod(v): Stores one part of the number of pixels (modsum).
The node including its subtree has to be moved in the second walk. The value mod
at one node is only one part of the real number of pixels the node has moved. The
real number is the sum of all superior vertices’ mod -value added to the mod -values
of the actual node:

Let P be the path from the root to vertex to move (vk) with the vertices of P
numbered from v0 as root to vk with k = n(P)− 1;

modsum =
∑n(P)−1
k=0 mod(vk)

• Preliminary coordinate as pre(v): Stores the preliminary coordinates of a vertex.

• A pointer to a preceding vertex called ancestor : This variable is a pointer to one
superior vertex (ancestor ∈ P). This is needed to memorize superior vertices
while traversing the subtree of ancestor. Without remembering those vertices, the
algorithm would have to track back which means that the complexity becomes
higher.

• A second pointer to a vertex called thread : This variable is one of the most im-
portant ones for keeping the complexity linear. It connects the vertices belonging
to the contour of the subtree even if they reside in different subtrees. Figure 6.8
visualizes this.

Figure 6.7.: Illustration of thread-pointer in the Improved-Walker algorithm. The con-
nections established via the thread-pointer, are shown with dotted lines.
The root of the subtree is shown in dark gray and the vertices belonging to
the contour are colored light gray. ([2], p. 4).

The Improved Walker algorithm consists of three steps:

1. Preprocessing

2. First walk

48

6. Graph Drawing Algorithms

3. Second walk

The three steps in detail:

1. Preprocessing: The preprocessing step defines and initializes the variables. Only
the name of the procedure has been changed in contrast to the pseudo-code presen-
ted in [2]. The parameter T is the graph to draw. The pseudo-code is adopted
from the one presented in [2].

procedure preprocessing(T)

begin

foreach(v:vertex of T)

mod(v)=0;

thread(v)=0;

ancestor(v)=v;

r = root(T)

firstWalk(r);

secondWalk(r, -pre(r));

2. First walk: This step calculates the preliminary coordinates for the vertices. As
stated before, the approach is bottom up which means that the step first walk is
done recursively first for all the vertices below v and then for v. The major task
is done inside the procedure apportion which is kind of the heart of the algorithm.
The sequence of execution for non-leaf-vertices is as follows:

a) Remember the leftmost child of v as defaultAncestor

b) Call first firstWalk(w) and then apportion(w,defaultAncestor) for all the chil-
dren w of v.

c) Execute the shifts for v.

d) Finally set the preliminary x-coordinate for v.

Inside the procedure apportion, the combination of the actual subtree with the
previous subtrees is done. As mentioned before, the threads play an important role
in this step for traversing the inside- and outside-contours of the subtrees up to the
highest common level. The vertices are referred to as follows:

• vi+ means the inside right subtree

• vo+ means the outside right subtree

• vi− means the inside left subtree

• vo− means the outside left subtree

Furthermore the following variables are used to sum up the modifiers along the
contour:

• si+ means the sum of the modifiers of the inside right subtree

• so+ means the sum of the modifiers of the outside right subtree

49

6. Graph Drawing Algorithms

• si− means the sum of the modifiers of the inside left subtree

• so− means the sum of the modifiers of the outside left subtree

If there are two conflicting nodes of the inside contours (see figure 6.8), the proced-
ure ancestor is called, which figures out the left one of the greatest distinct ancestors.
Afterwards the procedure moveSubtree is called to prepare the separation of the
subtrees. The real movement is done by the function executeShifts. As the final
coordinates are calculated in the next step, only the preliminary coordinates and
modifiers of the direct2 child nodes have to be shifted.

Two more procedures are needed: nextLeft(v) and nextRight(v) which traverse the
left respectively right contour of the subtree/subforest of v.

Figure 6.8.: Inner (red) and outer (green) contours of two subgraphs. This image is a
modification of figure 1 from [2] on page 4.

procedure firstWalk(v:vertex)

begin

if(v is a leaf)

then

pre(v)=0;

if(v has a left sibling w)

then let pre(v) = pre(w) + distance;

else

defaultAncestor = leftmost child of v;

foreach(child w of v from left to right)

firstWalk(w);

apportion(w,defaultAncestor);

executeShifts(v);

midpoint = ((pre(leftmost child of v) + pre(rightmost child of v))/2

if(v has a left sibling w)

then

pre(v)=pre(w)+distance;

mod(v)=pre(v)-midpoint;

else

2Direct means that only the child nodes (w) of v are shifted but not the child nodes of w on their part.

50

6. Graph Drawing Algorithms

pre(v)=midpoint;

end;

procedure apportion(v:vertex, defaultAncestor:vertex)

begin

vi+=v
o
+=v;

vi-=w;

vom= leftmost sibling of vi+;

si+=mod(v
i
+);

so+=mod(v
i
+);

si-=mod(v
i
-);

so-=mod(v
i
-);

while(nextRight(vi-) 6=0 and nextLeft(vi+) 6=0)
vi-=nextRight(v

i
-);

vi+=nextRight(v
i
+);

vo-=nextRight(v
o
-);

vo+=nextRight(v
o
+);

ancestor(vo+)=v;

shift=(pre(vi-) + si-)-(pre(v
i
+)+s

i
+)+distance;

if(shift > 0)

moveSubtree(ancestor(vi-,v,defaultAncestor),v,shift);

si+=s
i
++shift;

so+=s
o
++shift;

si-=s
i
-+mod(v

i
-);

si+=s
i
++mod(v

i
+);

so-=s
o
-+mod(v

o
-);

so+=s
o
++mod(v

o
+);

if(nextRight(vi-) 6=0 and nextRight(vo+)=0)

thread(vo+)=nextRight(v
i
-);

mod(vo+)=mod(v
o
p)+s

i
--s

o
+;

if(nextLeft(vi+) 6=0 and nextLeft(vo-)=0)

thread(vo-)=nextLeft(v
i
+);

mod(vo-=mod(v
o
-)+s

i
+-s

o
-;

defaultAncestor=v;

end;

procedure nextLeft(v:vertex)

begin

if(v has child)

then return the leftmost child of v;

else return thread(v);

end;

procedure nextRight(v:vertex)

begin

51

6. Graph Drawing Algorithms

if(v has child)

then return the rightmost child of v;

else return thread(v);

end;

procedure moveSubtree(w-:vertex, w+, shift)

begin

subtrees=number(w+)-number(w-);

change(w+)=change(w+)-shift / subtrees;

shift(w+)=shift(w+)+shift;

change(w-)=change(w-)+shift / subtrees;

pre(w+)=pre(w+)+shift;

mod(w+)=mod(w+)+shift;

end;

procedure executeShifts(v)

begin

shift=0;

change=0;

foreach(w:child of v from right to left)

pre(w)=pre(w)+shift;

mod(w)=mod(w)+shift;

chage=change+change(w);

shift=shift+shift(w)+change;

end;

procedure ancestor(vi-:vertex, v:vertex,defaultAncestor:vertex

begin

if(ancestor(vi- is sibling of v)

return ancestor(vi-);

else

return defaultAncestor;

end;

3. Second walk: The second walk computes the final coordinates by recursively
summing up the modifiers.

procedure secondWalk(v:vertex, m:vertex)

begin

x(v) = pre(v) + m;

y(v) = level(v);

foreach(w:child of v)

secondWalk(w,m+mod(v));

end;

52

6. Graph Drawing Algorithms

6.3.3. Complexity

The complexity of the preprocessing step is simply O(n) and Ω(n) as it addresses each
vertex exactly once to set its initial values.
The first walk is more complex. The point of interest is the call of apportion and
executeShifts. The rest of this step is simple traversing the tree once (O(n) and Ω(n).
First of all, apportion is considered. It calls four other procedures: nextRight, nextLeft,
ancestor and moveSubtree. Fortunately, these procedures are uncritical as they have
neither loops nor further procedure calls which means that they are linear. The only
thing left is the while-loop of apportion procedure. It goes down the inner contour of
the two subgraphs until one or both are down to the lowest level. This is done each time
two subtrees are connected. The worst case scenario for that would be a tree with a
depth of one. This means g+G = n−1. That is because there the apportion procedure has
to be called n-2 times. One comparison has to be made for every pair of neighbouring
vertices. This results in a complexity of O(n − 2). Such a graph with n=9 is shown in
figure 6.9.

Figure 6.9.: The worst case for the apportion-procedure of Improved Walker.

The minimal complexity has to be considered separately this time. In an ideal case
there is no need to compare two subtrees. That is the case if the graph is a path. Figure
6.10 illustrates such a case. As no comparison has to be made at all minimum complexity
is simply Ω(0).

Figure 6.10.: The ideal case for the apportion-procedure of Improved Walker.

The complexity of the second walk is simply O(n) and Ω(n) as it traverses the complete
tree once.

