

Applied Robotics – Digitale Methoden
WS2023

As we move deeper into the 21st
century, the roles of artificial
intelligence (AI) and robotics in shaping
our world are becoming undeniably
critical. These technologies stand at the
cusp of transforming societal structures,
enhancing life quality, and catalyzing
human advancement in ways we've
never seen before. It's essential to grasp
the profound impact AI and robotics will
have on our collective future.
n terms of economic development and
employment, AI and robotics are
redefining industry norms through the
automation of monotonous tasks,
boosting of productivity levels, and
minimization of costs. Despite worries
about the potential loss of jobs, these
innovations offer a silver lining by

generating new roles in nascent fields
like AI engineering, data analysis, and
the development of interactive
technologies between humans and
machines.
These are only a few examples.
Therefore, the need for experts is
constantly growing.
In the course ‘applied robotics’
students implemented various
projects, where they used state of the
art methods from ai and robotics.

Christian Groth (publisher)
University of applied sciences Hof
2023
DOI 10.57944/1051-173

https://doi.org/10.57944/1051-173

Table of contents

Smart Firetruck

1

Drawing Robot

6

NAO robot that imitates human movements using Mediapipe

11

Painting by Numbers with the Assistance of the Dobot Magician

15

General Purpose Optics-Based Collaborative Robotic Followers

21

RcpU – Robot that can play UNO

27

Vovracar

35

Connect Four with a Robotic Arm: A Comprehensive Apporach to Human-Robot
Interaction in Gaming

39

FixMix

43

Dancing Nao Robot

48

Racecar

51

Smart Firetruck
Reiner Katharina

University of Applied Sciences Hof
Hof, Germany

katharina.reiner@hof-university.de

Schlitter Moritz
University of Applied Sciences Hof

Hof, Germany
moritz.schlitter@hof-university.de

Wilfert Luca
University of Applied Sciences Hof

Hof, Germany
luca.wilfert@hof-university.de

Manig Ralf
University of Applied Sciences Hof

Hof, Germany
ralf.manig@hof-university.de

Raithel Tim
University of Applied Sciences Hof

Hof, Germany
tim.raithel@hof-university.de

Abstract—As part of the lecture “Applied Robotics” at the
university of applied sciences Hof, an intelligent firefighting
robot is built. The robot is supposed to drive autonomously to
the destination, where it should recognize a picture of a flame,
then put out that flame with water and lastly return to the fire
station. This functionality is implemented based on the chassis
of an RC car with a single board computer that uses the input
of a camera to navigate. The car contains a water tank with a
pump to spray the water on the flame picture. Additionally, the
vehicle has working blue light and can play a siren sound.

Keywords— intelligent, robot, extinguish, firefighters

I. STATE OF THE ART
There were already multiple projects done at the university

of applied science Hof, in which the same type of electric
vehicle was used. Reference [1], the practical work „Aufbau
und Implementierung eines Elektrofahrzeugs mit REST API
zur Steuerung und Kamerabildübertragung”, written by
Daniel Hanik, on which this project is based on, describes
steps to build up the car. Amongst other things, the paper
includes the structure and configuration of all the hardware
components, the installation of the operating system and the
software components, as well as the Python code that controls
the servomotors. The steps of these paragraphs can be adapted
to fit this project.

II. APPROACH

A. Goal
The goal of this project is to build an intelligent

firefighting robot, based on the vehicle, camera, and Nvidia
Jetson Xavier NX, provided by the university. The robot is
supposed to look like a firefighter truck with working flashing
blue light and siren sound. When the user manually activates
an alarm, the vehicle autonomously follows a yellow line on
the floor, by evaluating the camera input and controlling the
servomotors accordingly. During that time, two blue LEDs are
flashing alternately, and the siren sound file is played via a
small Bluetooth speaker. Concurrently, an AI application for
image recognition monitors the camera input, looking for a
previously determined symbol of a flame or a fire station.
When the AI application recognizes symbol of the flame, the
vehicle stops and begins to put out the flame. This is
accomplished by activating a small water pump inside a water
tank within the body of the car for a few seconds. The water
will spray out of a jet pipe mounted on the roof of the truck.
After the vehicle finished this job, it will switch off the blue
light and the siren. It then autonomously follows the yellow
line back, until the AI application recognizes the fire station
symbol. Here the vehicle will come to a hold and the process
is finished.

In case the implementation of the goals stated above can
be finished early in the time space of the project, there are
some additional goals, which can be implemented afterwards.
For example, the signal to start the whole process could be
send autonomously by another image recognition software
that sends an alarm when recognizing a flame symbol. The
user would not have to start the alarm process manually.
Furthermore, the robot’s ability to navigate could be
enhanced. One option is installing multiple possible
destinations, that means the robot would have to decide where
to go when encountering a crossing in the yellow line.
Autonomous parking in a defined area or avoiding obstacles
on the yellow line are additional extensions. On top of that,
aiming with the water jet while putting out the flame can be
enhanced. The vehicle would position itself autonomously so
that the water lands in the desired container. Additionally, the
image recognition software can be expanded to recognize
different types of fires and put out a message containing the
correct method to extinguish this kind of flame.

B. Steps
1) Preparing the hardware

a) Installing the Operating system
To install the operating system, a computer with a SD-card

slot and a SD-card is needed. The Jetson operating system
image is downloaded from NVIDIA and the SD-card is
formatted with the “SD Memory Card Formatter” program’s
“quick format” option. The image is flashed onto the SD-card
with the “Etcher” program. After the program has flashed the
image and verified its integrity, it can be inserted into the SD-
card port on the Jetson.

Now the initial setup can be conducted. A monitor via
HDMI, a keyboard and a power cable are connected. The
Jetson now powers on and boots. The NVIDIA Jetson
software EULA must be reviewed and accepted. The system
language, keyboard layout and time zone are configured. A
user is created, and the hostname is setup. The partition size is
set to the recommended value.

The official guide from NVIDIA was used [2].

b) Move Operating system to SSD
For Performance reasons, right after flashing the SD-card

and initially setting the Jetson up, the boot process is changed
so that the Jetson only uses the SD-card to boot the image and
runs on the SSD afterwards.

