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EXECUTIVE SUMMARY 

Approximately 71% of Earth's surface is covered by water, with only 3% being fresh water 

suitable for human use, a majority of which is trapped in glaciers and permafrost. Freshwater 

ecosystems, vital for sustaining life and biodiversity, face heavy utilization by humans, mainly 

for agriculture, industry, and municipal needs, leading to an annual freshwater consumption of 

32,928 km³. Agriculture is responsible for approximately 70% of this consumption, 

highlighting the critical need to enhance water-use efficiency in the face of escalating scarcity 

and the projected requirement for a 15% increase in freshwater withdrawals, necessary to 

support a 50% growth in agricultural production by 2050. Soil health plays a pivotal role in 

sustainable agriculture, influencing plant production, water quality, and nutrient recycling. In 

this context, precision agriculture, particularly sensor-based approaches like LoRaWAN, 

emerges as a key solution with its low power usage, long-range capabilities, and cost-

effectiveness. However, their adoption is limited in small to medium-scale farms, primarily in 

regions lacking mechanized farming, due to high initial investments and extended return 

periods. Challenges include the cost of new technology adoption, training, and the high 

expense of purchasing and maintaining advanced hardware. 

This thesis focuses on making precision agriculture more accessible to smaller farms by 

exploring affordable hardware alternatives based on LoRaWAN technologies. This involves 

establishing a LoRaWAN test station at Hochschule Hof to test both affordable and expensive 

sensors variants in agricultural-like conditions for generating valuable data. The objective is to 

assess the practicality of using more economical sensor variants against their expensive 

counterparts and to develop a method for a data-driven comparative analysis of these sensors' 

performance in agricultural applications.  

The conclusion of the thesis reveals that the LoRaWAN test station at Hochschule Hof 

successfully tested both affordable and expensive sensor variants. The affordable sensors 

effectively measured parameters like air temperature, humidity, and light intensity, but were 

less precise for scientific research in aspects like wind direction. Notable deviations in some 

weather and soil profile measurements indicate the necessity of additional studies. The research 

also evaluated the independent system set up at the university, noting its effectiveness and 

economic benefits compared to the Decentlab platform, albeit lacking in data visualization. 

Ultimately, the feasibility of replacing expensive sensors with affordable variants in precision 

agriculture was explored, with detailed findings and recommendations presented. 
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1. Introduction 

1.1. General 

Enveloping a remarkable 71% of our planet’s surface, water stands as the predominant element 

that shapes the physical character and natural landscape of Earth (Bernacchi, 2015). However, 

a minor 3% of this water qualifies as fresh water fit for human consumption and use (Ahuja, 

2021). A significant portion of this freshwater is encased in glaciers, ground ice and permafrost 

(Shiklomanov, 1993). The breakup of the water distribution is shown in figure 1, given below.  

Figure 1. World Freshwater Resources. 

 

Note. From "World Fresh Water Resources" in Water in Crisis: A Guide to the World's Fresh Water Resources, 

by I. A. Shiklomanov, 1993, Oxford University Press, New York. 

Freshwater ecosystems, consisting of surface and groundwater resources, play a vital role in 

sustaining terrestrial life by supporting a diverse array of ecological processes (Apostolaki, 

2019). Freshwater ecosystem is also essential in maintaining the terrestrial biodiversity 

(Apostolaki, 2019). According to (Shettima Lawan, 2021) annual global freshwater 

consumption by humans stands at 32,928 km3 /year. The fresh water that is extracted by 

humans are being mainly used for agricultural use, industrial use, and municipal use. The 

breakdown of which is given in the figure below. 
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Figure 2. Percentage of global freshwater consumption. 

 

Note. Adapted from "Development of a community system for water reclamation from grey water in Gujba: a 

conceptual method," by M. Shettima Lawan & S. Surendran, 2021, International Journal of Environment and 

Waste Management, 27, p. 211. (https://doi.org/10.1504/IJEWM.2021.112952) 

It is evident that about 70 percent of fresh water extracted by humans is being used for irrigation 

of agricultural lands. The efficiency of water use in agriculture is less due to various reasons 

including engineering, environmental, biological, managerial, social, and economic facets 

(Hsiao T, 2003). There is urgent need to improve the water-use efficiency in agriculture as even 

a small improvement of the efficiency of water use can translate into significant benefits 

(Sharma, 2015) (Hsiao T. a., 2007). According to (Rosegrant M, 2009), there must be a 

conscious effort to ensure that farmers' water access remains unimpaired to maintain crop 

yields and incomes for increasing the efficiency of water use. Limiting water availability could 

lead to reduced crop yields and, consequently, lower farmer incomes. Additionally, 

acknowledgement should be given for the role of water in various ecosystem services. This 

comprehensive consideration is vital for sustainable agricultural practices. 

By the year 2050, the agricultural output is expected to increase by 50% as the global 

population would exceed 9 billion, an increase of 2 billion from the 2014 figures (Fukase, 

2017). This surge in productivity is anticipated to demand a 15% rise in freshwater withdrawals 

for agriculture, adding additional strain to already strained water resources (McNabb, 2019). 

The shortage of water for irrigated agriculture will become more sever as compared to the 

present situation. Water scarcity for farming will become the standard rather than the exception, 

and the focus of irrigation management will change from maximizing yield per acre to yield 

per unit of water used, or water productivity (Fereres, 2006). Additionally, because of the 

uneven spatial and temporal distributions of the freshwater resources, various regions are also 

facing difficulties in meeting its domestic, economic development and environmental water 
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demands (Cosgrove, 2015). The above-mentioned reasons indicate to a strong need to develop 

sustainable agriculture solutions for judicial use of freshwater resources.  

According to (M. Tahat, 2020), one of the main factors which is closely related with sustainable 

agriculture is the health of the soil. Imbalances in soil nutrients, overfertilization, soil pollution, 

and soil loss processes originating from conventional farming have a negative impact on soil 

health and quality (Laishram, 2012). A healthy soil is instrumental in providing several 

ecosystem services mainly, sustaining plant production and water quality. It can also regulate 

soil nutrient recycling, decomposition, and absorption of greenhouse gases from the 

environment (M. Tahat, 2020). According to (Lal, 2015), improving soil quality over an 

extended period of time (>10 years) can boost net biome productivity and enhance water and 

fertilizer usage efficiency. This enhanced efficiency of water use in soil, originating from 

improved soil health through optimised management practices, significantly reinforces the 

soil's function as a natural water reservoir, vital for sustaining agricultural productivity and 

ecological balance. 

Precision agriculture can be used to achieve these targets sustainably. Precision agriculture is 

an advanced farming approach that enhances management decisions and crop yields through 

targeted, efficient use of resources. It aims to minimize agricultural impacts on the environment 

by employing technologies for precise input application and monitoring of crop health 

(Shannon, 2018). According to (Sanjeevi, 2020), wireless sensor-based precision agriculture 

can be employed to optimise the utilization of water resources. As stated in (Kumar, 2018), the 

wireless sensor technology can be used to collect, monitor, and analyse data from the field of 

agriculture. This is achieved by sensors in the agriculture field which collects and transmits the 

data to a base station. After the analysis of the data gathered in this base station, informed 

decisions can be taken for optimised resource allocation. 

According to (Singh R. K., 2020), one of the most successful Low-Power Wide-Area Networks 

(LPWANs) is Long Range Wide Area Network (LoRaWAN). Even though LoRaWAN has the 

limitation of a low data rate, its success is aided by its low power consumption, ability to 

transmit over large distances, and low developmental and operational costs. A comparative 

study conducted by (Sadowski, 2020) between Zonal Intercommunication Global standard 

(ZigBee), LoRaWAN and Wireless Fidelity (Wi-Fi) 2.4 GHz technologies found that the 

optimal technology that can be used in agricultural monitoring is LoRaWAN when priority is 

given to the power consumption and network lifetime.  
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1.2. Problem statement and motivation 

According to a study conducted by (Lowenberg-DeBoer, 2019) that reviews worldwide 

available public data on farm level implementation of precision agriculture, it was found there 

is a big gap in the adoption of precision agriculture technologies in small to medium scale   

farms particularly in the parts of the world that do not use mechanised farming. Research 

conducted by (Masi, 2020) states that one of the main hinderance to the adoption of precision 

farming is the huge economic investment that must be done initially combined with very long 

return of investment. This makes it impossible for small-medium farms to implement precision 

agriculture. Additionally, the cost associated with adaptation of the new technologies along 

with training cost serves as further economic barriers (Rodríguez, 2020). One of the main 

challenges to overcome is the cost associated with purchase and maintenance of sophisticated 

hardware required for precision agriculture (Bhattacharya, 2023). 

Motivation for this thesis is to investigate the ways to make precision agriculture more 

accessible to small and medium scale farms. This thesis adopts an approach that originates 

from the recognition that hardware costs significantly impede the implementation of precision 

agriculture. An exploration into the potential of utilizing LoRaWAN based affordable hardware 

alternatives as opposed to their expensive counterparts is carried out in this thesis. Inspirations 

were taken from studies conducted by (Liu H.-Y. a., 2019) and (Karagulian, 2019) on the 

performance of low-cost sensors for monitoring air quality. 

1.3. Objectives 

The objective of this thesis are as follows, 

1. To develop and set up a LoRaWAN test station at the Hochschule Hof for the purpose 

of testing the affordable and expensive sensors variant in close to agriculture field con-

ditions as possible and to generate useful data. 

2. To check the feasibility of using the affordable sensor variant instead of the expensive 

sensor variant.  

3. To develop a method to do a data driven comparative study on the performance of af-

fordable and expensive variant of LoRaWAN based sensors used in agriculture. 