O (3n+ n− 2) (6.8)

Ω (3n)

53

6. Graph Drawing Algorithms

6.3.4. Results

As already stated before, only the small drawings are presented here. The others can
be found at least partly in Appendix C.3. The complete drawings are on the CD in
directory Drawings/ImprovedWalker. Figure 6.11 shows the three smallest graphs. (a)
is the Minimum Decision, (b) is Minimum Other and (c) is Minimum Sequence.

(a) (b) (c)

Figure 6.11.: The drawings of the smallest graphs done by Improved Walker.

Crossings Area Length Diff @ G Diff at v Gap
1 (10139) 545 57750x238 571342 15199 15199 0
1 (563) 5 3289x154 23832 1171 1013 1
2 (471) 0 5949x42 111117 2793 2793 7
2 (7311) 439 93939x56 2119550 44064 44064 1
3 (670) 49 7521x84 61189 3526 3526 0
3 (9551) 2369 102318x84 1539857 45810 45810 0
4 (564) 0 1649x322 14538 479 479 14
4 (9787) 0 27758x490 346210 16753 16753 14
Min Decision 0 14x42 73 2 2 14
Min Other 0 14x42 73 2 2 14
Min Sequence 0 14x42 87 2 2 14
Special(100) 0 0x1330 1442 0 0 14
Special(10000) 0 0x146286 146286 0 0 14
Sequence 0 58226x112 659961 25402 25402 14
Decision 0 115942x280 1021576 25235 25235 14
Other 0 58198x126 494360 15536 15170 14

Table 6.3.: Result of the Improved Walker algorithm.

6.3.5. Evaluation

As the results show, the clearance is not guaranteed. Even worse it goes down to zero
which means overlapping vertices. These problems do not appear at the simple and pure-
element graph types. As with the Leaf-First-Layering algorithm discussed before, the
number of crossings seems to be related to the outer degree of the vertices. Unlike Leaf-
First-Layering where a clear relation is visible, it is only visible at two of the test objects

54

6. Graph Drawing Algorithms

for Improved Walker. At 4 564 and 4 9787, there are no major structural differences in
comparison to the other graphs except for the outer degree. For these two graphs, the
outer degree is only three while it is higher for the other graphs. A direct relation is not
visible as the number of edge crossings is highest for 2 7311 and 2 471 but the number
of crossings is lowest there. As a result, it could be said that the maximum outer degree
of a vertex decides if the algorithm is able to draw a planar graph or not but it does not
give any information about the existence or the magnitude of edge crossings.
With regard to the area needed for the drawing, it can be said that the drawings
are very compact. Improved Walker requires even less space than Leaf-First-Layering.
The difference is quite small compared to the drawings of Dominance-Straight-Line(6.2),
too. As already discussed before, the total edge length, total edge length difference and
at one vertex are related to the area needed for the graph. In comparison to Leaf-
First-Layering, the lengths of Improved Walker are smaller. At this point, one has to
be mentioned that the differences in required area and edge lengths can not be taken
as absolute values so easily as graphs with less crossings normally have longer edges
as shown in figure 6.12. An algorithm with edge crossings can produce more compact
drawings than one creating planar drawings.

Figure 6.12.: Required area and edge lengths are less at graphs with crossings.

6.4. Magnetic Spring Model - Centric

6.4.1. Overview

The Magnetic Spring Model is an algorithm proposed by many papers and books one of
which is [4]. Another common name is “Rings and Springs”. It is one of the algorithms
simulating physics, in this case, magnetic particles (vertices) inside a magnetic field with
edges as springs between the particles. Figure 6.13 shows a draft. There are different
magnetic fields possible. Some common ones are shown in figure 6.14.
For this algorithm, a centric field was chosen with its origin in the origin of the
coordinate system (top left). As the field is not limited, there has to be a mechanism
which holds it near to the origin. This is done by placing the root at the origin and not
letting it move away from that position.

55

6. Graph Drawing Algorithms

Figure 6.13.: Illustration of the Magnetic Spring Model ([12], p. 44).

(a) Con-
centric

(b) Centric (c) Hori-
zontal

(d) Ver-
tical

Figure 6.14.: Common types of magnetic fields.

6.4.2. Mode of Operation

This algorithm is divided into two steps. First of all, the preprocessing step places the
vertices on their initial positions. Secondly, the physical system starts simulating the
forces and moves the nodes several times. Considering all the vertices once is called
simulation step or iteration. The number of iterations can be defined in advance or be
dependent on properties of the drawing. An example for the later approach would be
the culminated distance of all vertices moved. However, the algorithm presented here
will use a fixed number of iterations. There has to be made a trade off between time
and quality. Ideally the system will end up in a locally minimum energy configuration
(cp. [4], p. 303). This is reached if there are no more changes between the iterations.
For big graphs, this might take very long. Therefore, the number of iterations is limited.

1. Preprocessing: In this first step, all vertices except the root are distributed ran-
domly around a circle with its origin at: (x = radius,y = radius). The radius has
to be previously defined. This ensures that all the vertices are (and as the magnetic
field is centric stay) in the third quadrant (cp. figure 6.15).

The root is placed at the origin (0,0).

k = 5; // k is a factor for the size of the circle

springLength = 10;

procedure preprocessing(root:vertex, nodes:listOfNodes)

begin

radius = k*nodes.length/2*PI;

56

6. Graph Drawing Algorithms

Figure 6.15.: Preprocessing for Magnetic Spring Model.

step = 2*PI/nodes.length;

for(i from 0 to nodes.length)

v = nodes(i);

// calculate x and y

y(v) = SIN(i*step)*radius+radius+1;

x(v) = COS(i*step)*radius+radius+1;

i++;

end;

2. Simulation: When all vertices are at their initial place, the simulation starts.
Simulating is a relatively easy process consisting of two steps:

a) Calculate forces

b) Move vertices

It is important to move the vertices after the forces of all vertices were calculated.
Moving the vertices in advance will change the forces of other (not yet calculated)
vertices which is not intended.

a) Calculate forces: The force of a vertex is made up of two kinds of forces:
The force of the magnetic field and the force of the springs at this vertex.

i. Magnetic force: There is only one magnetic force per vertex as a homo-
genous field is used. Its value is equal everywhere (magenticFieldStrength).
Its direction is the elongation of the vector between the fields origin (o) and
the node (v).

ii. Spring forces: There can be more than one force caused by the springs.
In fact, each node which is neither root nor leaf has at least two forces
because of springs.
The value of the force is the distance between α(e) and ω(e) of edge e
minus the normal length (d) of the spring (springLength) divided by two

(|α(e)−ω(e)|−d
2

). The normal length of the spring may invert the direction of
the force if the vertices are too close3.
The direction of the force is the elongation of the vector from α(e) to ω(e).
As stated in the paragraph above, the direction might be inverted.

3Too close means that the distance between α(e) and ω(e) is smaller than the normal length of the
spring.

57

6. Graph Drawing Algorithms

The forces have to be summed up altogether. The resulting force (force(v)) is
the one which affects the node (v).

magneticFieldStrength = 5;

springLength = 10;

procedure calculateForces(v:vertex)

begin

if(v = root)

then

x(v) = 0;

y(v) = 0;

foreach(c:Connection of out(v))

calculateForces(c.end);

else

// Calculate the magnetic force

alpha = ARCCOS(y(v) / (SQUARE_ROOT(x(v)*x(v) + y(v)*y(v)));

y(force(v)) = SIN(alpha)*magneticFieldStrength;

x(force(v)) = COS(alpha)*magneticFieldStrength;

// Calculate spring forces for outgoing edges

foreach(c:out(v) of v)

dx = x(c.begin) - x(v);

dy = y(c.begin) - y(v);

z = SQUARE_ROOT(dx*dx + dy*dy);

beta = ARCCOS(dx/z);

xSpringLength = COS(beta)*springLength;

ySpringLength = SIN(beta)*springLength;

x(force(v)) = x(force(v)) + x(v)-x(c.end) + xSpringLength;

y(force(v)) = y(force(v)) + y(v)-y(c.end) + ySpringLength;

calculateForces(c.end);

end;

b) Move vertices: The last step of an iteration is the movement of the vertices.
Therefore, each vertex is moved by the vector given by the force calculated for
this vertex.

procedure move(v:vertex)

begin

x(v) = x(v) + x(force(v));

y(v) = y(v) + y(force(v));

foreach(c:Connection of out(v))

move(c.end);

end;

procedure iterate(root:vertex)

58

6. Graph Drawing Algorithms

begin

calculateForces(root);

move(root);

end;