Therefore, a guide was used [3].

c) Installung the software prerequisites
To use the camera, the corresponding software

‘Pyrealsense2’ is needed. Because there are no prebuilt

1

binaries for ARM processors like the one the Jetson has, it
must be built from source. [1]

Additional required python modules were installed with
the package manager pip.

d) Chassis
As in the practical work referenced above, the given

chassis with the pre-mounted servomotors is used.
Additionally, a wooden platform was placed on four stud bolts
on top of the chassis. This platform serves as a foundation for
the 3D-printed body parts, which give the vehicle the look of
a firefighter truck. The body is composed of three parts that
are fixated on the platform with multiple small blocks of wood
that are glued on the platform. The blocks prevent the body
parts from slipping horizontally, but the parts can still be
removed by lifting them.

The front part is used as a mount for the camera so that the
camera points downwards at a 45° angle.

Fig. 1. Chassis front view.

The middle part contains the water tank and has lids on
both sides, to grant easy access to the tank. The water tank
itself is a lunch box, with the water pump inside. There are
two holes in the tank to allow the cable and hose from the
pump to run to the outside. From there the hose runs through
the roof of the middle part, inside a 3D-printed jet pipe. In the
front of the hose, there is a small 3D-printed outlet, which
reduces the diameter of the hose. This allows greater range of
the water jet.

The back part contains electronic devices like the Jetson,
the voltage converter and the Bluetooth speaker. It is separated
from the middle part to prevent water from leaking near the
electronics. A trunk lid allows easy access to the electronic
parts.

Fig. 2. Chassis side view.

e) Connecting electronics
Following the previously mentioned practical work [1],

the Nvidia Jetson Xavier NX as well as the servomotors are
powered by the given 4200mAh battery pack. Since the Jetson
requires an input voltage of 18-19 volts, a voltage converter
was used as described in the paper. The ground (GND), power
supply (VCC) and signal cables of the servomotor used for
steering are connected to the corresponding pins of row 2 on
a servo driver, while the cables of the electronic speed
controller are connected to the first row similarly. The servo
driver itself is connected to the Jetson as described in [1]. The
ground pin is connected to any ground pin of the Jetson, the
SCL and SDA pins are connected to the corresponding pins of
the I2C1 port (pin 5 and 3) on the Jetson and VCC is connected
to one of the two 3.3V power supply pins.

The camera and the water pump are both connected via
USB. It is important that the pump is connected to one of the
two outputs of the USB hub closer to the power supply (port
1 or 2), while the camera is connected to either USB port 3 or
4. This is because, in order to switch off the pump, the whole
USB hub is cut from power and this would affect the camera
as well if connected to this hub.

The Jetson can establish Bluetooth connections, which is
used to communicate with the small speaker, which plays the
siren sound.

The two blue LEDs are each connected to a ground pin
with their black cable. The red cable of one LED is connected
to pin 11 while the other LED is connected to pin 12 with its
red cable.

Fig. 3. Jetson Xavier pin layput [1].

2) Individual hardware control
a) Flashing light

To implement the flashing light of the firetruck, there are
two blue LEDs on top of the car body. The LEDs have
integrated resistors and are addressed by powering the I/O pins
of the Jetson on and off. They are wired to two different I/O
pins and a ground pin each.

The default state of both LEDs must be off. When powered
on, they flash alternately. For this, there exists a python script

2

that uses the “RPi.GPIO” library, which wraps addressing the
single pins.

b) Water pump
The fire extinguishing process is implemented by using a

small USB-powered water pump that pumps some water from
a small tank via a hose to a nozzle. For addressing the water
pump, one of the USB-ports of the Jetson is used.

By default, the pump must be powered off. This is
achieved by running a bash script using “uhubctl” that powers
off the used USB-port before plugging in the pump.

If the Robot is commanded to release some water, there is
another script that turns the respective USB-Port on. After
enough water has been pumped out, the same script as in the
beginning can be used again to turn the pump back off.

c) Output siren via loudspeaker
The implementation of the siren is achieved by using a

small Bluetooth speaker which plays a mp3 file of a siren.

First, the Jetson must be initially paired with the speaker
via Bluetooth. This is a one-time configuration task in the
beginning which must be performed manually.

 After the devices have been paired once, the connection-
process can be automated via the command “bluetoothctl
connect”. This process is supported by another script,
checking regularly if the device is still connected.

For playing the mp3-file, the “playsound”-library is used
in a python script.

3) Camera
a) Path guidance

The firetruck will be guided to its destination via a yellow
line on the ground. To steer it accordingly, the camera
mounted on the front of the firetruck will be used to detect the
yellow line. This is achieved by finding the largest area of
yellow pixels in the frame.

To do so, some preprocessing of the frame is necessary.
First, the RGB camera stream is converted into the HSV (Hue-
Saturation-Value) color space. This is done to isolate and find
the yellow pixels more easily. Then, binary masks of the
regions with yellow pixels are created. By applying
morphological operations, noise and minor gaps are cleaned
up to get smooth and solid edges of the detected yellow area
for improved further processing and visual representation.

After the preprocessing, the largest contour is selected, and
the center calculated. Depending on its position relative to the
center of the camera frame, notifications with instructions of
how the vehicle needs to steer are sent. A stop message is sent
if no yellow line is detected for 1,5s.

b) Detecting start- and endpoints
For detecting the stopping points of the firetruck, an AI-

object-detection model was trained using Roboflow.

The model was trained on two classes each consisting of a
symbol, the first symbol being a fire, which is the destination
of where the firetruck needs to go to put out the fire, and the
second symbol being a fire station, where the firetruck will
return to after all fires are extinguished. These symbols were
printed out and various pictures were taken of them from
different angles, with different lighting and from different
distances.

Roboflow was utilized for the entire process of
preprocessing the images and training the model. 358 pictures
were labeled and normalized. Additional images were created
using data augmentation and the model was trained on 500
images in total. With a precision of 97.1%, the model was
deployed via the Roboflow API, which the firetruck calls.
Depending on the result of the model, appropriate
notifications including the information of which destination
was reached are sent.