To avoid any bias in sensor quality, the sensor manufacturers were not informed of the testing.  
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1.4. Structure of thesis 

The thesis including the introductory chapter is divided into four chapters. An overview of 

the chapters are given below: 

Chapter 2: includes details on fundamentals of LoRaWAN test station, selection of equipment 

for the test station, 3D (Three Dimensional) rendered plan of the test station and finally setting 

up of the test station with expensive and affordable variant of the sensors. 

Chapter 3: includes details on the data analysis of the data gathered from the test station, 

correlation heatmap generation and interpretation of the heatmaps. 

Chapter 4: includes the conclusion to be drawn from the interpretation of correlation heatmap 

on the efficacy of the affordable sensors variant as compared with the expensive sensor variant. 

It investigates the aspect of limits of this thesis, recommendations, and future scope.  
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2. LoRaWAN (Long Range Wide Area Network) Test Station 

Before the field deployment of sensors, it was decided to set up a test station at Hochschule 

Hof. The aim for setting up this test station was to check the performance of affordable variant 

of the sensors as compared with the expensive variant of the sensors. This step is necessary to 

find the feasibility of using affordable sensor variant instead of expensive sensor variant and 

to find optimum number and types of sensors required for the field deployment. Although 

sensors with various communication protocols can be used, LoRaWAN based sensors were 

chosen as an ideal candidate for test station and later field deployment. This is because of the 

need for long-range and low-power communication capabilities offered by LoRaWAN 

(Sadowski, 2020).  

The subsequent diagram illustrates the fundamental architectural framework of a LoRaWAN 

test station. 

Figure 3. Basic Block Diagram of a LoRaWAN system. 

Note. The figure shows basic components of a LoRaWAN system in a block diagram. Created by the author, 

[2023]. 

Nodes (Sensors): These constitute the foundational elements of the LoRaWAN system. 

responsible for the collection and transmission of data from various sources, including sensors 

places inside the soil, sensors placed on the surface of the soil as well as weather data through 

weather stations. The collected data is passed on to the LoRaWAN based gateway through the 

LoRaWAN Protocol. 

Gateway: The gateway is responsible for receiving the data sent from the nodes through 

LoRaWAN communication protocol and forwarding it to the network server through internet. 

The data transmission from gateway to network server occurs through Wi-Fi, Fourth 

Generation Long Term Evolution (4G LTE) transmission or Local area network (LAN) cable. 

The gateway can handle the data coming simultaneously from multiple nodes at the same time. 
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Network Server: Network server is regarded as the nerve centre of the system. It manages the 

networking and ensuring efficient processing and routing of the data to the appropriate 

platform. 

Platform: Platform receives the raw data from network server collected by the nodes and does 

further analysis of the data. Beyond mere data reception, the platform can also perform data 

analysis. It not only facilitates data storage but also transforms this data into actionable 

information for the user. These information are instrumental in guiding agricultural practices, 

optimizing irrigation strategies, and forecasting crop yields. 

User: The end user receives this refined data, equipped with data analytics and insights. This 

empowers them to make well-informed decisions, furthering the optimization of their 

agricultural endeavours. 

2.1. Selection of equipment’s for test station 

Literature research was conducted to find sensors that are essential for the LoRaWAN test 

station. The following are the result of the literature research. 

2.1.1. Weather Station 

The weather station records essential meteorological data, including solar radiation, 

precipitation, relative humidity, air temperature, and wind characteristics, offering vital insights 

into the conditions of the surrounding environment. This data is crucial for understanding soil 

moisture content, potential evapotranspiration rates, and soil temperature changes. The data 

from the weather stations can be further analysed to determine effects of the weather patterns 

on the soil (Singh D. K.-N., 2022). 

2.1.2. Sensors to measure soil conductivity and soil moisture 

Another important part of evaluating the soil conditions is the use of sensors that detect soil 

conductivity. These sensors provide essential data on the soil's chemical and physical 

characteristics. This data helps in understanding the soil's ability to retain water, the availability 

of nutrients, and its general health (Ramson, 2021). 

2.1.3. Profile sensors to measure soil moisture and soil temperature at various levels 

Profile sensors Profile sensors can measure soil moisture and soil temperature at various 

depths. This data is crucial in providing information about the subsurface soil conditions. 

Analysis of this data can give insights into the soil's moisture distribution and temperature 

gradients, essential for understanding root zone health, water uptake patterns, and potential 



8 

 

growth conditions. The insights derived from this data will help in optimizing water 

consumption and enhancing the understanding of subsurface soil dynamics (Sriphanthaboot, 

2021). 

2.1.4. Sensors to measure the pH of the soil 

Potential of Hydrogen (pH) sensors record the acidity or alkalinity levels of the soil, which 

provides insights into the soil's health and ability of the soil to sustain life for different crops. 

Soil pH can significantly influence nutrient availability, microbial activity, and overall soil 

structure. The data obtained can help in understanding nutrient absorption rates and promote 

healthier plant (Goh, 2023). 

2.1.5. Growing tank and other accessories 

Prior to field implementation, it was decided to test the sensors in a controlled growing 

environment. To achieve this, a 1000 Liter Intermediate Bulk Container (IBC) water tank was 

repurposed as a growing tank. The choice of the 1000 Liter IBC water tank was influenced by 

several factors such as its large dimensions, structural reinforcement, use of inert materials, 

and economic feasibility. 

The modification process involved cutting out the top portion of the water tank and filling it 

with soil in layered segments. Plants were then allowed to grow naturally within this setup. 

Sensors were strategically placed within the soil to continuously monitor and collect data 

corresponding to various soil conditions. 

After considering the availability from multiple suppliers, sensors within the following 

classifications were chosen for incorporating into the LoRaWAN test station: 

i) Whether stations. 

ii) Sensors to measure soil conductivity and soil moisture. 

iii) Profile sensors to measure soil moisture and soil temperature at various levels. 

iv) Sensors to measure the pH of the soil. 

After finalizing the sensor types, the specific models of the sensors were selected based the 

market availability and cost. For expensive sensor variant, the sensors and platform were 

chosen for an end-to-end supplier based in Switzerland named Decentlab GmbH. For the 

affordable sensor variant, the sensors were chosen based on affordability and was able to 

measure almost same parameters as expensive sensor variant. The final list of equipment’s is 

listed in the below tables,
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            Table 1. Comparison expensive and affordable weather station variant chosen for LoRaWAN test station. 

 

            Note. Created by the author, [2023]. 
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Table 2. Comparison expensive and affordable soil conductivity sensor variant chosen for LoRaWAN test station. 

 

Note. Created by the author, [2023]. 
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Table 3. Comparison expensive and affordable soil profile sensor variant chosen for LoRaWAN test station. 

 

Note. Created by the author, [2023]. 
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Table 4. Soil pH sensor variant chosen for LoRaWAN test station. 

 

Note. Created by the author, [2023]. 
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Table 5. Comparison expensive and affordable gateway and platform variant chosen for LoRaWAN test station. 

   

 

 

 

 

 

Note. Created by the author, [2023]
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2.2. 3D Rendered Plan of the Test Station 

A 3D rendering was made to gain better understanding on how the test station would look like 

once build and to decide on the placement of the monitoring sensors. The 3D rendering was 

made in fusion 360. The following are the rendered images. 

Figure 4. 3D Visualisation of the growing containers. 

 

Note. 3D model of the growing container made in Autodesk Fusion 360 software. Created by the author, [2023]. 

Figure 5. 3D Visualisation of the growing containers next to the 20 ft container laboratory. 

 

Note. 3D Visualisation of the growing containers placed next to the 20 ft container laboratory made in Autodesk 

Fusion 360 software. Created by the author, [2023]. 
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Figure 6. 3D image showing growing area with sensor placement. 

 

Note. Closeup 3D image showing growing area with sensor placement made in Autodesk Fusion 360 software. 

Created by the author, [2023]. 

Figure 7. 3D image showing sensor placement. 

 

Note. 3D image Sensor placement from various angles made in Autodesk Fusion 360 software. Created by the 

author, [2023]. 

2.3. Setting up of the test station 

To check the performance of affordable variant of the sensors as compared with the expensive 

variant of the sensors, 2 parallel systems were set up. Each system has similar set of sensors 

that collects similar set of data. This data is then analysed to assess the performance of the 

affordable variant with that of expensive variant. The system architecture diagram is given on 

the next page. 
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Figure 8. System architecture diagram. 

Note. System architecture diagram created in Canva showing the placement and connection between all the components. Created by the author, [2023].
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In this system architecture diagram, the green colour represents the system consisting of 

affordable variants while the blue colour represents the system consisting of expensive variants 

as shown in the bottom left corner of the diagram. To gain better understanding of the sensors 

that are used, the sensor names and the respective images are shown in the left-hand side.  

All the sensors are divided based on its type and are placed in 4 locations, with each type of 

sensor being placed collectively at a single location. The 4 weather stations are placed on the 

top of the existing laboratory container. The 3 soil conductivity sensors are placed together 

inside the first growing tank. The 2 pH sensors are placed inside the second growing tank. The 

3 soil profile sensors are placed together inside the third growing tank.  

The type of protocol used for communication and the interval at which the data gets transferred 

is also mentioned. All the data collected by the sensors are sent to the Dragino outdoor 

LoRaWAN gateway (As only this gateway variant has ability to connect to the internet over 

Wi-Fi). The data is then transferred to the network server through Wi-Fi connected to internet. 

Once the data reaches the network server, it is then directed to various platform. The data form 

expensive sensor variant gets transferred to the Decentlab platform while the data from 

affordable sensor variant gets transferred to Google Sheets forming an independent system. 