6.4.3. Complexity

The preprocessing step calculates the initial position for each vertex once. This makes
a complexity of O(n) and Ω(n).
For the simulation step, this is not so easy as it has to be run multiple times. The
number of executions of the simulation step is referred as m. The two steps of the
simulation: calculate forces and move vertices are done separately. There has to be a
calculation done for each connection (spring forces) and for each vertex (magnetic force).
Fortunately, both forces can be assessed by traversing the tree only once. This makes a
complexity of O(n) and Ω(n).
The second part of the simulation is the movement of the vertices. As each node has
to be considered exactly once, the complexity is also O(n) and Ω(n).
Unlike the other algorithms, the Magnetic Spring Model algorithm is not arithmetic.
It is a simulation and in almost all cases, it is not possible to find the solution in only one
step (e.g. m = 50 for the drawings made in this thesis). This introduces a variable (m)
containing the number of iterations into complexity which is described for the algorithm
as follows:

O (3mn) (6.9)

Ω (3mn)

6.4.4. Results

As with the other drawings, those produced by the Magnetic Spring Model are too big to
show them here. All drawings are shown at least as parts in Appendix C.4 and completely
on the CD in the directory Drawings/MagneticSpringModel. In difference to the other
algorithms, the Magnetic Spring Model produces non-deterministic outputs. The reason
for this is that the vertices are placed randomly on the circle in the preprocessing step.
To illustrate this, five different drawings of the Min Decision-graph are shown in figure
6.16.
For a meaningful evaluation of the results, it would not be enough to do only one test
run for each test object. The risk that the randomly created initial state is a best- or
worst-case by chance makes it necessary to do more test runs. In this thesis, five testruns
are executed for each test object. The table presented here (6.4) shows the averages for
the single values calculated during the tests. The tables with the results can be found
in Appendix C.4.

59

6. Graph Drawing Algorithms

(a) (b) (c) (d) (e)

Figure 6.16.: Five drawings of the same graph with Magnetic Spring Model - Centric.

Crossings Area Length Diff @ G Diff @ v Gap
1 (10139) 333714 72604x89740 65516659 13820 13688 0
1 (563) 3269 1974x2229 250419 702 674 0
2 (471) 11218 923x895 8665 677 671 0
2 (7311) 886532 1501x1502 3660292 755 691 0
3 (670) 11638 541x552 58871 253 246 0
3 (9551) 1734140 3907x3608 13040541 2600 2513 0
4 (564) 1146 3996x5429 147577 627 532 0
4 (9787) 198796 92533x111712 42748538 12298 11890 0
Min Decision 1 38x34 71 25 17 4
Min Other 1 35x26 61 24 18 2
Min Sequence 1 30x28 65 24 17 3
Special(100) 12 749x871 4215 84 22 4
Special(10000) 179945 117995x14256 44502886 13395 4163 6
Sequence 989250 14392x15933 58038576 8208 8144 0
Decision 1002739 212329x197891 209204064 29437 8461 0
Other 566893 20320x45056 62841221 10977 3117 0

Table 6.4.: Average result of Magnetic Spring Model with a centric magnetic field.

6.4.5. Evaluation

Looking at the clearance, it is turns out that only very small graphs have clearance at
all and even there not in all of the five test runs. It could be said that a graph drawn
with the Magnetic Spring Model algorithm has a clearance above zero only by chance.
For the number of edge crossings, the results are even worse on average, not even one
of the tested graphs is drawn planar. The correlation between number of vertices (which
is strongly related to the number of edges) and the number of edge crossings is explicitly
visible.
Having a look at the area needed for the drawing, it becomes clear that it is weakly
related to the number of vertices. There are exceptions from this however, for example,
2 7311 only needs a small area. In return, the number of crossings is much higher.
Another observation which can be made is that the shape of the required area is not
consistent. Some drawings are roughly quadratic, others are higher than wide or the
other way around. However, the differences between width and height are not so enorm-
ous as with the Improved Walker drawings. This means that width and height have no

60

6. Graph Drawing Algorithms

regular relation but are at least relatively close together.
The total length of the edges shows a two-folded result. For the three minimal graphs,
the edge length is significantly shorter. For most of the other graphs, the edges are much
longer, sometimes by the factor ten. In contrast to that, the total edge length difference
as well as at one vertex is much smaller than with the other algorithms. One reason for
this is the fact that the edges are seen as springs and so the vertices are pulled together.
That is something which never happens with the other algorithms in this way. Secondly,
the vertices are not arranged on layers which allows the nodes to be arranged around
the ancestor vertex rather than on a passant line (the straight line layer). This revokes
the effect generating the big edge length differences described in section 6.2.5.
Considering the differences between the total edge length difference against the dif-
ference at one vertex, it becomes clear that there are sometimes big differences between
those two values. This marks another distinction to the other algorithms. The reason
for this is, amongst other things, the freedom of placement. Again the effect described
in section 6.2.5 does not apply for the Magnetic Spring Model algorithm.
Finally it has to be emphasised this algorithm takes a tremendous amount of time
compared to the other algorithms presented in this thesis. Furthermore, it has many
parameters which might be changed to get better or worse results: For instance the
force of the springs or the strength of the magnetic field, the radius of the circle to
which the vertices are placed in the preprocessing step or the number of executions of
the simulation step. All these parameters make this algorithm harder to use than the
arithmetic ones.

61

7. Analysis and Perspectives

In this chapter, the tested graph drawing algorithms will be compared and their evalu-
ation will be summarised concerning the specific graph given by the LAUTS structure.
Additionally, the last section will highlight some perspectives and further work which
can be done to improve the algorithms.

7.1. Comparison of the Algorithms

7.1.1. Transformers

There were two types of algorithms under test in this thesis. First of all, the Transformers
which were used to transform the graph from one type into another one. They are used
as additives to be able to apply algorithms to the graph which were originally not able
to handle that type of graph. They could be divided into three types depending on the
input- and output-type of graph:

• General graph without self loops into a tree (Defect-Draw-Repair, Cycle Substitu-
tion)

• General graph without self loops into an acyclic graph (Cycle Removal).

• n ary tree to binary tree (Bi-Treeing).

To be able to get meaningful results for the graph drawing algorithms, it is necessary
to decide on one or a combination of Transformers which are used for all algorithms
evaluated. Using different Transformers would distort the results and make them in-
comparable.

Bi-Treeing This Transformer was actually introduced to be able to apply the graph
drawing algorithm described in [17] (Walker 90) as this algorithm is only able to handle
binary trees. Before Bi-Treeing can be applied, the graph has to be converted into a
tree by another Transformer.
Walker90 had a non-linear time constraint which was improved by the algorithm
proposed by [2] called Improved Walker which additionally is able to handle n ary trees
thus, Bi-Treeing became obsolete. However, it is still presented in this thesis as it
might be useful for further improvements of the graph drawing algorithms. This topic
is handled in the next section, 7.2.1.
The major disadvantage of this Transformer is the fact that it increases the depth of
the tree by introducing dummy nodes.

62

7. Analysis and Perspectives

Cycle Removal The name of this Transformer proposed by [4] is misleading as it does
not remove something from the graph but it inverts one edge per cycle. This method
has two big advantages. First of all, there is only one edge which has to be changed
during the transformation phase and so also only one in correction phase. The second
advantage is that this edge is only changed and not removed.
In contrast to the Defect-Draw-Repair method and Cycle Substitution, Cycle Removal
allows this edge to be considered during the drawing process. This has an advantage
for routing the edges as all of them are considered at once. Removing an edge in the
transformation phase means that it has to be routed after the correction phase of the
Transformer was executed and the previously removed edge was re-added to the graph.
The major disadvantage of Cycle Removal is that this Transformer only produces an
acyclic graph which means that this method can only be used for the Magnetic Spring
Model - Centric as all other algorithms require the graph to be a tree.

Defect-Draw-Repair This Transformer is capable to transform a general loop-less
graph into a tree. In fact, the resulting graph is even a rooted tree as there exists
exactly one vertex with g−G =0 which is the definition of a tree’s root vertex.
A major advantage of the Defect-Draw-Repair method is that it does only little
changes to the graph and has a static complexity of O(1)1 due to that. Only one
edge per cycle has to be removed in the transformation phase. Therefore, only one edge
has to be added in the correction phase. This makes the Defect-Draw-Repair method
superior to Cycle Substitution which has a higher complexity.
Unfortunately, the drawings which result from all graph drawing algorithms except
Magnetic Spring Model - Centric using Defect-Draw-Repair method have a disfigurement
at Sequences. The cycle sub-vertices which should be on one layer are underneath each
other, each one on an own layer. Figure 7.1 illustrates the problem.
An additional problem visible at 7.1(d) is that the edge removed at the transformation
phase and added again after the drawing in correction phase was not considered during
the drawing process, which can produce edge crossings. In fact, it is rather unlikely
that no edge crossings are produced. In this case, none of the cycle sub nodes has child
vertices. That is a worst case as the number of edge crossings is maximal there (n
crossings where n is the number of cycle sub nodes).
Especially the placement of one Sequence’s child nodes to different layers, leads to the
decision not to take this Transformer for testing the graph drawing algorithms.