4) Integration
a) Wrapping the components with shared base class

The functionalities for controlling the individual
components are summarized below. To standardize their use,
all controlling elements inherit from a common base class
Component. The requirement to be able to be started and
stopped or interrupted, applies to all controls. For example, if
the car drives off to a fire destination, the blue lights and siren
must be switched on. However, as soon as the destination is
reached, both must be stopped.

 The base class “Component” encapsulates the usage of a
thread including its start and stop process. This enables the
GlobalController to manage the standardized interface
according to the application.

Fig. 4. UML diagram of the Component class und its subclasses.

The previously implemented processes for controlling the
hardware are each integrated into an encapsulating class. The
logic is transferred to a function which is used as the
Component’s thread’s target. Additional cleanup code before
stopping the hardware control can be linked into the stop
process. For example, the flashing of the LED first ends with
a LOW output before the thread is terminated.

b) Identifying the destinations
Ids are used to define the destination to be reached. To

differentiate between the journey to the fire destinations and
the return journey, the home ID is defined as 0. The controller
can now use this information to determine whether privileges
are required for a journey or not. This attribute is defined as
follows:

If the destination ID is that of a fire destination, the blue
lights and siren must be switched on during the journey. As
soon as the destination is reached, these components stop. In
return, the water pump is activated. The recognition of a
successful extinguishing is simulated by a three-second wait.
The pump is then no longer activated. Finally, the car reverses
and the home ID is activated.

3

If the destination ID is the known home ID, neither
privileges need to be switched on during the journey nor an
extinguishing process started when the destination is reached.

c) Wrapping the REST-API
The existing REST interface [1] is controlled by an API

adapter. This encapsulates the sending and configuration of
the requests and only forwards the corresponding responses.
In particular, the logically correct use of right, left and central
steering is ensured.

d) Communication with Control-API
The car is still steered by the camera analysis. To be able

to pass on current observations to the GlobalController, it
offers a communication interface. A dedicated method is
available for each possible event.

Fig. 5. UML diagram of the GlobalController methods.

These process the signal in each case. If a direct stop or
steering signal is detected, corresponding POST requests are
sent with the API adapter. The camera analyst continuously
sends observations to the controller. To avoid overloading the
REST interface, the latest messages received are cached and
only new signals are forwarded to the API.

An interface for processing the detection of an intersection
is also available for further development in the future. The
signal is forwarded to an IntersectionGuide which would
internally determine the direction to take and return a
corresponding instruction to the controller.

If the destination is detected, the necessary follow-up
actions are carried out as described in B.

e) Usage
In order to use the built environment, first of all the REST-

Api to control the servo-motors must be started. Next, the
script controlling all components must be run with sudo rights
in order to have the needed access to control hardware
components. This script instantiates the global controller and
manually triggers the alarm. Due to python package
interoperability version 3.11 must be utilized for running both
scripts with the currently installed packages on the Jetson.

When the car’s IP address changes, this must be applied in
the ‘config’-file, which is used by the ApiAdapter to
communicate with the REST-Api.

III. EXPERIMENTS

During the development process, multiple experiments to
test the robot were conducted to make sure that every
hardware and software component work both individually and
together.

This included individual tests for controlling the flashing
lights, enabling and disabling the USB-port to which the water
pump is connected, which was visualized by using a USB-
lamp, outputting the siren sound via loudspeaker, detecting the

yellow line and detecting the two symbols the AI was trained
on for the start- and endpoints.

After testing the components individually, everything was
put together to be managed by the GlobalController and the
first driving tests with the chassis were conducted. The setup
for these tests were as follows: The printed-out symbols for
the fire station and the fire were laid on the ground, with a
curved yellow tape line connecting the two. The REST-API of
the car and the GlobalController were run to start the car.

With these tests, the steering was modified for the firetruck
to follow the line more accurately, and any communication
errors between the individual software components and the
GlobalController were ironed out.

However, the 3D-printed body of the firetruck and the
water tank made the firetruck too heavy, which resulted in
worse steering and the battery failing to move the vehicle
continuously, therefore a ball roller was added to relief a bit
of weight.

 The final acceptance test is conducted in a more real
environment outside. Unfortunately, the combination of the
rougher ground and the weak battery resulted in the firetruck
having to be supportively pushed to drive. Everything else
worked well, as indicated by the following table.

Test
Components

Blue
lights

Water
Pump Siren Path

guidance
Start- and
endpoints

successful ✓ ✓ ✓ ✓ ✓

The final acceptance test reached all the initial goals of the
project.

IV. CONCLUSION
This project built and implemented an intelligent

firefighting robot based on a vehicle with a camera and a
Nvidia Jetson Xavier NX. After being activated, the truck
follows a yellow line with active blue lights and a siren, until
a fire symbol is detected and puts out the fire via a water pump.
Having finished, it drives back with no flashing blue lights and
siren, until a fire station symbol is detected, where the process
is finished.

Unfortunately, due to the many hardware complications
and errors, none of the additional goals were fully
implemented in time. However, because the infrastructure of
the project is kept expandable, additional features can easily
be added.

A future project could add the following features:
Autonomously starting the process. To do so, a REST-Api
connecting to the global controller was already set up. Dealing
with multiple destinations and crossings. The existing
interface for processing the detection of an intersection can be
used. In the intersection guide a map needs to be set up
manually or automatically. The existing structure expects for
each destination id a list of the consecutive direction
commands for each intersection. Further extensions can be:
Implementing autonomous turning back after the fire is
extinguished and autonomous parking after the fire station is
reached. Implementing the detection of obstacles and
according steering around them. Implementing better aiming
of the water pump by additionally centering the firetruck in
front of the fire symbol so the center of the fire is hit. And

4

lastly, implementing the detection and corresponding
extinguishing of different types of fires.

[1] D. Hanik, “Aufbau und Implementierung eines Elektrofahrzeugs mit

REST API zur Steuerung und Kamerabildübertragung,” Universtiy of
Applied Sciences Hof, 2023.