The performance of this independent system with that of Decentlab Platform is also assessed 

in this thesis. 

Figure 9. Photo of the soil profile sensor deployed in the test station. 

 

Note. Photo of soil profile sensors deployed in growing tank 3 of the test station. Created by the author, [2023]. 
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Figure 10. Photo of the soil conductivity sensors deployed in the test station. 

 

Note. Photo of soil conductivity sensors deployed in growing tank 1 of the test station. Created by the author, 

[2023]. 

Figure 11. Photo of the soil pH sensors deployed in the test station. 

 

Note. Photo of soil pH sensors deployed in growing tank 2 of the test station. Of the 3 pH sensors, only 2 are 

included in the test station. Created by the author, [2023]. 

It was decided to place the 4 weather stations lengthwise on top of the container as this would 

guarantee even and homogeneous conditions across all the weather stations. An assembly was 

made from wood to house all the weather stations and later all the weather stations were placed 

within this assembly.  

The setting up of the LoRaWAN test station at Hochschule Hof was done by the author, Mr 

Pavel Timofeev (Wissenschaftlicher Mitarbeiter at Hochschule Hof) and Mr Michael Schmidt 

(Wissenschaftlicher Mitarbeiter at Hochschule Hof) under the guidance of Professor Günter 

Müller-Czygan. 
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Figure 12. Photo of the weather stations deployed in the test station. 

 

Note. Photo of weather stations deployed for the test station, located top of the laboratory container. Of the 3 pH 

sensors, only 2 are included in the test station. Created by the author, [2023]. 

 
Figure 13. Photo showing the growing containers. 

 
Note. Photo showing the 3 1000 L IBC container with soil in which soil sensors are placed. Created by the author, 

[2023]. 
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3. Data analysis 

3.1. Overview 

The data captured from the sensors were stored in google sheets and in the Decentlab platform. 

The data collection was done for 2.5 months form Aug 1st, 2023, to Oct 15th, 2023. The data 

from both platforms can be extracted in the comma separated value (‘.csv’) format. The '.csv' 

format is used because of its ease of managing tabular data and its use in data analytics.  

The data that is received in the ‘.csv’ format must be cleaned before analysing it. Although, 

data cleaning and data analysis can be done in any integrated development environment 

software, Visual Studio Code (VS Code) software was chosen for preliminary data analysis. 

The reason for choosing VS Code software was that for preliminary data analysis, the memory 

usage and the processing power needed is less and VS code can also be used offline unlike 

Google Colab. The programming file format used in coding is Interactive Python Notebook 

(‘.ipynb’) format. The reason for choosing this format is because ‘.ipynb’ facilitate interactive 

computing, enabling users to write and execute code in a flexible and interactive manner, while 

supporting the inclusion of text, images, and other media which is particularly useful for data 

analysis and scientific research.  

3.2. Data interpolation 

The data from various sensors is being gathered at different intervals. Some of the sensors are 

generating data at an interval of 5 mins, some at 10 mins, and the rest at 20 mins. Due to this 

irregularity in data collection, for effective comparison of the data, the data needs to be cleaned 

and interpolated accordingly. In the data cleaning part, data from the original dataset is copied 

and pasted into a new dataset that has the timestamp in the format ‘‘Date-Month-Year Hour: 

Minute’’ omitting the ‘‘Seconds’’ form the new dataset. Once the original dataset is copied to 

the new dataset based on the timestamp, all the missing values are filled with ‘0’ or ‘Nan’. 

After this step linear data interpolation is carried out. Data interpolation on a linear basis 

involves estimating unknown values between two known data points by drawing a straight line 

between them. The assumption is that the change between the two data points is consistent and 

linear. Using this linear relationship, values within a given interval is filled in. Once data 

interpolation is done, a dataset of continuous data is available with 109,508 distinct rows of 

datapoints for each parameter (1 row of data every minute from 00:00 01.08.2023 to 00:00 

16.10.2023). The correlation matrix is calculated from this dataset and correlation heatmaps 

are generated for the same. 
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3.3. Method Description 

The heatmaps are generated through the analysis of the dataset by a programming code written 

in VS Code. Initially the code imports the libraries required for the functioning of the 

programme. Then dataset in ‘.csv’ format is imported into the programme and the parameters 

are renamed into a standard form. Except for the ‘A_Timestamp’ column (which has date and 

time data), the entire parameter list is converted into float to make it comparable with other. A 

new empty dataset is created on ‘A_Timestamp’ from 00:00 01.08.2023 to 00:00 16.10.2023. 

Both the datasets are merged on ‘A_Timestamp’ variable. The missing values are filled in using 

linear interpolation method to have 109,508 distinct rows of datapoints. In the subsequent 

section correlation matrix is calculated and correlation heatmaps are generated. It is to be noted 

that although in the core part, the programme uses the standardised method for generation of 

correlation heatmaps, other parts of the programme have been custom made by the author for 

this use case scenario. A sample code for the same is given in the appendix section.  

Figure 14. Screenshot of the datapoints. 

 

Note. Screenshot taken from programme running on VS Code showing the number of datapoints. Created by the 

author, [2023]. 

3.4. Correlation heatmap generation and analysis 

For the scope of this master’s thesis, the data from the sensors are used to generate a correlation 

heatmap. A correlation heatmap is a graphical representation of the correlation matrix between 

various parameters in a dataset. It is in the opinion of the author that this graphical 

representation makes it easier to understand the relation between various parameters and hence 

is the primary reason for choosing correlation heatmap for data analysis. The correlation matrix 

is a matrix that consist of a collection of pairwise individual correlations (Pearson correlation 

coefficient) between measured parameters. Pearson correlation coefficient (R) measures the 

relationship between two individual parameters (Benesty, 2009). Pearson correlation 

coefficient closer to 1 implies a strong positive correlation. Pearson correlation coefficient 

closer to -1 implies a strong negative correlation and a value close to 0 indicates no correlation. 
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The below given table from an article published by (Schober, 2018) showing the interpretation 

of the values of Pearson correlation coefficient.  

Table 6. Table showing the interpretation of the values of Pearson correlation coefficient (R). 

Absolute magnitude of the observed Pearson 

correlation coefficient (R) 

Interpretation 

0.00 – 0.10 Negligible correlation 

0.10 – 0.39 Weak correlation 

0.40 – 0.69 Moderate correlation 

0.70 – 0.89 Strong correlation 

0.90 – 1.00 Very strong correlation 

Note. Note. Adapted from "Correlation Coefficients: Appropriate Use and Interpretation," by P. Schober, C. Boer, 

& L. Schwarte, 2018, Anesthesia & Analgesia, 126, p. 1. https://doi.org/10.1213/ANE.0000000000002864 

The square of Pearson correlation coefficient is termed as coefficient of determination (R2). 

The coefficient of determination measures the extent to which the changes in one factor can be 

explained by changes in other factors, in the form of a percentage (Liu H.-Y. a., 2019). In the 

scope of this master’s thesis, a R2 value near 1 suggests that the output of the affordable sensor 

variant closely aligns with that of expensive sensor variant, showing strong linearity. 

Conversely, a low value closer to 0 indicates a weak linear connection. The below given table 

is showing the interpretation of the values of coefficient of determination (R2) inferred form a 

published article (Chang, 2001). The use of the coefficient of determination (R2) is advised as 

a standard for assessing regression analyses across various scientific fields (Chicco, 2021). 

Table 7. Table showing the interpretation of the values of coefficient of determination (R2). 

Magnitude of the coefficient of determination (R2) Interpretation 

0.00 – 0.50 Negligible correlation 

0.50 – 0.60 Weak to moderate correlation 

0.60 – 0.80 Moderate to strong correlation 

0.80 – 1.00 Very strong correlation 

Note. Table created by the author based on analysis and interpretation of data presented in "Near-Infrared 

Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties," by C.-W. Chang, D. 

Laird, M. Mausbach, & C. Hurburgh, 2001, Soil Science Society of America Journal, 65, pp. 480-490. 

https://doi.org/10.2136/sssaj2001.652480x 
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In the scope of this master’s thesis, "coolwarm" correlation heatmap are being generated from 

the datasets of expensive and affordable sensor variants. This type of heatmap uses a colour 

gradient, where cooler colours (like blue) represent negative correlation values and warmer 

colours (like red) indicate positive correlation values.  

Correlation heatmaps were generated for checking the correlation of the following conditions:  

1. To check the correlation between data gathered from affordable and expensive sensors. 

a. Sensecap weather station (1) Vs Decentlab weather station (1).  

b. Sensecap weather station (2) Vs Decentlab weather station (2). 

c. Sensecap weather station (1) Vs Sensecap weather station (2).  

d. Decentlab weather station (1) Vs Decentlab weather station (2). 

e. Conductivity sensor (17678) from Decentlab Vs Conductivity sensor from Dragino. 

f. Conductivity sensor (17678) from Decentlab Vs Conductivity sensor (17679) from De-

centlab. 

g. Soil profile sensor (17674) from Decentlab Vs Soil profile sensor (17675) from De-

centlab 

2. To check the correlation between the data collected by Decentlab platform and the data 

collected in google sheets over MQTT (Message Queuing Telemetry Transport) protocol. 

a. Decentlab Weather station in Decentlab Platform vs Decentlab Weather station in 

Google Sheets. 

b. Decentlab Conductivity sensor in Decentlab Platform vs Decentlab Conductivity sensor 

in Google Sheets. 

c. Decentlab soil profile sensor in Decentlab Platform vs Decentlab soil profile sensor in 

Google Sheets. 

d. Dragino pH sensor in Decentlab Platform vs Dragino pH sensor in Google Sheets. 