Cycle Substitution Like the Defect-Draw-Repair method, Cycle Substitution trans-
forms a general loop-less graph into a rooted tree. Both break up the cycles. The
difference is the way how this is done. While the Defect-Draw-Repair method does only
changes to one edge, Cycle Substitution changes all except one. So those methods could
be seen as contrary approaches at least in the face of the complexity.

1The complexity is one as only one edge has to be changed. It does not consider the cycle detection.

63

7. Analysis and Perspectives

(a) Graph before transform-
ation.

(b) Graph after transforma-
tion.

(c) Graph after drawing. (d) Graph after correction.

Figure 7.1.: Problem of drawings done with the Defect-Draw-Repair method. (a) shows
the graph before the transformation, (c) shows the graph after the trans-
formation and (d) shows the graph after the correction.

The disadvantage of this Transformer is that there are many changes done to the
graph. However, the complexity is still linear: O(n − 1). As stated before, only one
edge is left unchanged. This has of course an effect on the runtime of the Transformer.
The more cycle sub vertices there are, the bigger is the difference between Defect-Draw-
Repair method and Cycle Substitution relating to the runtime.
The major advantage of Cycle Substitution is that the graph drawing algorithms
produce drawings out of the transformed graph which much better match the aesthetic
criteria defined in the style guide than those done with the Defect-Draw-Repair method.
Furthermore, the problem of producing edge crossings is solved. There is neither a case
where two edges of the transformed graph are crossing nor one where the edges of the
corrected graph do if the graph drawing algorithm produces planar drawings.

Summary Before the graph drawing algorithms can be tested, one of the Transformers
has to be selected which is used for all algorithms to be able to compare them to each
other.
Bi-Treeing is not necessary as n ary rooted trees are enough for all the drawing al-
gorithms under test. Cycle Removal produces only acyclic graphs while trees would

64

7. Analysis and Perspectives

be necessary for three of the four algorithms. This means the decision had to be made
between the Defect-Draw-Repair method and Cycle Substitution. As Cycle Substitution
in combination with the three arithmetic graph drawing algorithms produces better2 res-
ults, Cycle Substitution was chosen as the Transformer used to prepare the graphs for
drawing.

7.1.2. Graph Drawing Algorithms

Magnetic Spring Model - Centric The Magnetic Spring Model with a centric mag-
netic field does not perform well in drawing trees. The algorithm is very simple and its
claims are low as it is able to draw even acyclic graphs while all other algorithms must
have rooted trees. Thus the major advantage of this algorithm is that it can handle less
structured graphs.
The disadvantages, however, are clearly visible looking at the results: a huge number
of edge crossings, the fact that in bigger graphs no global structure is discernable and last
but not least the fact that the resulting drawings are indeterministic let this algorithm
not be competitive to the others.
One additional fact is the number of parameters which can be changed, such as mag-
netic field strength and forces of the springs. Choosing the wrong parameters may
cause the drawing to ”explode” or ”collapse”. Even the complexity depends on one of
these parameters. The number of iteration affects the complexity directly. A better
application for this algorithm are less structured graphs.
All these facts disqualify this algorithm.

Dominance-Straight-Line Analysing the drawings of this algorithm, it becomes clear
that they look very decent, even though they have to be rotated by 45 degrees clockwise
to become visible as horizontally layered drawings. Furthermore, this algorithm performs
best in regard to edge crossings and in ensuring the clearance of vertices. There was
not even one edge crossing in the test cases. The clearance was not only adhered to, it
was even reached exactly (on the lowest layer). Unfortunately, Dominance-Straight-Line
needs much space for its drawings even after a 45 degree clockwise rotation which implies
higher edge lengths.
Another unattractive fact is that there are sorted lists necessary which in worst case
raise the complexity to quadratic.
All these facts recommend this algorithm for smaller or sub-graphs but not for uni-
versal use.

Leaf-First-Layering Even though this algorithm is rather simple, it produces good
results in reasonable time. Additionally, it fulfills with its orthogonal lines one of the
”nice to have” claims of the style guide. As Dominance-Straight-Line and Magnetic-
Spring-Model - Centric are not universally usable, Leaf-First-Layering only competes
with the Improved Walker algorithm.

2Better means that the resulting drawing fits better to the aesthetic criteria defined in the style guide.

65

7. Analysis and Perspectives

The only measured value where Leaf-First-Layering is superior to Improved Walker
is the clearance of the vertices. As with Dominance-Straight-Line, Leaf-First-Layering
delivers exactly the desired value. All other resulting values are slightly worse than those
of Improved Walker.
Looking at figure 7.2, it becomes clear that Leaf-First-Layering is obviously inferior
to Improved Walker in view of complexity.
Altogether, it can be stated that Leaf-First-Layering produces better results than
Dominance-Straight-Line except for the number of line crossings but it is not as good
as Improved Walker except for the clearance.

Improved Walker This graph drawing algorithm is the fastest of the four considered
here. Its results for the number of line crossings and clearance are not as good as those
of Dominance-Straight-Line but therefore, the required space as well as the line lengths
are much better.
All in all, Improved Walker is a algorithm which produces good drawings in reasonable
time. This makes this graph drawing algorithm the first choice for drawing the graphs
in LAUTS.

Figure 7.2.: Complexity of graph drawing algorithms. IW = Improved Walker, LFL =
Leaf-First-Layering, DSL = Dominance-Straight-Line, MSMC = Magnetic-
Spring-Model - Centric.

66

7. Analysis and Perspectives

7.2. Further Work and Perspectives

So far, not all problems could be solved and not all ideas could be tested. The goal of
this work was to find a suitable algorithm for drawing the graphs used by LAUTS. The
Improved Walker algorithm in combination with the Cycle Substitution Transformer are
a good team for that task. However, there might be some additional modifications to
the algorithm which produce even better drawings.

7.2.1. Perspectives

[2] states that there are no edge crossings in drawings done by Improved Walker. This
could not been confirmed by this thesis as the presented results show a counterexample.
Previous versions of this algorithm were used to draw binary trees. It might be inter-
esting to add the Bi-Treeing Transformer after Cycle Substitution was executed. Maybe
with this trick it would be possible to obtain drawings without edge crossings.
Another approach which might be interesting is to apply a simulation like the Magnetic-
Spring-Model - Centric to a graph drawn by an other algorithm. For example, if the
connections are handled as springs after Leaf-First-Layering, the total edge length as
well as the edge length differences could be reduced. An extrem example would be a
vertex which is a direct child of the root in a tree of depth four. This would mean that
the vertex is placed on the lowest level and has an edge across all layers to the root.
Considering the edges as springs now could pull this vertex up and produce an even
better drawing. Of course, one would have to make sure that no new edge crossings are
produced and that the clearance is kept.

7.2.2. Further Work

One parameter was explicitly excluded from this thesis: the size of vertices. In the real
diagram used in LAUTS, vertices have different sizes. Depending on the algorithm used
to draw the diagram, it is challenging to include differently sized vertices. While this
does not matter for Magnetic-Spring-Model - Centric, it might become more complex
for the Improved Walker algorithm.

67

Part III.

Appendix

68

A. Tree Diagram Style Guide

This part of the document describes the way a diagram should look like. It clarifies the
open questions about the appearance of the diagram which is not given by the structure
of the graph.
In contrast to the rules given by the graph structure, these style rules are not man-
datory. They are used to define rules for the graph layout algorithms. This means that
the graph should look as similar to the rules defined in the style guide as possible but it
does not have to look exactly like the definition.
The rules concerning the positioning of the nodes are defined in a first step. After-
wards, the rules for the connection are given.

A.1. Placement of Vertices

A.1.1. Vertical Vertex Layout

In section 3.1, the structure of LAUTS is given as it is realized by the data model of the
software. It is obvious that it is hierarchical. This should be visible in the diagram too,
although the graph to draw is not a tree any more. Nevertheless, the diagram should
have at least a (rooted) tree-like appearance.
In detail, this means that the nodes are arranged in layers. A node A which is
contained by a node B is drawn one layer below B. Thus, all nodes contained by B are
drawn on the same layer. This implies that all sub nodes of the nodes on one layer are
arranged one line below their foregoing nodes. Figure A.1 shows the arrangement by
layers.

B

A C

D E F

a b

d

c

Figure A.1.: Layer-oriented appearance.

69

A. Tree Diagram Style Guide

A.1.2. Horizontal Vertex Layout

For the horizontal layout of the diagram the layers are used as well. A previous node is
placed at the median center of its child nodes. Furthermore, the child nodes of a node
are placed right beside each other. This will avoid edge crossing within inter-layer-edges.
An illustration is shown in figure A.1.

A.2. Spacing

To prevent overlapping of nodes, a minimum distance in vertical as well as in horizontal
direction is required.