[2] “Getting Started With Jetson Nano Developer Kit,” NVIDIA
Developer, Mar. 05, 2019.
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-
devkit#intro

[3] kangalow, “Jetson Xavier NX - Run from SSD,” JetsonHacks, May 29,
2020. https://jetsonhacks.com/2020/05/29/jetson-xavier-nx-run-from-
ssd/ (accessed Feb. 11, 2024).

5

Drawing Dobot
Julian Köglmeier

Fakultät Informatik

Hof University of Applied Sciences

Hof, Germany
julian.koeglmeier@hof-university.de

Julian Doberauer
Fakultät Informatik

Hof University of Applied Sciences

Hof, Germany
julian.doberauer@hof-university.de

Paul Schaller
Fakultät Informatik

Hof University of Applied Sciences

Hof, Germany
paul.schaller@hof-university.de

Yusuf Mehderoglu
Fakultät Informatik

Hof University of Applied Sciences

Hof, Germany
yusuf.mehderoglu@hof-university.de

Ronny Grebner
Fakultät Informatik

Hof University of Applied Sciences

Hof, Germany
ronny.grebner@hof-university.de

Abstract—This document describes how the drawing mecha-
nisms of the Dobot Magician Arm are implemented, how to use
the application and how someone could add more functionality
to the program.

Index Terms—Dobot Magician, Drawing, Tic-Tac-Toe, Ma-
chine Learning, Computer Vision, Robot Arm

I. ACRONYMS

CP continuous path
SVG Scalable Vector Graphics
PNG Portable Network Graphics
JPEG Joint Photographic Experts Group
PTP point to point
CV computer vision
UI User Interface
GUI Graphical User Interface
CNN Convolutional Neural Network
NN Neural Network

II. INTRODUCTION

This paper discusses how image and text drawing function-
ality has been implemented using the Dobot Magician robot
arm. Images can either be drawn using Scalable Vector Graph-
ics (SVG) or other image file formats. Another functionality
is to play a game of Tic-Tac-Toe using a camera and a pre-
trained Convolutional Neural Network (CNN). The program
is written in Java based on the Java example code from Dobot
[1].

III. QUICK-START

The Quick-start is intended to be used on a Linux system.
JDK 17 or higher must be installed on the system.
To run the program, sudo ./gradlew run needs to be
executed in the base directory of the project. This builds the
program and then runs it. For communication with the Dobot
over the USB cable, root privileges are required, thus it is
important to run the program as the root user or with sudo.

Hof University of Applied Sciences

Otherwise the program will fail to make a connection with the
Dobot.
The Dobot’s default orientation after turning on and homing
is opposite the side of the reset and homing buttons. From this
orientation the x coordinate will increase when going forward,
the y coordinate when going left and the z coordinate when
going up.
The drawing area with minX, minY, maxX and maxY can
be adjusted in the settings. Leaving the Dobot in the default
orientation these values do not need to be changed, as they
are set accordingly by default.
Before drawing however, the height the Dobot should draw at
needs to be set to the height of the paper. This can also be
done in the settings. The paper should be a bit elevated off the
table the Dobot is standing on, as this increases the available
drawing area. To find out the height of the paper, the Dobot
arm should be manually moved down by pressing the lock
button towards the end of the arm until the pen attached to
the Dobot’s arm makes contact with the paper. After moving
the Dobot arm to the correct height, the ”Set Height” button
can be pressed. Alternatively, the height, which is the z value,
can be read from the terminal and then configured manually in
the settings. After setting the height, the arm should be moved
up a bit so it doesn’t touch the paper anymore.
The Dobot is now ready to draw images as well as play Tic-
Tac-Toe if a camera is properly set up and connected to the
computer running the program.

IV. PHYSICAL SETUP

Our setup consists of the Dobot and a cardboard box that
elevates the stack of papers for the Dobot to draw on. We
placed the paper opposite of the side with the reset and
homing button (see III). No additional hardware is required
if the Dobot is only used for drawing SVG, Portable Network
Graphics (PNG) and Joint Photographic Experts Group (JPEG)
images or text.
For playing Tic-Tac-Toe, a camera is required. We use a
smartphone and connect it to the computer via DroidCam. A

6

folded piece of cardboard is placed next to the paper and the
phone is placed in a properly sized cutout in the cardboard.
With this setup Tic-Tac-Toe can now be played.

V. JAVAFX USER INTERFACE

The User Interface (UI) is written using the JavaFX [2]
framework.

A. The Main Window

Fig. 1. Main Window

In the main window named ”Dobot Drawing” a basic
overview is given. At the top of the left hand side, there is a
view which lists all the available images in the selected folder.
Only SVG, PNG and JPEG images can be drawn and thus only
those image types are shown in this view.
Below this view there is a set of buttons which can be used
to access different functionalities of the Dobot and the Dobot
Drawing application. The first button labeled ”Open Folder”
can be used to select the current folder. This folder is used for
the view above the buttons that lists all the available images for
drawing. The second button named ”Dobot Settings” is used
to open a popup window. In this popup window, the user can
change various settings regarding the drawing. The available
settings are: Changing the height (offset from the table), the
minimum and maximum x values, as well as the minimum and
maximum y values of the drawing canvas. These settings can
be used to specify the canvas width and length. The ”Draw”
button initiates the drawing mode, where the user can select
what parts are drawn for raster images. For SVG images, the
drawing process will be started immediately. The ”Draw Text”
button opens a small popup window, where the user can enter
a text to be written using the Dobot arm and a font in which
it is drawn. The final button with the label ”Play Tic-Tac-
Toe” opens the Tic-Tac-Toe view, where the user can change
settings regarding the game and play Tic-Tac-Toe against the
Dobot.
At the top of the main window there is a progress bar to
indicate how much of the final image or the text the Dobot

has drawn already.
Below the progress bar, there is an image preview field, which
shows the currently selected image.