3. Anomalies in gathering data from Sensoterra soil profile sensor.  

The pH sensor was not present in the inventory of the Decentlab GmbH and hence it was 

decided to purchase the pH sensor form an affordable sensor manufacturer and integrate the 

same in the Decentlab Platform at an additional cost. This was done to check whether there is 

any difference in the quality of data collected over the Decentlab Platform and the independent 

system that was set up at Hochschule Hof. This step was deemed necessary to check whether 

there is a need to use Decentlab Platform for integration of sensors (along with 3rd party 

sensors) in the planned field implementation. 
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The first correlation heatmap shows the overall Pearson correlation coefficient (R) between all 

parameters of expensive and affordable variant of the sensor. The second correlation heatmap 

highlights those parameters having Pearson correlation coefficient (R) between 0.74 and 1. The 

third correlation heatmap shows coefficient of determination (R2) value of the highlighted 

parameters between 0.55 and 1.  

3.4.1. Sensecap weather station (1) Vs Decentlab weather station (1) 

Figure 15. Overall correlation heatmap of Sensecap weather station (1) Vs Decentlab weather station (1). 

 
Note. Overall correlation heatmap depicting Pearson correlation coefficient (R) between all parameters measured 

by Sensecap weather station (1) Vs Decentlab weather station (1). Created by the author, [2023]. 
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Figure 16. Simplified correlation heatmap of Sensecap weather station (1) Vs Decentlab weather station (1). 

 

Note. Simplified Correlation heatmap depicting Pearson correlation coefficient (R) between 0.74 and 1.0 between 

the parameters measured by Sensecap weather station (1) Vs Decentlab weather station (1). Created by the author, 

[2023].  

Figure 17. Simplified coefficient of determination (R2) heatmap of Sensecap weather station (1) Vs Decentlab 

weather station (1). 

 

Note. Simplified correlation heatmap depicting coefficient of determination (R2) above 0.55 and 1 between the 

parameters measured by Sensecap weather station (1) Vs Decentlab weather station (1). Created by the author, 

[2023]. 



26 

 

Classification based on heatmaps:  

From all three heat maps it can be interpreted that there exists a very strong correlation between 

air temperature, air humidity and light intensity measured by affordable sensor variant with 

that of air temperature, relative humidity and solar radiation measured by expensive sensor 

variant. 

There exists a moderate to strong correlation between ultraviolet index (UV Index) measured 

by affordable sensor variant with that of solar radiation measured by expensive sensor variant. 

There exists a weak to moderate correlation between barometric pressure, rain gauge and wind 

speed measured by affordable sensor variant with that atmospheric pressure, precipitation and 

wind speed measured by expensive sensor variant. 

There exists negligible correlation between wind direction measured by affordable sensor 

variant with that of wind direction measured by expensive sensor variant. 

3.4.2. Sensecap weather station (2) Vs Decentlab Weather station (2) 

Figure 18. Overall correlation heatmap of Sensecap weather station (2) Vs Decentlab weather station (2). 

 

Note. Overall correlation heatmap depicting Pearson correlation coefficient (R) between all parameters measured 

by Sensecap weather station (2) Vs Decentlab weather station (2). Created by the author, [2023]. 
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Figure 19. Simplified correlation heatmap of Sensecap weather station (2) Vs Decentlab weather station (2). 

 

Note. Simplified Correlation heatmap depicting Pearson correlation coefficient (R) between 0.74 and 1.0 between 

the parameters measured by Sensecap weather station (2) Vs Decentlab weather station (2). Created by the author, 

[2023].  

Figure 20. Simplified coefficient of determination (R2) heatmap of Sensecap weather station (2) Vs Decentlab 

weather station (2). 

 

Note. Simplified correlation heatmap depicting coefficient of determination (R2) above 0.55 and 1 between the 

parameters measured by Sensecap weather station (2) Vs Decentlab weather station (2). Created by the author, 

[2023]. 

 



28 

 

Classification based on heatmaps:  

From all three heat maps it can be interpreted that there exists a very strong correlation between 

air temperature, air humidity, barometric pressure, UV Index, and light intensity measured by 

affordable sensor variant with that of air temperature, relative humidity, atmospheric pressure, 

solar radiation, and solar radiation measured by expensive sensor variant. 

There exists a moderate to strong correlation between rain gauge and wind speed measured by 

affordable sensor variant with that of precipitation and wind speed measured by expensive 

sensor variant. 

There exists negligible correlation between wind direction measured by affordable sensor 

variant with that of wind direction measured by expensive sensor variant. 

3.4.3. Sensecap weather station (1) Vs Sensecap weather station (2) 

Figure 21. Overall correlation heatmap of Sensecap weather station (1) Vs Sensecap weather station (2). 

 

Note. Overall correlation heatmap depicting Pearson correlation coefficient (R) between all parameters measured 

by Sensecap weather station (1) Vs Sensecap weather station (2). Created by the author, [2023]. 
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Figure 22. Simplified correlation heatmap of Sensecap weather station (1) Vs Sensecap weather station (2). 

 

Note. Simplified Correlation heatmap depicting Pearson correlation coefficient (R) between 0.74 and 1.0 between 

the parameters measured by Sensecap weather station (1) Vs Sensecap weather station (2). Created by the author, 

[2023]. 

Figure 23. Simplified coefficient of determination (R2) heatmap of Sensecap weather station (1) Vs Sensecap 

weather station (2). 

 

Note. Simplified correlation heatmap depicting coefficient of determination (R2) above 0.55 and 1 between the 

parameters measured by Sensecap weather station (1) Vs Sensecap weather station (2). Created by the author, 

[2023]. 
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Classification based on heatmaps:  

From all three heat maps it can be interpreted that there exists a very strong correlation between 

air temperature, air humidity, rain gauge, UV Index and light intensity measured by Sensecap 

1 with that of air temperature, air humidity, rain gauge, UV Index and light intensity measured 

by Sensecap 2. 

There exists a weak to moderate correlation between barometric pressure measured by 

Sensecap 1 with that of barometric pressure measured by Sensecap 2.  

There exists negligible correlation between wind speed and wind direction measured by 

Sensecap 1 with that of wind speed and wind direction measured by Sensecap 2. 

3.4.4. Decentlab weather station (1) Vs Decentlab weather station (2) 

Figure 24. Overall correlation heatmap of Decentlab weather station (1) Vs Decentlab weather station (2). 

 

Note. Overall correlation heatmap depicting Pearson correlation coefficient (R) between all parameters measured 

by Decentlab weather station (1) Vs Decentlab weather station (2). Created by the author, [2023]. 
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Figure 25. Simplified correlation heatmap of Decentlab weather station (1) Vs Decentlab weather station (2). 

 

Note. Simplified Correlation heatmap depicting Pearson correlation coefficient (R) between 0.74 and 1.0 between 

the parameters measured by Decentlab weather station (1) Vs Decentlab weather station (2). Created by the author, 

[2023]. 

 

Figure 26. Simplified coefficient of determination (R2) heatmap of Decentlab weather station (1) Vs Decentlab 

weather station (2). 

 

Note. Simplified correlation heatmap depicting coefficient of determination (R2) above 0.55 and 1 between the 

parameters measured by Decentlab weather station (1) Vs Decentlab weather station (2). Created by the author, 

[2023]. 
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Classification based on heatmaps:  

From all three heat maps it can be interpreted that there exists a very strong correlation between 

all the parameters measured by both weather station supplied by Decentlab. 

3.4.5. Dragino conductivity sensor Vs Decentlab Conductivity sensor 

Figure 27. Overall correlation heatmap of Dragino conductivity sensor Vs Decentlab Conductivity sensor. 

 

Note. Overall correlation heatmap depicting Pearson correlation coefficient (R) between all parameters measured 

by Dragino conductivity sensor Vs Decentlab Conductivity sensor. Created by the author, [2023]. 
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Figure 28. Simplified correlation heatmap of Dragino conductivity sensor Vs Decentlab Conductivity sensor. 

 

Note. Simplified Correlation heatmap depicting Pearson correlation coefficient (R) between 0.74 and 1.0 between 

the parameters measured by Dragino conductivity sensor Vs Decentlab Conductivity sensor. Created by the 

author, [2023]. 

Figure 29. Simplified coefficient of determination (R2) heatmap of Dragino conductivity sensor Vs Decentlab 

Conductivity sensor. 

 

Note. Simplified correlation heatmap depicting coefficient of determination (R2) above 0.55 and 1 between the 

parameters measured by Dragino conductivity sensor Vs Decentlab Conductivity sensor. Created by the author, 

[2023]. 
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Classification based on heatmaps:  

From all three heat maps it can be interpreted that there exists a very strong correlation between 

temperature and moisture measured by affordable sensor variant with that of temperature and 

volumetric water content measured by expensive sensor variant. 

There exists a weak to moderate correlation between electrical conductivity measured by 

affordable sensor variant with that electrical conductivity measured by expensive sensor 

variant. 

3.4.6. Conductivity sensor (17678) from Decentlab Vs Conductivity sensor (17679) from 

Decentlab 

Figure 30. Overall correlation heatmap of Conductivity sensor (17678) from Decentlab Vs Conductivity sensor 

(17679) from Decentlab. 

 

Note. Overall correlation heatmap depicting Pearson correlation coefficient (R) between all parameters 

measured by Conductivity sensor (17678) from Decentlab Vs Conductivity sensor (17679) from Decentlab. 

Created by the author, [2023]. 
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Figure 31. Simplified correlation heatmap of Conductivity sensor (17678) from Decentlab Vs Conductivity sensor 

(17679) from Decentlab. 