A.2.1. Vertical Spacing

The vertical spacing could be done in two ways. The first is that the spacing between
the layers (d) is dependent on the size of the vertices in the layers. The second is that
d is the same for all layers. To avoid overlapping, (d) depends on c which defines the
minimal distance between the lower bound of the largest vertex of the upper layer and
the upper bound of the largest vertex of the lower layer.
With regard to height optimization, it might make sense to arrange the vertices on
the layers in such a way that the bigger vertices on one layer are on the opposite of the
smaller vertices on the other layer. Figure A.2(a) visualizes this. Unfortunately, the
effect shown in figure A.2(b) is not desirable.

(a) (b)

Figure A.2.: Height optimization problem.

A.2.2. Horizontal Spacing

There are two types of horizontal spacing. One between sub nodes of the same parent
node (a) and one between the sub nodes different parent nodes (b). While a is a fixed
value, b is variable. This is because b not only depends on the actual layer but also on
the layers above. Because of this, there is only a minimum defined for b.

70

A. Tree Diagram Style Guide

A.3. Edges

Edges are split into two categories:

• inter-layer edges

• inner-layer edges

Depending on the category of edge, there are different rules.

A.3.1. Inter-Layer Edges

These edges are used most frequently. They connect two nodes which are on different
layers (parent - child relationship). An inter-layer edge should always “fall” from its
start to the end point. That means if the starting point is considered to be the point of
origin, the edge has to take course through the third or fourth quadrant of the coordinate
system. The starting point is always the center of the lower bound of the node on the
higher layer. The ending point of the connection is the center top of the lower layer
node. Depending on the element represented by the higher node, the edges have different
appearance (see table A.1).
Except when the higher layer node is of type Sequence, there is exactly one connection
between a parent node (higher layer node) and its child nodes (lower layer nodes). For
Sequence nodes, there are exactly two connections between the Sequence (higher level)
node and its child nodes: one connecting to the first and one connecting from the last
child node. As visible in figure A.3, in respect of the number of connections, it does not
matter how many child nodes there are.

Parent Element Top Bottom
Data Elements
Random

RandomPutBack
RandomAll
Decision
Sequence

Table A.1.: Appearance of edges subject to the preceding node.

A.3.2. Inner-Layer Edges

This type of edge is only used if the higher layer node is of type Sequence. They direct
and connect the vertices representing the Sequence’s child nodes which by definition
are all on the same layer. For better readability, the vertices have exactly the sequence
as the elements they represent from left to right side. This ensures that all edges are
running in the same direction (from left to right) and so by definition edge crossings

71

A. Tree Diagram Style Guide

n child nodes with n >1. One child node.

& &

Figure A.3.: Inter-layer edges with a Sequence as cycle root.

between inner-layer edges are not possible by definition. The appearance of the edge is
the same as already defined for Sequence in table A.1.

A.3.3. Orthogonal Edges

As straight line edges do not look very professional, the edges should be routed ortho-
gonal. The horizontal part of such an orthogonal line is in between two layers even if
the layer of the nodes differs more than 1. This avoids an overlap between an edge and
a node.

72

B. Set of Graphs used as Test Objects

B.1. Details of the Test Objects

B.1.1. Minimal Decision

Name Frequency
TestSuites 0
TestCases 1
Functions 3
Actions 1
Reactions 0
Sequences 0
Randoms 0
RandomAlls 0
RandomPutBacks 0
Decision 1
Number of vertices 6
Depth 4
Leafs 2
Maximal outer degree 2

73

B. Set of Graphs used as Test Objects

B.1.2. Minimal Sequence

Name Frequency
TestSuites 0
TestCases 2
Functions 1
Actions 2
Reactions 0
Sequences 1
Randoms 0
RandomAlls 0
RandomPutBacks 0
Decision 0
Number of vertices 6
Depth 4
Leafs 2
Maximal outer degree 2

B.1.3. Minimal Other

Name Frequency
TestSuites 0
TestCases 2
Functions 1
Actions 2
Reactions 0
Sequences 0
Randoms 1
RandomAlls 0
RandomPutBacks 0
Decision 0
Number of vertices 6
Depth 4
Leafs 2
Maximal outer degree 2

74

B. Set of Graphs used as Test Objects

B.1.4. Pure Decision

Name Frequency
TestSuites 0
TestCases 1
Functions 0
Actions 10729
Reactions 0
Sequences 0
Randoms 0
RandomAlls 0
RandomPutBacks 0
Decision 10727
Number of vertices 21458
Depth 21
Leafs 10729
Maximal outer degree 2

B.1.5. Pure Sequence

Name Sequence
TestSuites 0
TestCases 1
Functions 0
Actions 4160
Reactions 0
Sequences 5848
Randoms 0
RandomAlls 0
RandomPutBacks 0
Decision 0
Number of vertices 10009
Depth 9
Leafs 4160
Maximal outer degree 7

75

B. Set of Graphs used as Test Objects

B.1.6. Pure Other

Name Frequency
TestSuites 0
TestCases 1
Functions 0
Actions 4158
Reactions 0
Sequences 0
Randoms 1995
RandomAlls 1920
RandomPutBacks 1935
Decision 0
Number of vertices 10010
Depth 10
Leafs 4158
Maximal outer degree 7

B.1.7. Special Case with 96 Vertices - Special (100)

Name Frequency
TestSuites 0
TestCases 13
Functions 20
Actions 8
Reactions 0
Sequences 8
Randoms 12
RandomAlls 24
RandomPutBacks 11
Decision 0
Number of vertices 6
Depth 96
Leafs 1
Maximal outer degree 1

76

B. Set of Graphs used as Test Objects

B.1.8. Special Case with 10,450 Vertices - Special (10000)

Name Frequency
TestSuites 0
TestCases 1430
Functions 2090
Actions 880
Reactions 0
Sequences 0
Randoms 2200
RandomAlls 2640
RandomPutBacks 1210
Decision 0
Number of vertices 10450
Depth 10450
Leafs 1
Maximal outer degree 1

B.1.9. Small Graph with g+G = 5 - 1 (563)

Name Frequency
TestSuites 0
TestCases 97
Functions 110
Actions 103
Reactions 41
Sequences 55
Randoms 48
RandomAlls 44
RandomPutBacks 49
Decision 16
Number of vertices 563
Depth 12
Leafs 298
Maximal outer degree 5

77

B. Set of Graphs used as Test Objects

B.1.10. Huge Graph with g+G = 5 - 1 (10139)

Name Frequency
TestSuites 1
TestCases 1884
Functions 1895
Actions 1839
Reactions 637
Sequences 919
Randoms 927
RandomAlls 886
RandomPutBacks 902
Decision 249
Number of vertices 10139
Depth 18
Leafs 5222
Maximal outer degree 5

B.1.11. Small Graph with g+G = 50 - 2 (471)

Name Frequency
TestSuites 0
TestCases 152
Functions 146
Actions 152
Reactions 5
Sequences 5
Randoms 2
RandomAlls 6
RandomPutBacks 3
Decision 0
Number of vertices 471
Depth 4
Leafs 454
Maximal outer degree 50

78

B. Set of Graphs used as Test Objects

B.1.12. Huge Graph with g+G = 50 - 2 (7311)

Name Frequency
TestSuites 1
TestCases 2325
Functions 2286
Actions 2329
Reactions 74
Sequences 81
Randoms 71
RandomAlls 61
RandomPutBacks 82
Decision 1
Number of vertices 7311
Depth 5
Leafs 7011
Maximal outer degree 50

B.1.13. Small Graph with g+G = 20 - 3 (670)

Name Frequency
TestSuites 0
TestCases 231
Functions 194
Actions 178
Reactions 24
Sequences 15
Randoms 15
RandomAlls 14
RandomPutBacks 17
Decision 0
Number of vertices 670
Depth 7
Leafs 603
Maximal outer degree 20

79

B. Set of Graphs used as Test Objects

B.1.14. Huge Graph with g+G = 20 - 3 (9551)

Name Frequency
TestSuites 0
TestCases 2808
Functions 2799
Actions 2744
Reactions 229
Sequences 242
Randoms 242
RandomAlls 255
RandomPutBacks 210
Decision 22
Number of vertices 9551
Depth 7
Leafs 8510
Maximal outer degree 20

B.1.15. Small Graph with g+G = 3 - 4 (564)

Name Frequency
TestSuites 1
TestCases 79
Functions 77
Actions 74
Reactions 43
Sequences 66
Randoms 66
RandomAlls 57
RandomPutBacks 75
Decision 26
Number of vertices 564
Depth 24
Leafs 154
Maximal outer degree 3

80

B. Set of Graphs used as Test Objects

B.1.16. Huge Graph with g+G = 3 - 4 (9787)