B. The Image Conversion Window

Fig. 2. Image Conversion Window

If the selected image is not an SVG image, the image
conversion window is opened once the ”Draw” button is
pressed.
In the image conversion window the user can specify the num-
ber of clusters the program will look for in the selected image.
By pressing the ”Update” button, the program calculates the
clusters.

Fig. 3. Cluster

The clusters are presented on the right. The user can specify
multiple settings for every cluster and can select the ”Select”
checkbox to include a cluster in the final image. If the cluster
algorithm finds unsatisfying clusters, the user can use the
”Suppress speckles”, ”Smooth corners” and ”Optimize paths”
sliders to adjust the cluster’s appearance and shape. For further
information have a look at section VI-B.
The left hand side of the image conversion window also
contains a ”Cancel” button to stop the cluster selection process
and a ”Done” button to start drawing the image presented in
the preview section.
The preview on the left is the sum of all the selected clusters
and the cluster settings. This image will be drawn by the Dobot
arm.

7

C. The Tic-Tac-Toe Window

Fig. 4. Tic-Tac-Toe Window

The Tic-Tac-Toe window consists of a preview of the
camera on the left and sliders to the right. With the sliders
”Grid Size”, ”X Position” and ”Y Position” the user can adjust
the grid overlay that is drawn on the image. The preview
image can also be mirrored using the ”Mirror Horizontally”
and ”Mirror Vertically” checkboxes and rotated using the
”Rotation” slider. The preview image should be rotated and
mirrored so the small extra line in one of the fields is aligned
vertically in the top-left field of the Tic-Tac-Toe grid, as seen
in figure 4.
Once the preview image is rotated correctly and the overlay
aligns with the Tic-Tac-Toe grid drawn by the Dobot, the user
should set the threshold value with the ”Threshold” slider.
The Tic-Tac-Toe field in the black-and-white preview on the
bottom right should be completely visible. The lines of the
board should be visible and not obscured by shadows that
appear white. The empty square fields of the Tic-Tac-Toe
board should be completely black, except for those where
either the Dobot or the User has already drawn a shape in
which case the shape should be completely visible. A good
example of how the threshold value should be used is seen in
figure 4.
After all the settings are set, the user must make the first move
of the game. With another slider ”Perfection” between 0 and
100, the user can adjust the ”skill level” of the Dobot. Zero
means the Dobot will make a random valid move, while 100
means the Dobot will always make the best move possible.

VI. DRAWING IMAGES

Clicking on the ”Draw” button in the UI the program checks
if the selected file is a SVG file or another image file (e.g. PNG
or JPEG). Based on the file type the program either kicks off
the drawing process or opens an additional window for the
PNG/JPEG to SVG conversion process.

A. Drawing Vector Graphics

The SVGDrawing class in the project is responsible for
loading and processing SVG files. It uses the Apache Batik
[3] library to extract and draw SVG paths.
There are multiple methods to process SVG files, which take
either a path to a file, an InputStream, or a byte array
containing SVG data. These take care of loading the vector
graphic and pass it to the main generatePoints method
to convert it into a drawable form.
First, the SVG file is loaded as an SVGDocument and all of
the path elements are extracted. Other types of SVG elements
are not yet supported (see section X-B). The paths are first
converted into a series of points using the SVGPathSupport
class. This is done by iterating over each path in increments
of STEP_SIZE normalized units of length. There is also a
check to see if the current segment has changed to make sure
that all segments are properly closed without any gaps. The
points are then normalized to be in the range 0.0 - 1.0
according to the SVG file’s view box.
There is also some code to support single-line fonts (see
section IX-C), which makes sure to only draw half of the
points of each segment, because each letter would be drawn
twice otherwise. That feature is not finished though and does
not yet work as intended.
When the SVG file is drawn, the normalized coordinates are
scaled to the drawing canvas and sent to the Dobot using
continuous path (CP) mode commands.

B. Drawing Raster Graphics

Conversion of PNG or JPEG images is done inside the
RasterImageConverterController along with the
RasterImageConverter class. To turn the images into
SVG paths, the svg converter [4] library is used. It is origi-
nally a standalone application, but the relevant parts to convert
raster images without the GUI code have been integrated into
our project. The library uses a Java implementation of the
potrace [5] utility to convert an image into multiple segments
which can then be used to create an SVG file.
After the user has selected an image to convert, an instance of
the RasterImageConverter class is created which holds
all of the information about the extracted clusters.
The user then supplies an approximate number of clusters
(segments) to be extracted. This number is passed to the
RasterImageConverter using the createClusters
method. The method then calls the PoTraceService class
to extract the detected clusters from the source image. The
clusters are then stored as a list of DetectedCluster
objects.
The segments can afterwards be adjusted to suppress speck-
les, smooth corners and optimize paths, which can improve
the appearance of the resulting vector graphic, especially
for lower resolution images. These parameters are also con-
tained in the DetectedCluster class. They are updated
directly in the corresponding cluster object and afterwards, the
updatePreview and updateGlobalPreview methods
are called to make sure that the previews are up to date with

8

the user selection.
The user can then choose which of the resulting clusters to
draw, and can thus exclude certain clusters from being drawn
by the Dobot to speed up the drawing process or to remove
duplicate lines. This is done by updating the selected
boolean of the cluster object and then updating the previews.
After the user has decided which segments to draw, they are
converted into an SVG file and drawn using the SVG drawing
process (see section VI-A).

VII. DRAWING TEXT

Clicking on the ”Draw Text” button in the UI opens up an
additional window. The user can write text in the empty field,
select the desired font and start the drawing process with the
”Draw” button.
Text drawing is implemented in the GUIController of the
project. First, all of the fonts installed on the user’s system are
listed using the Utilities.getAllFonts method. These
are shown to the user as a selection drop-down menu.
Afterwards, the SVGGraphics2D class of Apache Batik [3]
is used. The font is set using setFont and the text is drawn
onto the vector graphic using the drawString method.
There are also some calculations to make sure that the text
is centered correctly inside the image and to support multiple
lines of user input. The SVG file is then generated with the
textAsPath option enabled to convert the provided text into
SVG paths instead of an SVG text element. The view box of
the resulting SVG document is also set to the full size of the
text to make sure none of the text gets drawn outside of the
drawing area and the maximum possible space is used.
The Dobot then draws the resulting SVG file using the SVG
drawing process (see section VI-A).