 

Note. Simplified Correlation heatmap depicting Pearson correlation coefficient (R) between 0.74 and 1.0 between 

the parameters measured by Conductivity sensor (17678) from Decentlab Vs Conductivity sensor (17679) from 

Decentlab. Created by the author, [2023]. 

Figure 32. Simplified coefficient of determination (R2) heatmap of Conductivity sensor (17678) from Decentlab 

Vs Conductivity sensor (17679) from Decentlab. 

 

Note. Simplified correlation heatmap depicting coefficient of determination (R2) above 0.55 and 1 between the 

parameters measured by Conductivity sensor (17678) from Decentlab Vs Conductivity sensor (17679) from 

Decentlab. Created by the author, [2023]. 
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Classification based on heatmaps:  

From all three heat maps it can be interpreted that there exists a very strong correlation between 

temperature, moisture and dielectric permittivity measured by Conductivity sensor (17678) 

from Decentlab with that of temperature, moisture and dielectric permittivity measured by 

Conductivity sensor (17679) from Decentlab. 

There exists a moderate to strong correlation between electrical conductivity measured by 

Conductivity sensor (17678) from Decentlab with that of electrical conductivity measured by 

Conductivity sensor (17679) from Decentlab. 

3.4.7. Soil profile sensor (17674) from Decentlab Vs Soil profile sensor (17675) from 

Decentlab 

Figure 33. Overall correlation heatmap of Soil profile sensor (17674) from Decentlab Vs Soil profile sensor 

(17675) from Decentlab. 

 

Note. Overall correlation heatmap depicting Pearson correlation coefficient (R) between all parameters measured 

by Soil profile sensor (17674) from Decentlab Vs Soil profile sensor (17675) from Decentlab. Created by the 

author, [2023]. 
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Figure 34. Simplified correlation heatmap of Soil profile sensor (17674) from Decentlab Vs Soil profile sensor 

(17675) from Decentlab. 

 

Note. Simplified Correlation heatmap depicting Pearson correlation coefficient (R) between 0.74 and 1.0 between 

the parameters measured by Soil profile sensor (17674) from Decentlab Vs Soil profile sensor (17675) from 

Decentlab. Created by the author, [2023]. 
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Figure 35. Simplified coefficient of determination (R2) heatmap of Soil profile sensor (17674) from Decentlab 

Vs Soil profile sensor (17675) from Decentlab. 

 

Note. Simplified correlation heatmap depicting coefficient of determination (R2) above 0.55 and 1 between the 

parameters measured by Soil profile sensor (17674) from Decentlab Vs Soil profile sensor (17675) from 

Decentlab. Created by the author, [2023]. 

Classification based on heatmaps:  

From all three heat maps it can be interpreted that there exists a very strong to perfect 

correlation between temperature at level 0, temperature at level 10, temperature at level 20, 

temperature at level 30, temperature at level 40, temperature at level 50, moisture at level 10, 

moisture at level 20, moisture at level 30 and moisture at level 50 measured by Decentlab soil 

profile sensor 17674 with that of temperature at level 0, temperature at level 10, temperature 
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at level 20, temperature at level 30, temperature at level 40, temperature at level 50, moisture 

at level 10, moisture at level 20, moisture at level 30 and moisture at level 50 measured by 

Decentlab soil profile sensor 17675. 

There exists negligible correlation between moisture at level 0 and moisture at level 40 

measured by Decentlab soil profile sensor 17674 with that of moisture at level 0 and moisture 

at level 40 measured by Decentlab soil profile sensor 17675. 

3.4.8. Decentlab weather station in Decentlab Platform vs Decentlab weather station in 

Google Sheets 

Figure 36.  Overall correlation heatmap of Decentlab weather station in Decentlab Platform vs Decentlab 

weather station in Google Sheets. 

 

Note. Overall correlation heatmap depicting Pearson correlation coefficient (R) between all parameters measured 

by Decentlab weather station in Decentlab Platform vs Decentlab weather station in Google Sheets. Created by 

the author, [2023]. 
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Figure 37. Simplified coefficient of determination (R2) heatmap of Decentlab weather station in Decentlab 

Platform vs Decentlab weather station in Google Sheets. 

 

Note. Simplified correlation heatmap depicting coefficient of determination (R2) above 0.55 and 1 between the 

parameters measured by Decentlab weather station in Decentlab Platform vs Decentlab weather station in Google 

Sheets. Created by the author, [2023]. 

Classification based on heatmaps:  

From the two heat maps it can be interpreted that there is perfect correlation between the data 

measured through Decentlab platform and google sheets. 
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3.4.9. Decentlab Conductivity sensor in Decentlab Platform vs Decentlab Conductivity 

sensor in Google Sheets 

Figure 38. Overall correlation heatmap of Decentlab Conductivity sensor in Decentlab Platform vs Decentlab 

Conductivity sensor in Google Sheets. 

 

Note. Overall correlation heatmap depicting Pearson correlation coefficient (R) between all parameters measured 

by Decentlab Conductivity sensor in Decentlab Platform vs Decentlab Conductivity sensor in Google Sheets. 

Created by the author, [2023]. 

Figure 39. Simplified coefficient of determination (R2) heatmap of Decentlab Conductivity sensor in Decentlab 

Platform vs Decentlab Conductivity sensor in Google Sheets. 

 

Note. Simplified correlation heatmap depicting coefficient of determination (R2) above 0.55 and 1 between the 

parameters measured by Decentlab Conductivity sensor in Decentlab Platform vs Decentlab Conductivity sensor 

in Google Sheets. Created by the author, [2023]. 
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Classification based on heatmaps:  

From the two heat maps it can be interpreted that there is perfect correlation between the data 

measured through Decentlab platform and google sheets. 

3.4.10. Decentlab soil profile sensor in Decentlab Platform vs Decentlab soil profile 

sensor in Google Sheets 

Figure 40. Overall correlation heatmap of Decentlab soil profile sensor in Decentlab Platform vs Decentlab 

soil profile sensor in Google Sheets. 

 

Note. Overall correlation heatmap depicting Pearson correlation coefficient (R) between all parameters measured 

by Decentlab soil profile sensor in Decentlab Platform vs Decentlab soil profile sensor in Google Sheets. Created 

by the author, [2023]. 
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Figure 41. Simplified coefficient of determination (R2) heatmap of Decentlab soil profile sensor in Decentlab 

Platform vs Decentlab soil profile sensor in Google Sheets. 

 

Note. Simplified correlation heatmap depicting coefficient of determination (R2) above 0.55 and 1 between the 

parameters measured by Decentlab soil profile sensor in Decentlab Platform vs Decentlab soil profile sensor in 

Google Sheets. Created by the author, [2023]. 

Classification based on heatmaps:  

From the two heat maps it can be interpreted that there is perfect correlation between the data 

measured through Decentlab platform and google sheets. 
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3.4.11. Dragino pH sensor in Decentlab Platform vs Dragino pH sensor in Google Sheets 

Figure 42. Overall correlation heatmap of Dragino pH sensor in Decentlab Platform vs Dragino pH sensor in 

Google Sheets. 

 

Note. Overall correlation heatmap depicting Pearson correlation coefficient (R) between all parameters measured 

by Dragino pH sensor in Decentlab Platform vs Dragino pH sensor in Google Sheets. Created by the author, 

[2023]. 

Figure 43. Simplified coefficient of determination (R2) heatmap of Dragino pH sensor in Decentlab Platform vs 

Dragino pH sensor in Google Sheets. 

 

Note. Simplified correlation heatmap depicting coefficient of determination (R2) above 0.55 and 1 between the 

parameters measured by Dragino pH sensor in Decentlab Platform vs Dragino pH sensor in Google Sheets. 

Created by the author, [2023]. 

Classification based on heatmaps:  

From the two heat maps it can be interpreted that there is very strong to perfect correlation 

between the data measured through Decentlab platform and google sheets. 
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3.4.12. Anomalies in gathering data from Sensoterra soil profile sensor.  

Sensoterra soil profile sensor was selected and purchased as an affordable sensor variant for 

measuring the soil temperature and moisture at various levels in the soil. The physical 

installation was done successfully, and the software integration was done via the Sensoterra 

mobile application. Problems were faced with data extraction as there was no option for the 

same given in the mobile application. Upon searching the Sensoterra website for solution, a 

link was found from where data could be extracted. Upon clicking the link an unresponsive 

page popped up. Hence the data retrieval could not be achieved for Sensoterra. 

Figure 44. Figure showing instruction to download data for Sensoterra sensor. 

 

Note. Retrieved from https://support.sensoterra.com/hc/en-us/articles/360029106571-Download-your-sensors-

data-to-Excel, accessed November 30, 2023. 

Figure 45. Figure showing the non-responsive page from Sensoterra website. 

 

Note. Retrieved from https://support.sensoterra.com/hc/en-us/articles/360029106571-Download-your-sensors-

data-to-Excel, accessed November 30, 2023. 