Name Frequency
TestSuites 1
TestCases 1275
Functions 1325
Actions 1354
Reactions 705
Sequences 1101
Randoms 1154
RandomAlls 1204
RandomPutBacks 1149
Decision 439
Number of vertices 9787
Depth 36
Leafs 2639
Maximal outer degree 3

81

C. Results of Drawings

C.1. Leaf-First-Layering

C.1.1. Min Decision

C.1.2. Min Other

C.1.3. Min Sequence

C.1.4. Pure Decision

C.1.5. Pure Other

C.1.6. Pure Sequence

82

C. Results of Drawings

C.1.7. Special(100)

C.1.8. Special(10000)

83

C. Results of Drawings

C.1.9. 1 (10139)

C.1.10. 1 (563)

C.1.11. 2 (471)

C.1.12. 2 (7311)

C.1.13. 3 (670)

C.1.14. 3 (9551)

84

C. Results of Drawings

C.1.15. 4 (564)

C.1.16. 4 (9787)

C.2. Dominance Straight Line

C.2.1. Min Decision

C.2.2. Min Other

C.2.3. Min Sequence

85

C. Results of Drawings

C.2.4. Pure Decision

C.2.5. Pure Other

86

C. Results of Drawings

C.2.6. Pure Sequence

C.2.7. Special(100)

87

C. Results of Drawings

C.2.8. Special(10000)

C.2.9. 1 (10139)

88

C. Results of Drawings

C.2.10. 1 (563)

89

C. Results of Drawings

C.2.11. 2 (471)

90

C. Results of Drawings

C.2.12. 2 (7311)

91

C. Results of Drawings

C.2.13. 3 (670)

92

C. Results of Drawings

C.2.14. 3 (9551)

93

C. Results of Drawings

C.2.15. 4 (564)

94

C. Results of Drawings

C.2.16. 4 (9787)

C.3. Improved Walker

C.3.1. Min Decision

C.3.2. Min Other

C.3.3. Min Sequence

95

C. Results of Drawings

C.3.4. Pure Decision

C.3.5. Pure Other

C.3.6. Pure Sequence

C.3.7. Special(100)

96

C. Results of Drawings

C.3.8. Special(10000)

C.3.9. 1 (10139)

C.3.10. 1 (563)

C.3.11. 2 (471)

C.3.12. 2 (7311)

C.3.13. 3 (670)

97

C. Results of Drawings

C.3.14. 3 (9551)

C.3.15. 4 (564)

C.3.16. 4 (9787)

C.4. Magnetic Spring Model - Centric

C.4.1. Min Decision

C.4.2. Min Other

C.4.3. Min Sequence

98

C. Results of Drawings

Crossings Area Length Diff @ G Diff at v Gap
1 (10139) 337183 60774x95617 73564866 13075 13072 0
1 (563) 2345 2747x1948 227015 736 702 0
2 (471) 16347 918x912 8837 686 679 0
2 (7311) 842449 1288x1544 1089623 744 693 0
3 (670) 10177 545x587 24386 267 267 0
3 (9551) 3183044 3713x3441 11785836 2678 2667 0
4 (564) 1169 2811x6449 167837 773 680 0
4 (9787) 194773 107724x90923 44228324 11712 11259 0
Min Decision 0 49x40 85 27 23 8
Min Other 3 26x22 53 20 14 0
Min Sequence 0 26x38 73 26 20 4
Special(100) 7 1174x546 4090 104 20 4
Special(10000) 178687 111180x113986 44639417 13553 4192 9
Sequence 1541598 9351x17853 48592031 8197 3106 0
Decision 973220 285498x163256 211985483 33170 8728 0
Other 771038 12691x23858 55445001 10201 3295 0

Table C.1.: Result of first run of Magnetic Spring Model with a centric magnetic field.

Crossings Area Length Diff @ G Diff at v Gap
1 (10139) 302141 96933x58587 63276038 14525 14394 0
1 (563) 2915 2678x1720 296196 851 850 0
2 (471) 12123 925x892 9394 682 673 0
2 (7311) 1188912 1688x1633 2033260 823 704 0
3 (670) 9802 513x602 90239 240 226 0
3 (9551) 1005872 5562x3891 17927803 3265 3234 0
4 (564) 1099 4124x4627 108275 609 405 0
4 (9787) 228025 88945x109964 43273031 10569 10537 0
Min Decision 0 26x41 63 26 19 4
Min Other 1 36x22 60 21 14 2
Min Sequence 3 26x30 57 30 20 2
Special(100) 5 892x910 3809 78 18 4
Special(10000) 180305 132958x104621 44827449 13520 4010 4
Sequence 723843 12459x18515 61263852 8208 8144 0
Decision 1110118 208627x182590 181701861 28396 7537 0
Other 515414 21687x15775 51463033 9486 3099 0

Table C.2.: Result of second run of Magnetic Spring Model with a centric magnetic field.

99

C. Results of Drawings

Crossings Area Length Diff @ G Diff at v Gap
1 (10139) 312287 79304x94120 75951369 13668 13512 0
1 (563) 3564 1194x3201 298859 729 703 0
2 (471) 13932 892x887 8451 671 667 0
2 (7311) 742644 1508x1318 2160128 685 661 0
3 (670) 13838 615x465 59731 243 238 0
3 (9551) 2047651 3825x3651 13050471 2590 2582 0
4 (564) 1212 4089x5831 139575 551 515 0
4 (9787) 176586 90034x122747 40491518 14742 14729 0
Min Decision 0 40x43 80 26 13 4
Min Other 1 46x22 69 27 21 4
Min Sequence 3 26x22 53 24 14 0
Special(100) 21 453x884 4257 68 22 5
Special(10000) 181225 114095x112998 45143982 13221 4174 6
Sequence 900785 16943x17712 70712589 9536 9534 0
Decision 777496 199633x230570 214933122 28316 8914 0
Other 434289 30340x20566 78467521 12808 3267 0

Table C.3.: Result of third run of Magnetic Spring Model with a centric magnetic field.

Crossings Area Length Diff @ G Diff at v Gap
1 (10139) 263580 71575x107087 47479235 14392 14271 0
1 (563) 3844 1313x1718 176481 503 459 0
2 (471) 16347 894x890 8233 673 667 0
2 (7311) 797423 1736x1773 2371806 835 717 0
3 (670) 11980 532x628 37166 274 272 0
3 (9551) 1133224 3306x4707 16238257 2965 2582 0
4 (564) 1105 5593x4016 166150 576 451 0
4 (9787) 191662 90563x109966 42964723 12082 11759 0
Min Decision 3 30x22 55 21 14 0
Min Other 3 26x22 53 20 14 0
Min Sequence 0 26x30 60 20 14 4
Special(100) 13 718x1043 4961 119 27 2
Special(10000) 180133 121988x108203 43843385 12095 4233 9
Sequence 832542 20345x14644 72408674 10024 9995 0
Decision 1082446 143278x251782 230452096 29662 9150 0
Other 531872 18556x27684 64159928 11198 3106 0

Table C.4.: Result of fourth run of Magnetic Spring Model with a centric magnetic field.

100

C. Results of Drawings

Crossings Area Length Diff @ G Diff at v Gap
1 (10139) 453380 54435x93290 67311788 13438 13191 0
1 (563) 3678 1938x2557 253544 691 657 0
2 (471) 11381 896x892 8411 675 670 0
2 (7311) 861234 1283x1241 10646644 687 681 0
3 (670) 12395 499x476 82831 240 226 0
3 (9551) 1300909 3131x2352 6200340 1500 1498 0
4 (564) 1145 3361x6224 155446 624 609 0
4 (9787) 202935 85401x124959 42785093 12383 11166 0
Min Decision 1 44x22 72 27 16 3
Min Other 0 32x40 64 30 25 4
Min Sequence 1 48x22 81 22 17 4
Special(100) 14 506x971 3957 71 24 4
Special(10000) 179373 109753x131471 44060195 14585 4208 0
Sequence 947483 12862x10941 37215735 6392 6390 0
Decision 1070415 224609x161256 206947756 27640 7975 0
Other 581853 18324x31241 64670622 11194 2820 0

Table C.5.: Result of fifth run of Magnetic Spring Model with a centric magnetic field.