VIII. TIC-TAC-TOE

A. JavaCV and Model

JavaCV [6] in conjunction with DeepLearning4j [7] is used
for the program to be able to detect the state of the Tic-Tac-
Toe playing field. In the ”Tic-Tac-Toe” window the user sees
an image of the attached camera. A 3x3 grid must then be
aligned over the playing field that has been drawn by the
Dobot. The user can start by playing either ”X” or ”O”, the
Dobot automatically plays the opposing shape.
The TicTacToeController is used to control the flow
of the Tic-Tac-Toe game, as well as to update the video
feed, by periodically fetching the frames prepared by the
TicTacToeRecognizer. After the user verifies they have
taken their turn, the TicTacToeRecognizer then prepares
the current frame for the pre-trained CNN [8] inside the
updateFrame method.
When the frame is grabbed from the camera feed, the image
is first mirrored and rotated according to the settings the
user has set. For this, the AffineTransform class from
the Java standard library is used. Afterwards, a copy of the
image is created on which the grid preview is drawn for the
user interface. A third copy of the frame is also created. An

inverse threshold filter is applied to convert it into a black-
and-white image, according to the threshold setting the user
has set. It is displayed in the user interface and also used for
further processing. The image is also saved as a file called
”frame.png” for debugging purposes.
Recognizing of the shapes on the Tic-Tac-Toe field
is done inside the recognizeField method of the
TicTacToeRecognizer class. First, the black-and-white
frame is split into nine separate cell images according to the
grid specified in the UI. To improve the accuracy of the CNN,
four white borders are drawn around the image (see IX-C
for more details). The sub-images are saved as files called
”subimage-X.png”, where X is the index of the cell in the
Tic-Tac-Toe field. Afterwards, each sub-image gets fed into
the model to predict the state of the corresponding Tic-Tac-
Toe cell. A cell can either be blank, contain an ”X” or an ”O”.
The resulting field gets returned and the internally saved field
of the TicTacToe class gets updated with the new move.

B. Game

We made a hard-coded version of the game Tic-Tac-Toe that
uses a ”perfectness”-score between 0 and 1 which is used as
a probability to choose if the next move is played randomly
or the best move according to the current state of the game.
To determine the best move, we use a set of simple rules and
game-state patterns. This is possible, because Tic-Tac-Toe is
a solved game, and the best possible move can always be
quickly determined algorithmically.
When receiving the new game board after the player took their
move the algorithm compares the new board and the old board
and puts the shape that was supposed to be played in the field
that has not been set before. This is done with the intent that
if we recognize the wrong shape it is replaced with the shape
that is supposed to be played. For determining what shape
has to be played we have to save which shape played first.
This is done after the first move when only one shape is in
the playing board. The TicTacToe class also provides some
convenience methods to get the current state of the game.
The TicTacToe class is also responsible for deter-
mining when the game is over and who won. In the
TicTacToeController, after either the user or the Dobot
has made a move, this is checked. If the game is determined
to be over, a popup appears with the winner of the game or
a message that the game has ended in a draw. If there is a
winner, the Dobot also draws a line through the three winning
cells.
If the game has not ended yet, the next move is chosen and
the Dobot draws its shape in the corresponding cell on the
board.

IX. EXPERIMENTS

A. CP mode vs. point to point (PTP) mode

Initially, SVG paths were drawn using the PTP mode of
the Dobot. This mode, while being more precise than the CP
mode, is significantly slower. Therefore, CP mode is used for
drawing the paths.

9

B. JPEG files

While the program supports drawing both PNG and JPEG
files, PNG files are a lot higher quality because they use
lossless compression. The lossy JPEG compression leads to
a lot of ”speckles” (small segments) and noisy edges around
segments due to the algorithm potrace [5] uses. Therefore, it is
recommended to use SVG and PNG files whenever possible.

C. Template matching vs. a CNN

Before using Deeplearning4j [7] an attempt was made to
use JavaCV template matching to recognize the Tic-Tac-Toe
playing field. However using template matching, we were not
able to reliably distinguish between ”O”s, ”X”s and blank cells
of the grid.
Instead we decided to take a machine learning approach with
Deeplearning4j using a pre-trained CNN. Initially when using
the model the predictions of the cells were still volatile and not
reliably correct. After experimentation we found out that the
images used to train the model contained not only the drawn
shapes, but also parts of the grid itself. Thus we adjusted the
cell size to include parts of the grid drawn by the Dobot.
This increased the model’s ability to predict a cell correctly,
however there were still frequent occasions when the model
was wrong and would predict an incorrect shape. Upon further
investigation we determined that the model strictly requires
lines to be present in the picture of a cell, due to over-fitting.
As this was not always the case after preparing the image for
the model, it was still wrong at times. To make sure there
are always lines present in the sub-image of a cell we draw
a white rectangle around the cell. This successfully tricks the
model and it now works reliably and can distinguish between
blank, ”X” and ”O” cells with high confidence.

D. Single-line fonts

When implementing text drawing, we also experimented
with adding support for so called ”Single-line fonts”, which
are fonts that are traced along the center line of the letter rather
than around it. This would allow the Dobot to draw text in a
way more closely to as one would write text by hand. However,
there were some issues when using these fonts which resulted
in letters only being drawn halfway and we decided to abandon
this in favor of the Tic-Tac-Toe implementation.

E. Select camera device

Initially the device id of the camera was hard coded. We
tried to get and list all connected video devices for the
user to select the appropriate camera using JavaCV. Using
the videoInput.listDevices() method provided by
JavaCV, we found out that this functionality works on Win-
dows only [9]. Since we were on Linux and compiled the
DobotDLL for Linux, we could not use this function to list
all video devices. As an alternative we added an input field
for the user to enter the device id before starting to play Tic-
Tac-Toe. To find out the correct device id the user now has
to find out the correct device number by using VLC [10] for
example.