 

https://support.sensoterra.com/hc/en-us/articles/360029106571-Download-your-sensors-data-to-Excel
https://support.sensoterra.com/hc/en-us/articles/360029106571-Download-your-sensors-data-to-Excel
https://support.sensoterra.com/hc/en-us/articles/360029106571-Download-your-sensors-data-to-Excel
https://support.sensoterra.com/hc/en-us/articles/360029106571-Download-your-sensors-data-to-Excel
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4. Conclusion, limits, recommendations, and future scope 

4.1. Conclusion 

A LoRaWAN test station was successfully set up at Hochschule Hof for the purpose of testing 

the affordable and expensive sensors variant in close to agriculture field like conditions. A data-

driven method was developed to study the performance of both affordable and expensive 

LoRaWAN-based sensors in agriculture. This approach aims to evaluate the feasibility of using 

the more affordable sensor variant as an alternative to the expensive one in sensor-based 

precision agriculture. The following are the conclusions that can be gained from the data 

analysis of the data generated from affordable and expensive sensor variants, 

1. The affordable variant of the weather station can be used to measure air temperature, 

air humidity, barometric pressure, UV Index and Light Intensity as effective as the ex-

pensive counterpart. Rain gauge and wind speed data measured by the affordable vari-

ant can be used to get a general idea of the environmental conditions, but the data is not 

precise enough to be used for scientific research. Affordable sensor variant cannot be 

used in place of expensive sensor variant gaining understanding regarding wind direc-

tion. It is also to be noted that there are certain parameters which is measured by ex-

pensive sensor variant only and not be affordable sensor variant. 

2. As there is significant deviation in the weather data measured between the 2 affordable 

sensor variants (Sensecap weather station) when it comes to barometric pressure, wind 

direction and wind, additional studies are required for finding the actual performance.  

3. Both expensive sensor variant shows excellent consistency between the weather data 

that is measured. 

4. As there is significant deviation in the soil profile data measured by 2 expensive sensor 

variants when it comes to moisture at level 0 and moisture at level 40, additional studies 

are required for finding the actual performance.  

5. For measuring soil temperature and soil moisture the affordable conductivity sessor 

variant can be used in place of expensive sensor conductivity variant. The affordable 

conductivity sensor variant can be used to gain a general idea on the electrical conduc-

tivity, but the data is not precise enough to be used for scientific research. 

6. There is very high consistency between dielectric permittivity, temperature and volu-

metric water content of the data measured by the expensive conductivity sensor variant. 

It needs to be noted that the volumetric water content data produced by the expensive 

sensor variant is an exact value while that produced by affordable sensor variant is a 
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percentage value. The consistency drops when it comes to the measurement of electrical 

conductivity.  

7. On checking the correlation between the data collected by Decentlab Platform and the 

data collected in google sheets between parameters measured by the same sensor, it can 

be concluded that the independent system that is set up at the university is functioning 

as expected, no data is being lost or corrupted, when the data is being transferred and 

the independent system can act as an effective alternative for the paid platform from 

Decentlab GmbH in terms of the functional part. The Decentlab Platform do provide 

graphical data visualisation that is currently not available in the independent system. 

Hence it can be concluded for the purpose of new sensor integration, data storage and 

functionality wise the independent system is more economical than the Decentlab plat-

form and currently for the purpose of the data visualization Decentlab platform can be 

used. It is also to be noted that a visualization platform can be created to go in tandem 

with the independent system in the next phase of the project. 

8. The graphical representation offered by the correlation heatmap is effective in provid-

ing deeper understanding of the correlations within the parameters. Hence it is a good 

choice to be used for sensor variant comparison. 

9. Although there were high expectations for the Sensoterra multilevel soil profile sensor, 

it was found that the data extraction is a problem. It is hence recommended to go with 

another soil profile sensor for field implementation or to develop machine learning 

models that can predict the values form the surface level measurements which can oc-

casionally be verified on site by the soil profile sensor from Decentlab GmbH.  

The feasibility of using the affordable sensor variant instead of the expensive sensor variant 

was checked and the findings are given in the following page, 
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Table 8. Table showing the recommended sensor variant for measuring each parameter. 

 

Note. Created by the author, [2023].
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4.2. Limits 

• Time. 

The data has been collected for a period of 2.5 months from August 1st to October 15th, 

2023. In this time the weather is transitioning form summer to winter. For accurately 

knowing the performance of the affordable sensors with that of the expensive sensors, 

data needs to be collected all year around and under all seasons. This data is to be ana-

lysed to verify the results the findings of this thesis. 

• Reliability and accuracy of the measured data is not checked. 

In this thesis, the analysis does not guarantee the reliability and accuracy of the meas-

ured data. In this thesis, a customised methodology has been developed for understand-

ing how well affordable sensor variant performs with that of expensive sensor variant. 

The reliability and accuracy of the measured data has not been checked here. 

4.3. Recommendation 

• Recommendations for additional studies. 

Additional studies need to be carried out on the soil profile sensor supplied by 

Decentlab, conductivity sensor supplied by Decentlab, and the weather station supplied 

by Sensecap. This is because of slight inconsistency that is found in the measured data. 

• Recommendation for developing one platform for sensor performance evaluation, 

simulation, and interpretation. 

Currently a customised programme is developed for performing the data analysis of 

each sensor. It becomes impractical to develop customised programme for each sensor 

when many sensors are involved. Hence, it is recommended to develop a web-based 

platform that can seamlessly do the sensor integration, data analysis, data storage, data 

interpretation and simulation of various user defined conditions using the data 

measured. This platform can help in widescale economic deployment of LoRaWAN 

sensors for data collection. 

• Recommended to find new alternative for soil profile data measurements. 

As the data extraction problem was faced with the Sensoterra multilevel sensor, it is 

recommended to find another alternative sensor that is affordable and is capable for 

measuring the soil profile data.  
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4.4. Future scope of the study in authors perspective 

4.4.1. Development of internet connected applications for real-time measurement 

visualization. 

The current approach to data management from sensors involves continuous storage on Google 

Sheets. However, this method poses a significant challenge, especially for individuals with 

limited technical expertise, in interpreting the data effectively. There arises a necessity for a 

mechanism that can interpret this raw data into a more comprehensible and actionable format. 

One promising solution is the creation of an internet-connected application designed to 

seamlessly fetch data from Google Sheets, process it, and then present it in an easily 

understandable manner. 

To enhance clarity and user interaction, the application should incorporate a feature that allows 

the creation of a virtual twin of the deployed field. This virtual twin would serve as an accurate 

visual representation, closely reflecting real-world conditions. The user interface should be 

navigable, enabling users to access near real-time updates of field conditions from any location 

conveniently. 

In terms of functionality, it is imperative that the application offers a detailed visualization of 

each sensor, mirroring their actual physical placements. Users should have the option to select 

individual sensors, allowing them to access specific statistical data related to each sensor’s 

performance and output. Additionally, to facilitate a comprehensive understanding, users 

should have access to historical data, represented graphically or pictorially, ensuring that the 

information is digestible and insightful regarding the prevailing site conditions. 

Initial efforts have been made towards the conceptualization and development phases of this 

application. Work has been commenced, laying the foundational elements essential for the 

application's functionality. However, due to prevailing time constraints, the project has not 

reached its full completion and realization. Thus, the comprehensive completion of this concept 

will not be encompassed within the scope of this master's thesis. The images below provide 

visual representations of the progress made on the web-based application. 
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Figure 46. Screenshot (1) of Preliminary work done in unity game engine. 

 

Note. Screenshot (1) of Preliminary work done for internet connected applications in Unity game engine by the 

author. Created by the author, [2023]. 

Figure 47. Screenshot (2) of Preliminary work done in unity game engine. 

 

Note. Screenshot (2) of preliminary work done for internet connected applications in Unity game engine by the 

author. Created by the author, [2023].  
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Figure 48. Screenshot (3) of Preliminary work done in unity game engine. 

 

Note. Screenshot (3) of preliminary work done for internet connected applications in Unity game engine by the 

author. Created by the author, [2023]. 

4.4.2. Optimization of Sensor Utilization Through Correlation-Based Machine Learning 

Models 

The data analysis has facilitated the generation of a heatmap that displays various parameters 

with substantial correlations. From these heatmap, parameters displaying positive correlations 

ranging between 0.8 and 1.0, as well as negative correlations fluctuating between -0.8 and -

1.0, can be identified. It is in the authors' opinion that these identified correlations demonstrate 

a promise in utilizing machine learning (ML) models for the accurate prediction of the 

respective parameters. 

For the creation of effective ML models in the authors' opinion, it is recommended to initiate 

training using the historical data relevant to these parameters. Post-development, these models 

should undergo a meticulous validation process, wherein the predicted data is thoroughly 

compared and verified against the actual measured data. Such an approach aims to fine-tune 

the model’s accuracy and reliability. 

An essential benefit of this rigorous development and verification process lies in its capability 

to optimize the number of necessary sensors. This optimization proves to be particularly 

advantageous during actual field implementations, fostering operational efficiency. By 

employing ML models that are both precise and reliable, significant cost savings can be 

achieved, particularly in agricultural field implementations. By employing ML models that are 
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both precise and reliable, there is a potential to realize significant cost savings, making the 

approach highly economical and practical for real-life applications. The use of optimized 

models can streamline operations, reduce the need for excessive sensors, and minimize 

unnecessary expenses, thereby making the approach not only highly economical but also 

exceptionally practical for real-world agricultural applications. 

4.4.3. Integrating NDVI Cameras for Enhanced Monitoring of Growing Areas 

The Normalized Difference Vegetation Index (NDVI) is widely used to represent vegetation 

activity and terrestrial productivity (Liu Q. a.-G.-H., 2023). It is calculated as the ratio of the 

difference between the Near-Infrared band and the red band to their sum. The integration of 

NDVI cameras in growing areas can mark a significant progression in the realm of data 

collection and analysis. While existing research has demonstrated the capability of the NDVI 

to detect water stress in vegetation, there remains a necessity for more verification studies to 

substantiate these findings (Silva, 2016). The LoRaWAN test station provide an ideal platform 

for conducting these comprehensive verification studies. 

Figure 49. Agrocam NDVI Camera. 