101

C. Results of Drawings

C.4.4. Pure Decision

102

C. Results of Drawings

C.4.5. Pure Other

C.4.6. Pure Sequence

103

C. Results of Drawings

C.4.7. Special(100)

C.4.8. Special(10000)

104

C. Results of Drawings

C.4.9. 1 (10139)

105

C. Results of Drawings

C.4.10. 1 (563)

C.4.11. 2 (471)

106

C. Results of Drawings

C.4.12. 2 (7311)

C.4.13. 3 (670)

107

C. Results of Drawings

C.4.14. 3 (9551)

108

C. Results of Drawings

C.4.15. 4 (564)

109

C. Results of Drawings

C.4.16. 4 (9787)

110

D. Definitions

Directed Graph (digraph) A directed graph is a quadruple

G = (V,R, α, ω) with (D.1)

V 6= ∅, V ∩R = ∅, α : R→ V, ω : R→ V

G = (directed) graph
V = Set of vertices
R = Set of edges
α and ω are mappings
α(r) = beginning edge
ω(r) = ending edge
n := |V (G)| = number of vertices
m := |R(G)| = number of edges
δ+G(v) := {r ∈ R : α(r) = v} = outgoing edges of v
δ−G(v) := {r ∈ R : ω(r) = v} = incoming edges of v
N+G (v) := {ω(r) : r ∈ δ

+
G(v)} = set of vertices following v

N+G (v) := {α(r) : r ∈ δ
−
G(v)} = set of vertices preceding v

g+G(v) := |δ
+
G(v)| = outer degree of v

g−G(v) := |δ
−
G(v)| = inner degree of v

gG(v) := g
+
G(v) + g

−
G(v) = degree of v

ΔG := max{gG(v) : v ∈ V }

Undirected graph An undirected graph is a triple

G = (V,E, γ) with (D.2)

V 6= ∅, V ∩ E = ∅,

γ : E → {X : X ⊆ V with 1 ≤ |X| ≤ 2}

111

D. Definitions

G = Graph (D.3)

V = Set of vertices

E = Set of edges

γ = Set of one or two vertices, defining an edge

δ(v) := {e ∈ E : v ∈ γ(e)} incident edges of v

NG(v) := {u ∈ V : γ(e)={u,v}for e∈E } vertices adjacent to v

gG(v) :=
∑

e∈E:v∈γ(e)

(3− |γ(e)|) degree of v

Δ(G) := max{gG(v) : v ∈ V } maximum degree of G

Incidence Two edges r and r′ are called incident if

∃ v ∈ V ; r, r′ ∈ R | α(r) = α(r′) or (D.4)

α(r) = ω(r′) or

ω(r) = α(r′) or

ω(r) = ω(r′)

Adjacence Two edges v and v′ are adjacent if

∃ r ∈ R; v, v′ ∈ V | α(r) = v and ω(r) = v′ or (D.5)

α(r) = v′ and ω(r) = v

Isomorphic Two graphs G(V,R, α, ω) and G′(V ′, R′, α′, ω′) are isomorphic (G ∼= G′) if
there are two bijective mappings:

σ : V → V ′; (D.6)

τ : R→ R′;

r ∈ R |

(i) α(τ(r)) = σ(α(r))

(ii) ω(τ(r)) = σ(ω(r))

Partial graph / Superior graph A graph G′ = (V ′, R′, α′, ω′) is called partial graph
(G′ v G) of G = (V,R, α, ω) if

(i) V ′ ⊆ V and R′ ⊆ R (D.7)

(ii) α|R′ = α
′ and ω|R′ = ω

′

112

D. Definitions

(Self) loop An edge is called a loop if

r ∈ R|α(r) = ω(r) (D.8)

Path A path P in a graph G is:

P = (v0, r1, v1, ..., rk, vk) with (D.9)

k ≥ 0, v0, ..., vk ∈ V (G), r1, ..., rk ∈ R(G),

α(ri) = vi−1, ω(ri) = vi for i = 1, ..., k

Beginning and ending vertex are defined as follows:

αP := v0 (D.10)

ωP := vk

Cyclic graph The partial graph G’ is a cycle if

P = v0, ..., vk−1 with k ≤ 3 then (D.11)

G′ := P + r with α(r) = vk−1, ω(v0)

A cycle can also be defined via its vertices:

G′ := (v0, ..., vk−1, v0) with k = n(G
′) (D.12)

Acyclic graph A graph is acyclic if

6 ∃P |αP = ωP (D.13)

Parallel edge Edges are considered parallel if

r, r′ ∈ R, r 6= r′ | α(r) = α(r′) and ω(r) = ω(r′) (D.14)

Antiparallel / inverse edge Edges are antiparallel or inverse if

r, r′ ∈ R, r 6= R′ | α(r) = ω(r′) and ω(r) = α(r′) (D.15)

Simple graph A graph is called simple if it has no loops and no parallel edges.

Reachability An edge w is reachable from vertex v if

∃P |α(P) = v ∧ ω(P) = w (D.16)

EG(v) means all the vertices reachable from v.

113

D. Definitions

Connected Two vertices are v,w are called connected (v ↔ w) if

v, w ∈ V (G) (D.17)

w ∈ EG(v) ∧ v ∈ EG(w)

Connected graph A graph is connected if

∀v, w ∈ V ∃ w ∈ EG(v) ∧ v ∈ EG(w) (D.18)

Transitive Graph A graph G = (V,R, α, ω) is transitive if:

ruv, rvw ∈ R with (D.19)

ω(ruv) = α(rvw) then

∃r ∈ R | α(r) = α(ruv) ∧ ω(r) = ω(rvw)

Transitive Closure A Graph G∗ = (V,R∗) is the transitive closure of a graph without
parallel edges G=(V,R) if:

(i) G v G∗ (D.20)

(ii) G∗ is transitive

(iii) ifG′ is transitive and G v G′ then G∗ v G′

From these conditions, it follows that the transitive closure G∗ from a graph without
parallel edges G is distinctly defined (see [8] pages 79 - 83 for the proof).

Forest A graph G is called forest if it is simple and acyclic.

Tree A graph G is called tree if it is connected. A vertex v with g+G(v) = 0 is called a
leaf.

Spanning tree A partial graphG′(V,E ′, γ) is called spanning tree of a graph G(V,E, γ),
if G′ is a tree.

Rooted tree A graph G is called a rooted tree if it is a tree and has a special vertex
r ∈ V which is called root. The root is the only vertex of the tree which has the inner
degree g−G = 0. Every other vertex has g

−
G = 1. ([7], p. 47)

Binary tree A binary tree is a rooted tree G with g+G(v) ≤ 2 ∀v ∈ V .

Drawing A drawing Γ is a function mapping each v ∈ V to a definite point Γ(v) and
each edge (u, v) to a connection Γ(u, v) with the starting point α(Γ(v))and the ending
point ω(Γ(v)) ([4]).

114

D. Definitions

Planar A graph is planar if no two distinct edges intersect ([4]).

Cycle root A cycle root (c) is the ending vertex of the shortest path (Q) out of the set
of paths between the graphs root (s) and the vertices of the cycle (C).

(i) C v G|αC = ωC (D.21)

(ii) s ∈ V (G) ∧ g−G(s) = 0

(iii) O = {P v G|αP = s ∧ ωP ∈ V (C)}

(iv) c = ωQ with Q ∈ O|min{|V (Q)|}

Cycle vertices Cycle vertices (v) refer to all vertices of a cycle (C).

v ∈ V (C) (D.22)

Cycle sub vertices Every vertex (v) except the cycle root (c) of a cycle (C) is part the
set “cycle sub vertices” (F).

F (C) ⊂ V (C) (D.23)

v ∈ F (C)

115

E. CD

116

F. Affidavit

Affidavit

I confirm that I have produced this thesis by myself and without using resources other
than those mentioned. All ideas taken directly or indirectly from other publications are
indicated. At my best knowledge, there was no thesis publicized or submitted to any
examination authority before which is equal or similar to this thesis.

Erklaerung

Ich erklaere hiermit, dass ich die vorliegende Arbeit selbstaendig und ohne Benutzung
anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt
oder indirekt uebernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit
wurde nach meiner besten Kenntnis bisher in gleicher oder aehnlicher Form keiner an-
deren Pruefungsbehoerde vorgelegt und auch noch nicht veroeffentlicht.

Hof, den 19.06.2007

117

Bibliography

[1] Batini, C., Nardelli, E. and Tamassia, R.: A Layout Algorithm for Data-Flow
Diagrams, IEEE Trans. Softw. Eng., SE-12, no. 4, 538-546, 1986.

[2] Buchheim1, Christoph, Jnger1, Michael, Sebastian Leipert2: Improving Walker’s
Algorithm to Run in Linear Time, 1University of Cologne, 2 cesar research center
Bonn, Germany, 2002.

[3] Carpano, M. J.: Automatic Display of Hierarchized Graphs for Computer Aided
Decision Analysts, IEEE Trans. Syst. Man Cybern., SMC-10, no 11, pages 705-715,
1980.

[4] Di Battista, Giuseppe, Eades, Peter, Tamassia, Roberto, Tollis, Ioannis G.: Graph
Drawing, Algorithms for the visualization of Graphs, 1999.

[5] Kamada, T.: On visualization of abstract objects and relations, A Dissertation
Submitted to the Graduate School of the University of Tokyo, 1988.

[6] Kaufmann, Michael and Wagner, Dorothea (Eds.): Drawing Graphs, Methods and
Models, Springer Verlag, 1998.