X. CONCLUSION

A. Implemented program

Utilizing the application provided by us, the user may now
successfully draw images of the types SVG, PNG and JPEG,
as well as text in a specified font and play Tic-Tac-Toe against
the Dobot arm using image recognition and a camera / mobile
phone connected to the computer running the program.

B. Possible expansions

One possible extension could be that more SVG elements
such as text, embedded images etc. can be drawn by the
Dobot. At the moment we only support paths. This could be
accomplished by converting these types of elements to a point
to point representation, that simply is sent to the Dobot.
Another useful feature to add could be a way to automatically
detect the position of the Tic-Tac-Toe grid in the camera
image. This way, the grid doesn’t need to be aligned manually.
A possible implementation for this could be by using the
pattern-matching functionality of OpenCV to get the position
of the playing field. By scaling the pattern for the pattern-
matching, the size of the playing field could also be figured
out.
Another extension would be the addition of a camera selector.
Currently a pop-up window opens when starting the Tic-Tac-
Toe game, prompting the user to enter the device id of the
camera used to detect the playing field. Instead of using a
prompt asking for the device id, a drop-down menu could be
added, which lists all the found camera devices and allows the
user to select one. To get a list of all device ids a library like
ffmpeg [11] could be included.
An improved physical setup for playing Tic-Tac-Toe with the
Dobot could be created. Instead of using a basic contraption
made of cardboard and a phone or a webcam, a more perma-
nent setup (e.g. a 3D printed one) is recommended to decrease
the risk of accidentally moving the camera or the paper while
playing. The camera could then also be placed directly over
the paper instead of the side of it.

REFERENCES

[1] https : / / www. dobot - robots . com / products / education /
magician.html.

[2] https://openjfx.io/.
[3] https://xmlgraphics.apache.org/batik/.
[4] https://github.com/snow3442/professional/tree/master/

svg converter.
[5] https://potrace.sourceforge.net/.
[6] https://github.com/bytedeco/javacv.
[7] https://github.com/deeplearning4j/deeplearning4j.
[8] https://github.com/tempdata73/tic-tac-toe.
[9] https://github.com/bytedeco/javacv/issues/1650.

[10] https://www.videolan.org/vlc/.
[11] https://ffmpeg.org/.

10

NAO robot that imitates human movements using
Mediapipe

Costilla Caballero, Salvador
Applied Robotics

Hof University of Applied Science
CDMX, Mexico

salvadorcoscab@gmail.com

Abstract—In this project, we programmed a NAO robot from
Aldebaran to mimic human movements captured by a webcam
using Mediapipe. While this type of human imitation has been
done before, we aimed to approach it differently. Unlike most
other projects utilizing multiple cameras or depth sensors like
the LIDAR sensor, our focus was on a novel methodology. The
project is still in progress, with the robot currently capable of
moving its arms, albeit not with high precision. Nonetheless, we
see this as a promising starting point for future developments in
computer vision and robotics.

Index Terms—NAO, Mediapipe, Human imitation, aldebaran,
robotics

I. STATE OF THE ART

In this section, we will explore various methods for con-
trolling the movement of a NAO robot using the Mediapipe
Framework, as well as discuss related work involving human
imitation with the NAO robot.

According to the NAO robot documentation [1], there are
two primary methods for posing the NAO robot: using joint
angles and employing inverse kinematics. While other methods
exist for walking or performing predefined poses, these two
are fundamental to our project’s scope.

Regardless of whether inverse kinematics is employed, there
are two main ways to control the effectors to achieve a pose:

• Animation methods, which operate within fixed time
frames and involve blocking functions.

• Reactive methods, suitable for real-time control with non-
blocking functions.

Within the ALMotionProxy module, numerous functions
pertain to joint movement. Some notable animation methods
include:

• ALMotionProxy.angleInterpolation, enabling movement
from one specific position to another within a specified
time.

• ALMotionProxy.angleInterpolationWithSpeed, facilitating
movement between specific positions within defined time
and speed parameters.

An essential method is:
• ALMotionProxy.setAngles, enabling the manipulation of

single joint angles or sets of joint angles on the robot.
Furthermore, the robot’s control extends to inverse kine-

matics. Here, classical IK solvers and generalized IK solvers

(Whole Body control) are employed. Some pertinent animation
and reactive methods related to inverse kinematics include:

• ALMotionProxy.positionInterpolation, facilitating move-
ment between specific positions within a specified time
frame.

• ALMotionProxy.setPosition, enabling precise positioning
of the robot in 3D space.

BlazePose [2] is an architecture for single-person 3D pose
detection based on convolutional neural networks. It is inte-
grated into the Mediapipe framework, enabling the detection
of poses from videos or images. The model is capable of
detecting 33 landmarks (see Figure I), which can be interpreted
as points in a 3D space.

Fig. 1. Landmarks from the Mediapipe library.

The Landmarker offers various configuration options, in-
cluding:

• model complexity, This parameter allows selection
among three different models - lite, full, and heavy.
Depending on the chosen model, both accuracy and speed
can vary.

• min detection confidence, It enables setting the mini-
mum confidence level required for detecting a pose.

• min tracking confidence, This parameter allows setting
the minimum confidence level required for tracking a
pose.

In a thesis titled ”Mimetización de movimiento por robot
antropomorfo basado en imágenes de sensor de profundidad”
[3], the authors utilize the NAO robot to mimic human

11

movements using a Kinect sensor. They adopt a client-server
approach to transmit data from the Kinect sensor to the robot
via the NAOqi API. In the client-side implementation, they
employ the pykinect2 library to retrieve data from the Kinect
sensor, which consists of 25 landmarks representing the human
body. This data is then relayed to the server-side using the
socket library. On the server-side, the angles between the
joints are computed and transmitted to the robot using the
ALMotionProxy.AngleInterpolation method.

II. APPROACH

A. Objectives
During this project we had some objectives which were:
• Solve the computer vision part, that in this case was done

with Mediapipe.
• Make the robot move using the NAOqi API.