 

Note. Retrieved from www.agrocam.eu/, accessed November 30, 2023. 

In addition, similar camera technologies have been incorporated into drones like the DJI Mavic 

3 Multispectral. Establishing a robust correlation between ground based LoRaWAN sensors 

and NDVI cameras can be instrumental in developing machine learning models. These models 

could further optimize the analysis of images captured by drones, enhancing the precision and 

effectiveness of agricultural monitoring and management. 
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4.4.4. Integration of Drone Imaging and Sensor Data in Machine Learning Models for 

Precision Agriculture 

Figure 50. DJI Mavic 3 Multispectral drone. 

 

Note. Retrieved from www.aonic.com/my/dji/mavic-3-multispectral/, accessed November 30, 2023. 

 

In the author's opinion, within the domain of precision agriculture and environmental 

monitoring, aerial imaging technologies, especially those provided by the DJI Mavic 3 

Multispectral drone, hold the promise of becoming indispensable instruments in the field, 

assuming pivotal roles. Equipped with a highly integrated imaging system, the DJI Mavic 3 

Multispectral drone features a 20MP red, green blue (RGB) camera and four 5MP multispectral 

cameras, capturing wavelengths across near-infrared, red edge, red, and green spectrums.  

Integrating these multispectral images with the actual sensor readings can be used for the 

development of customised machine learning models. The goal of this integration is to amplify 

the accuracy and efficiency of condition assessment processes within agricultural domains. A 

successful integration has the potential to bring transformative advancement in agricultural 

analytics by significantly reducing, if not negating, the need for deployment of ground sensors. 

It is in author’s opinion that this optimization has to potential for substantial cost savings, 

enhancing the economic viability of agricultural operations, while maintaining, if not 

improving, the accuracy and reliability of field condition assessments. 
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4.4.5. Concept of a severity scale developed by the author for assessing the extent of 

water stress. 

Figure 51. Severity scale for assessing water stress. 

 

Note. Severity scale for assessing the extend of water stress with remediation measures made by the author. 

Created by the author, [2023]. 

Although technical insights can be gained from analysing the collected data, it is the author's 

opinion that this needs to be transformed into actionable information. To this end, the author 

proposes a 'severity scale' that provides a methodology for converting raw sensor data into 

actionable information following analysis. For farmers who may lack technical proficiency, 

this user-friendly scale can help in interpreting the raw data by offering a clear understanding 

of the water stress levels in the entire field and practical steps for mitigating the same.  

Continuous data collection is made possible through strategically placed LoRaWAN sensors 

within the fields, which transmit data to an online platform. Here, the data is stored and 

analysed using machine learning algorithms. Based on the analysis, agricultural regions within 

the field are classified on a water stress severity scale, visually represented in the image, 

ranging from 1 to 10 to indicate water stress levels. This number guides the application of 

remediation measures, color-coded for clarity, and tailored to the identified stress levels. 
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To ensure that these remediation strategies are effective, continuous feedback is essential. This 

feedback is garnered using the ground-based sensors and supplemented with image data 

collected by multispectral drones. Based on the gathered insights, further adjustments and fine-

tuning of the remediation measures can be made. 

4.4.6. Remediation measures based on this severity scale to combat water stress. 

Improving the soil health to a point where the soil itself would be acting as a water storage 

medium (Alexandra Bot, 2005) is the main aim of implementing the remediation measures. On 

the severity scale recommended by the author, values 1 and 2 indicate regions of the field that 

are undergoing minor or negligible water stress. The mid-range values, from 3 to 6, correspond 

to areas that are experiencing moderate water stress. Finally, the higher values, from 7 to 10, 

signify areas that are grappling with severe water stress.  

For those parts of the field that fall under the severe water stress category (values 7 to 10), 

urgent measures are needed to revitalize the conditions to support and sustain plant life. Some 

recommended strategies include providing irrigation through sprinklers (Anten, 2001), 

employing drip irrigation techniques (Chowdhury, 2016), reducing the expanse of exposed soil 

(Meyer, 2019), introducing water-absorbing materials into the soil (Asamatdinov, 2018), and 

excavating swales (Yuen, 2001). Additionally, in the authors' opinion, there should be a regular 

feedback monitoring system in place to check whether the remediation measures are effective 

in managing the water stress.  

In regions marked by moderate water stress (values 3 to 6), the primary goal should be to make 

the field self-reliant concerning its water and nutrient needs. Implementing practices like 

proper spacing to prevent competition for water and nutrients (Zhou, 2010), dedicated areas in 

field for crops known for their water-retention properties (O'Neill, 2022), addition of biochar 

to the soil (Bruun, 2014), increasing its organic content (Huntington, 2003), minimizing 

exposed soil and applying compost or natural fibres like jute or coconut can significantly 

mitigate moderate water stress (Joothi, 2014) (Syakir, 2021). 

For regions of the field that are currently experiencing minor or no water stress (values 1 and 

2), the main objective should be the preservation of these optimal conditions. One effective 

method is to increase the forest cover in the vicinity of the field, which can act as a natural 

buffer, maintaining the microclimate and preventing rapid fluctuations in soil moisture levels 

(Ilstedt, 2016). Regularly analysing the soil's microbial content can also provide insights into 
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its health and indicate if any preventive measures are needed to maintain the current favourable 

conditions.  

4.4.7. Field Implementation and virtual twin of Dr. Hader’s agricultural field 

The agricultural field of Dr. Hader has been identified for the initial field implementation. A 

predominant challenge identified in this field is the uneven distribution of water stress. This 

water stress arises from a combination of climatic factors and the field's inherent topography. 

Consequently, the field displays varied regions, with some areas experiencing significant water 

stress and others remaining unaffected.  

Given this imbalance, a universal solution for solving the problem of water stress would not be 

appropriate for the entire field area. Instead, a more customised approach is required where the 

field is segmented based on varying degrees of water stress. The "Severity Scale of Water 

Stress," as outlined in the previous sections, can be used to divide the field into various 

segments based on water stress levels. Based on this classification, tailored remediation 

measures can be recommended to enhance the field's self-reliance, thereby reducing its 

dependency on external water and fertilizer inputs. 

To assess the effectiveness of the implemented measures, an iterative feedback mechanism is 

integral. This mechanism incorporates aerial imagery via multispectral drones and real-time 

data collection from LoRaWAN sensors embedded within the field. The continuous monitoring 

provided by these tools offers invaluable insights, through which the application of the 

remediation methods can be monitored and further optimised. 
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 Appendix 

Sample code used for generating the correlation heatmaps of soil conductivity sensor (17678) 

from Decentlab Vs soil Conductivity sensor from Dragino. 

import numpy as np 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

from matplotlib.colors import LinearSegmentedColormap 

from datetime import datetime 

 

Cond_17678_DLP_Raw = pd.read_csv("Path of the file") 

 

Cond_17678_DLP_Raw = Cond_17678_DLP_Raw.drop('Timezone Offset', axis=1) 

Cond_17678_DLP_Raw = Cond_17678_DLP_Raw.drop('16778.battery', axis=1) 

 

prefix_to_remove = '16778.metergroup-teros12-' 

new_columns = {col: col.replace(prefix_to_remove, '') for col in 

Cond_17678_DLP_Raw.columns} 

Cond_17678_DLP_Raw.columns = [col.replace(prefix_to_remove, '') for col in 

Cond_17678_DLP_Raw.columns] 

 

rename_dict = { 

    'Timestamp': 'A_Timestamp', 

    'dp': 'Dielectric Permittivity (Calculated) Cond_17678', 

    'ec': 'Electrical Conductivity Cond_17678', 

    'temperature': 'Temperature Cond_17678', 

    'vwc': 'Volumetric Water Content Cond_17678' 

} 

Cond_17678_DLP_Raw.rename(columns=rename_dict, inplace=True) 

 

sorted_columns_Cond_17678_DLP_Raw = sorted(Cond_17678_DLP_Raw.columns) 

Cond_17678_DLP_Raw = Cond_17678_DLP_Raw[sorted_columns_Cond_17678_DLP_Raw] 

 

try: 

    Cond_17678_DLP_Raw = Cond_17678_DLP_Raw.astype(float) 

    print("Conversion successful. Here's your DataFrame:") 

    print(Cond_17678_DLP_Raw) 

except ValueError as e: 

    print(f"Conversion error: {e}") 

 

Cond_17678_DLP_Raw['A_Timestamp'] = 

pd.to_datetime(Cond_17678_DLP_Raw['A_Timestamp']) 

Cond_17678_DLP_Raw['A_Timestamp'] = 

Cond_17678_DLP_Raw['A_Timestamp'].dt.strftime('%Y-%m-%d %H:%M') 

for column in Cond_17678_DLP_Raw.columns: 

    if column != 'A_Timestamp':  

        Cond_17678_DLP_Raw[column] = pd.to_numeric(Cond_17678_DLP_Raw[col-

umn], errors='coerce')  

 

datetime_format = "%d-%m-%Y %H:%M:%S" 

start_datetime_str = '01-08-2023 00:00:00' 

end_datetime_str = '16-10-2023 00:00:00' 

start_datetime = datetime.strptime(start_datetime_str, datetime_format) 

end_datetime = datetime.strptime(end_datetime_str, datetime_format) 
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date_range = pd.date_range(start=start_datetime, end=end_datetime, 

freq='1min') 

 

new_dataset_Cond_17678_DLP_Raw = pd.DataFrame(date_range, col-

umns=['A_Timestamp']) 

 

new_dataset_Cond_17678_DLP_Raw['A_Timestamp'] = new_da-

taset_Cond_17678_DLP_Raw['A_Timestamp'].dt.strftime('%Y-%m-%d %H:%M') 