[7] Kaufmann, Michael and Wagner, Dorothea: Drawing Graphs: Methods and Mod-
els, Springer-Verlag Inc., 2001.

[8] Krumke, Sven Oliver, Noltemeier, Hartmut: Graphentheoretische Konzepte und
Algorithmen, 1. Auflage, 2005.

[9] Laughton, Craig: http://gooseania.blogspot.com/2005/02/graphs-and-trees.html,
30.01.2007.

[10] Reingold, Edward M. and Tilford, John S. Tidier drawings of trees. IEEE Transac-
tions on Software Engineering, 7(2): 223-228, 1981.

[11] Sedgewick, Robert: Algorithms in C++, Pearson Studium, 2002, page 325-327.

[12] Sugiyama, Kozo: Graph Drawing and Applications, For Software and Knowledge
Engineers Vol 11, 2002.

[13] Sugiyama, K., Tagawa, S. and Toda, M.: Methods for Visual Understanding of
Hierarchical Systems, IEEE Trans. Syst. Man Cybern., SMC-11, no. 2, pages 109-
125, 1981.

[14] Tamassia, R. : On embedding a Graph in the Grid with the minimum Number of
Bends, SIAM J. Comput., 16. no. 3, 421-444, 1987.

[15] Tamassia, R., Di Battista,G. and Batini, C.: Automatic Graph Drawing and Read-
ability of Diagrams, IEEE Trans. Syst. Man Cybern., SMC-18, no. 1, page 61-78,
1988.

118

Bibliography

[16] US-Patent 5705791. http://www.patentstorm.us/patents/5705791-claims.html;
2006-06-05.

[17] Walker II, John Q. . A node-positioning algorithm for general trees. Software Prac-
tice and Experience, 20(7): 685-705, 1990.

[18] Warfield, J. : Crossing Theory and Hierarchy Mapping, IEEE Trans. Syst. Man
Cybern., SMC-7, no. 7, pages 502-523, 1977.

[19] Wetherell, Charles and Shannon, Alfred. Tidy drawing of trees. IEEE Transactions
on Software Engineering, 5(5): 514:514-520, 1979.

[20] Wikipedia (German); http://de.wikipedia.org/wiki/Diagramm; 01.03.2006.

119

	I Introduction
	1 Introduction
	1.1 LOEWE Automated Testing System
	1.2 Definitions
	1.3 Graphical Notations
	1.3.1 Element Symbol
	1.3.2 Control-Flow Operators
	1.3.3 LAUTS Elements

	1.4 Problem Definition
	1.5 Project Aims
	1.6 Overview

	2 Basics of Graph Drawing
	2.1 Diagram Language
	2.2 Aspects of Graph Drawing
	2.3 Details of Graph Drawing Parameters
	2.3.1 Graph Types
	2.3.2 Drawing Conventions
	2.3.3 Aesthetic Drawing Rules

	2.4 Graph Drawing Approaches
	2.4.1 Topology-Shape-Metrics Approach
	2.4.2 The Hierarchical Approach
	2.4.3 The Force-Directed Approach
	2.4.4 The Divide and Conquer Approach

	II Graph Drawing
	3 Classification of Graph Type
	3.1 Definition given by LAUTS Structure
	3.2 Classification
	3.2.1 Special Case Sequence
	3.2.2 Conclusion of Classification

	3.3 Planarity

	4 Graph Transformations
	4.1 Defect-Draw-Repair
	4.2 Cycle Removal
	4.3 Cycle Substitution
	4.3.1 Additional Definitions
	4.3.2 The Algorithm of Cycle Substitution

	4.4 Bi-Treeing
	4.4.1 Augmentation
	4.4.2 Drawing
	4.4.3 Reverse Conversion

	5 Prearrangements for Rating Algorithms
	5.1 Rating of Graph Drawing Algorithms
	5.2 Arrangements for the Test Objects
	5.3 Characteristics of the Graphs used as Test Objects
	5.3.1 Shape of the Graph
	5.3.2 Size of the Graph

	5.4 Set of Graphs to Test

	6 Graph Drawing Algorithms
	6.1 Leaf-First-Layering
	6.1.1 Overview
	6.1.2 Mode of Operation
	6.1.3 Complexity
	6.1.4 Results
	6.1.5 Evaluation

	6.2 Dominance-Straight-Line
	6.2.1 Overview
	6.2.2 Mode of Operation
	6.2.3 Complexity
	6.2.4 Results
	6.2.5 Evaluation

	6.3 Improved Walker
	6.3.1 Overview
	6.3.2 Mode of Operation
	6.3.3 Complexity
	6.3.4 Results
	6.3.5 Evaluation

	6.4 Magnetic Spring Model - Centric
	6.4.1 Overview
	6.4.2 Mode of Operation
	6.4.3 Complexity
	6.4.4 Results
	6.4.5 Evaluation

	7 Analysis and Perspectives
	7.1 Comparison of the Algorithms
	7.1.1 Transformers
	7.1.2 Graph Drawing Algorithms

	7.2 Further Work and Perspectives
	7.2.1 Perspectives
	7.2.2 Further Work

	III Appendix
	A Tree Diagram Style Guide
	A.1 Placement of Vertices
	A.1.1 Vertical Vertex Layout
	A.1.2 Horizontal Vertex Layout

	A.2 Spacing
	A.2.1 Vertical Spacing
	A.2.2 Horizontal Spacing

	A.3 Edges
	A.3.1 Inter-Layer Edges
	A.3.2 Inner-Layer Edges
	A.3.3 Orthogonal Edges

	B Set of Graphs used as Test Objects
	B.1 Details of the Test Objects
	B.1.1 Minimal Decision
	B.1.2 Minimal Sequence
	B.1.3 Minimal Other
	B.1.4 Pure Decision
	B.1.5 Pure Sequence
	B.1.6 Pure Other
	B.1.7 Special Case with 96 Vertices - Special_(100)
	B.1.8 Special Case with 10,450 Vertices - Special_(10000)
	B.1.9 Small Graph with g+G = 5 - 1_(563)
	B.1.10 Huge Graph with g+G = 5 - 1_(10139)
	B.1.11 Small Graph with g+G = 50 - 2_(471)
	B.1.12 Huge Graph with g+G = 50 - 2_(7311)
	B.1.13 Small Graph with g+G = 20 - 3_(670)
	B.1.14 Huge Graph with g+G = 20 - 3_(9551)
	B.1.15 Small Graph with g+G = 3 - 4_(564)
	B.1.16 Huge Graph with g+G = 3 - 4_(9787)

	C Results of Drawings
	C.1 Leaf-First-Layering
	C.1.1 Min Decision
	C.1.2 Min Other
	C.1.3 Min Sequence
	C.1.4 Pure Decision
	C.1.5 Pure Other
	C.1.6 Pure Sequence
	C.1.7 Special(100)
	C.1.8 Special(10000)
	C.1.9 1_(10139)
	C.1.10 1_(563)
	C.1.11 2_(471)
	C.1.12 2_(7311)
	C.1.13 3_(670)
	C.1.14 3_(9551)
	C.1.15 4_(564)
	C.1.16 4_(9787)

	C.2 Dominance Straight Line
	C.2.1 Min Decision
	C.2.2 Min Other
	C.2.3 Min Sequence
	C.2.4 Pure Decision
	C.2.5 Pure Other
	C.2.6 Pure Sequence
	C.2.7 Special(100)
	C.2.8 Special(10000)
	C.2.9 1_(10139)
	C.2.10 1_(563)
	C.2.11 2_(471)
	C.2.12 2_(7311)
	C.2.13 3_(670)
	C.2.14 3_(9551)
	C.2.15 4_(564)
	C.2.16 4_(9787)

	C.3 Improved Walker
	C.3.1 Min Decision
	C.3.2 Min Other
	C.3.3 Min Sequence
	C.3.4 Pure Decision
	C.3.5 Pure Other
	C.3.6 Pure Sequence
	C.3.7 Special(100)
	C.3.8 Special(10000)
	C.3.9 1_(10139)
	C.3.10 1_(563)
	C.3.11 2_(471)
	C.3.12 2_(7311)
	C.3.13 3_(670)
	C.3.14 3_(9551)
	C.3.15 4_(564)
	C.3.16 4_(9787)

	C.4 Magnetic Spring Model - Centric
	C.4.1 Min Decision
	C.4.2 Min Other
	C.4.3 Min Sequence
	C.4.4 Pure Decision
	C.4.5 Pure Other
	C.4.6 Pure Sequence
	C.4.7 Special(100)
	C.4.8 Special(10000)
	C.4.9 1_(10139)
	C.4.10 1_(563)
	C.4.11 2_(471)
	C.4.12 2_(7311)
	C.4.13 3_(670)
	C.4.14 3_(9551)
	C.4.15 4_(564)
	C.4.16 4_(9787)

	D Definitions
	E CD
	F Affidavit