 

new_dataset_Cond_17678_DLP_Raw['A_Timestamp'] = new_da-

taset_Cond_17678_DLP_Raw['A_Timestamp'].astype(str) 

 

Cond_17678_DLP_Raw['A_Timestamp'] = 

Cond_17678_DLP_Raw['A_Timestamp'].astype(str) 

merged_dataset_Cond_17678_DLP_Raw = new_da-

taset_Cond_17678_DLP_Raw.merge(Cond_17678_DLP_Raw, left_on='A_Timestamp', 

right_on='A_Timestamp', how='left') 

 

columns_to_interpolate = ['Dielectric Permittivity (Calculated) 

Cond_17678', 'Electrical Conductivity Cond_17678', 'Temperature 

Cond_17678', 'Volumetric Water Content Cond_17678'] 

 

merged_dataset_Cond_17678_DLP_Raw[columns_to_interpolate] = merged_da-

taset_Cond_17678_DLP_Raw[columns_to_interpolate].interpolate() 

 

Conductivity_Dragino_Google_Sheets = pd.read_csv("Path of the file") 

 

Conductivity_Dragino_Google_Sheets = Conductiv-

ity_Dragino_Google_Sheets.drop('bat', axis=1) 

Conductivity_Dragino_Google_Sheets = Conductiv-

ity_Dragino_Google_Sheets.drop('Temp', axis=1) 

 

rename_dict = { 

    'datetime': 'A_Timestamp', 

    'Conduct': 'Electrical Conductivity Conductivity_Dragino', 

    'Temp Soil': 'Temperature Soil Conductivity_Dragino', 

    'Moisture Soil': 'Moisture Soil Conductivity_Dragino'  

    } 

Conductivity_Dragino_Google_Sheets.rename(columns=rename_dict, 

inplace=True) 

 

sorted_columns_Conductivity_Dragino_Google_Sheets = sorted(Conductiv-

ity_Dragino_Google_Sheets.columns) 

Conductivity_Dragino_Google_Sheets_sorted = Conductiv-

ity_Dragino_Google_Sheets[sorted_columns_Conductiv-

ity_Dragino_Google_Sheets] 

 

try: 

    Conductivity_Dragino_Google_Sheets_sorted = Conductiv-

ity_Dragino_Google_Sheets_sorted.astype(float) 

    print("Conversion successful. Here's your DataFrame:") 

    print(Conductivity_Dragino_Google_Sheets_sorted) 

except ValueError as e: 

    print(f"Conversion error: {e}") 
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Conductivity_Dragino_Google_Sheets_sorted['A_Timestamp'] = 

pd.to_datetime(Conductivity_Dragino_Google_Sheets_sorted['A_Timestamp'], 

dayfirst=True) 

Conductivity_Dragino_Google_Sheets_sorted['A_Timestamp'] = Conductiv-

ity_Dragino_Google_Sheets_sorted['A_Timestamp'].dt.strftime('%Y-%m-%d 

%H:%M') 

 

for column in Conductivity_Dragino_Google_Sheets_sorted.columns: 

    if column != 'A_Timestamp':   

        Conductivity_Dragino_Google_Sheets_sorted[column] = pd.to_nu-

meric(Conductivity_Dragino_Google_Sheets_sorted[column], errors='coerce')  

 

datetime_format = "%d-%m-%Y %H:%M" 

 

start_datetime_str = '01-08-2023 00:00' 

end_datetime_str = '16-10-2023 00:00' 

 

start_datetime = datetime.strptime(start_datetime_str, datetime_format) 

end_datetime = datetime.strptime(end_datetime_str, datetime_format) 

 

date_range = pd.date_range(start=start_datetime, end=end_datetime, 

freq='1min') 

 

new_dataset_Conductivity_Dragino_Google_Sheets_sorted = pd.Data-

Frame(date_range, columns=['A_Timestamp']) 

new_dataset_Conductivity_Dragino_Google_Sheets_sorted['A_Timestamp'] = 

pd.to_datetime(new_dataset_Conductiv-

ity_Dragino_Google_Sheets_sorted['A_Timestamp'], dayfirst=True) 

new_dataset_Conductivity_Dragino_Google_Sheets_sorted['A_Timestamp'] = 

new_dataset_Conductiv-

ity_Dragino_Google_Sheets_sorted['A_Timestamp'].dt.strftime('%Y-%m-%d 

%H:%M') 

new_dataset_Conductivity_Dragino_Google_Sheets_sorted['A_Timestamp'] = 

new_dataset_Conductiv-

ity_Dragino_Google_Sheets_sorted['A_Timestamp'].astype(str) 

 

Conductivity_Dragino_Google_Sheets_sorted['A_Timestamp'] = Conductiv-

ity_Dragino_Google_Sheets_sorted['A_Timestamp'].astype(str) 

Conductivity_Dragino_Google_Sheets_sorted = Conductiv-

ity_Dragino_Google_Sheets_sorted.reindex(sorted(Conductiv-

ity_Dragino_Google_Sheets_sorted.columns), axis=1) 

 

merged_dataset_Conductivity_Dragino_Google_Sheets = new_dataset_Conductiv-

ity_Dragino_Google_Sheets_sorted.merge(Conductiv-

ity_Dragino_Google_Sheets_sorted, left_on='A_Timestamp', 

right_on='A_Timestamp', how='left') 

 

columns_to_interpolate = ['Electrical Conductivity Conductivity_Dragino', 

'Temperature Soil Conductivity_Dragino', 'Moisture Soil Conductivity_Dragi-

no'] 

 

merged_dataset_Conductivity_Dragino_Google_Sheets[columns_to_interpolate] = 

merged_dataset_Conductivity_Dragino_Google_Sheets[columns_to_interpo-

late].interpolate() 

 

merged_dataset_Cond_17678_DLP_Raw  

merged_dataset_Conductivity_Dragino_Google_Sheets  
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merged_df = pd.merge(merged_dataset_Cond_17678_DLP_Raw , merged_da-

taset_Conductivity_Dragino_Google_Sheets, on='A_Timestamp') 

 

merged_df.sort_values(by='A_Timestamp', inplace=True) 

 

correlation_matrix = merged_df.drop(columns=['A_Timestamp']).corr() 

 

atmos_cols = [col for col in merged_df.columns if col.endswith('_Dragino')] 

sensecap_cols = [col for col in merged_df.columns if 

col.endswith('Cond_17678')] 

 

reordered_corr_matrix = correlation_matrix.loc[sensecap_cols, atmos_cols] 

 

plt.figure(figsize=(10,8)) 

sns.heatmap(reordered_corr_matrix, annot=True, fmt=".2f", cmap='coolwarm', 

linewidths=2, linecolor='black') 

plt.xlabel('Conductivity sensor from Dragino', fontsize=14, font-

weight='bold')   

plt.ylabel('Conductivity sensor (17678) from Decentlab', fontsize=14, font-

weight='bold')   

 

plt.title('Correlation Heatmap of Conductivity sensor (17678) from De-

centlab Vs Conductivity sensor from Dragino', fontsize=14, font-

weight='bold') 

plt.show() 

 

cmap = LinearSegmentedColormap.from_list('red_gradient', ['lightcoral', 

'red'], N=256) 

 

mask = (reordered_corr_matrix >= 0.74) & (reordered_corr_matrix < 1) 

 

plt.figure(figsize=(10,8)) 

sns.heatmap(reordered_corr_matrix, annot=True, fmt=".2f", cmap=cmap, lin-

ewidths=2, linecolor='black', cbar=True, mask=~mask) 

 

for i, row in enumerate(reordered_corr_matrix.values): 

    for j, val in enumerate(row): 

        if mask.iloc[i, j]: 

            plt.gca().text(j+0.5, i+0.5, f"{val:.2f}",  

                           ha='center', va='center',  

                           fontsize='medium',  

                           color='white' if val > 0.85 else 'black') 

 

plt.xlabel('Conductivity sensor from Dragino', fontsize=14, font-

weight='bold')   

plt.ylabel('Conductivity sensor (17678) from Decentlab', fontsize=14, font-

weight='bold')   

 

plt.title('Correlation Heatmap of Conductivity sensor (17678) from De-

centlab Vs Conductivity sensor from Dragino - Highlight 0.74 < R < 1', 

fontsize=14, fontweight='bold') 

plt.show() 

 

r_squared_matrix = reordered_corr_matrix ** 2 
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cmap = LinearSegmentedColormap.from_list('red_gradient', ['lightcoral', 

'red'], N=256) 

 

mask = (r_squared_matrix >= 0.55) & (r_squared_matrix < 1) 

plt.figure(figsize=(10,8)) 

sns.heatmap(r_squared_matrix, annot=True, fmt=".2f", cmap=cmap, lin-

ewidths=2, linecolor='black', cbar=True, mask=~mask) 

 

for i, row in enumerate(r_squared_matrix.values): 

    for j, val in enumerate(row): 

        if mask.iloc[i, j]: 

            plt.gca().text(j+0.5, i+0.5, f"{val:.2f}",  

                           ha='center', va='center',  

                           fontsize='medium',  

                           color='white' if val > 0.85 else 'black') 

 

plt.xlabel('Conductivity sensor from Dragino', fontsize=14, font-

weight='bold')   

plt.ylabel('Conductivity sensor (17678) from Decentlab', fontsize=14, font-

weight='bold')   

plt.title('Correlation Heatmap of Conductivity sensor (17678) from De-

centlab Vs Conductivity sensor from Dragino - Highlight 0.55 < R² < 1', 

fontsize=14, fontweight='bold') 

plt.show() 
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