The problems were that, in order to work with the NAOqi API,
we had to download and setup the SDK which is written (by
the moment of this project) in Python 2.7 and the Mediapipe
is only availble in Python 3.7 or higher. That is why we had
to add as an objective to make the two libraries work together.

B. Methodology
The methodology that we used to solve the objectives above

was to first divide the problem into modules and try to solve
them separately, and then join them together and solve the
problems that arose from the connection between the two
modules. The main two modules were the computer vision
and the robot movement.

C. Computer vision
In the beginning, the computer vision part was done very

easily, because Mediapipe has a lot of usage examples and
good documentation, such as the video ”AI Pose Estimation
with Python and MediaPipe” [4], that helped us a lot on
getting the landmarks and calculate some angles. On the other
hand working with the NAO robot was a much more difficult,
because we did not know how to start.
For the computer vision part we used the opencv library
to get images from both camera and videos and then we
used the Mediapipe library to get the poses from the images.
We used also the opencv library to plot the landmarks that
the Mediapipe library detected, so we could see how the
landmarks were being detected. This landmarks conformed
an object with 33 points, which represents landmarks of the
human body. (See figure I)

D. Robot movement
Then we started working with the robot movement part, to

do this we used the NAOqi API. We realized, after reading
the NAOqi documentation that there is two ways to control
the robot for doing poses. The first one was using angles and
the second one was using inverse kinematics. We decided to
use the first one because we thought that with the landmarks,
obtained with Mediapipe, we could easily get the angles of
each join of the robot, and also the project that we found on

internet used this approach. All of this joint-angle approach
is written in the ALMotion module of the NAOqi API. In
summary the robot has various joints, and each joint can be
moved using a specific angle. These joints work in a similar
way as the human body joints, allowing some joints to pitch,
roll, and yaw. (See figure II-D)

Fig. 2. Joints in the arm of the NAO robot.

E. Connection between the Computer vision and the Robot
movement

After doing some testing on both parts, we had to somehow
connect them. In order to do the connection between the robot
and the computer vision part, we tried with execnet, which is
a library that allows you to trigger python scripts from another
python script, even with different versions of python. But we
had some problems sending the data from the computer vision
part to the part in which we move the robot, so we decided
to try a different approach.

We decided to use sockets to send the data, as we got
inspiration from a project that we found with a similiar
approach, in which the author used sockets to send the data
from a kinect sensor to the robot. This solved everything,
about the connection between the scripts, because it uses the
client-server approach, allowing us to use python 3.10 for the
computer vision part that is the client and python 2.7 for the
Robot movement part that is the server. We just had to do
some encoding to send the data.

F. Testing the implemented code and solving problems
After changing the code that we found to work with

Mediapipe and OpenCV instead of the kinect sensor. We did
some testing on the functions that were already implemented
in the server side, but they performed very bad, but at least,
we saw that the robot moved.

Also the display of the images was very slow since the
code had a delay to send the data, in order for the server to

12

process it. We solved this using a thread to get the data from
the displayed image and send it to the server with the thread
without messing up with the display.
As we said before after changing a lot the parameters and
definition of the functions that were implemented before we
realized that we was not sending the right data to the robot
from the server, so we decided to change the approach and
instead of sending the coordenates of the landmarks to the
server, we decided to send the angles between them and send
them directly to the server. This would help us to see what
angles we was sending to the robot by showing them on the
displayed image.

After we was able to see the angles that were being sent to
the robot, we realized that the angles sent were not very good
in the function definition, this is because the kinect sensor
and Mediapipe have different coordenate systems, so we had
to change the defintion of the functions.
This did not work very well, though the movements were
more accurate, the robot was not imitating the movement of
the hands perfectly. So we decided to change the function.
Instead of using geometry we tried with vectors and the angles
between them.

G. Vector approach
We saw that as we had the landmarks, that represents a

point in the space, we could calculate a vector between two
points (See equation 1), and we could use the angles between
the vectors to move the robot (See equation 2). But then we
realized that we could also calculate the angles between the
projection of the vectors (See equation 3) in a generated plane
from a normal vector (See equations 4a,4b,4c). We tried this
for one joint, that was the right shoulder pitch. We got the
normal vector from the left shoulder to the right shoulder to
generate the plane, and then we got the vectors from the right
shoulder to the right elbow and from the shoulder to the right
hip. We projected these vectors in the generated plane and
then we calculated the angles between them.

~v = ~p2 � ~p1 (1)

cos(✓) =
~v · ~w

k~vkk~wk (2)

proyH~v = (~v · ~u1) ~u1 + (~v · ~u2) ~u2 (3)

~n · (~p� ~p0) = 0 (4a)

~p =

2

4
x
y
z

3

5 (4b)

~p0 =

2

4
x0

y0
z0

3

5 (4c)

We implemented a function in python to do the calculations
mentioned above and this function did not work well neither
when we tested it, as we could see the angles on the displayed

image, we realized that the Mediapipe library did not detect
the z axis very well, even with a more complex model. Then
we remembered that the kinect sensor has a LIDAR sensor,
that allows him to detect, not only position in x and y, but
also depth in a better way than the Mediapipe library. That is
why we did not continue with this approach and as we did
not have more time to finish the project, we decided to leave
the functions that were already implemented.

III. CONTRIBUTION

The main difference between our project and the others is
that it has a different approach to solve the problem, relying
only on one camera and machine learning to detect and
recreate the human poses, instead of using a lot of sensors.
This is a contribution to the state of the art, because it implies
that if there were better machine learning models, the robot
could imitate the human movements in a better way. There is
also a contribution to the work done before in ”Mimetización
de movimiento por robot antropomorfo basado en imágenes
de sensor de profundidad” [3], because we can see the angles
that are being sent to the robot, which can be useful for further
research.

IV. EXPERIMENTS

To do the experiments and testing we used Choreographe,
which has a simulator mode, in which you can see a NAO
robot and move it using the localhost as the robot IP (See
figure 3). We used this to test the robot movements, but we
also used a real robot to see the movements in a real robot
(See figure 4). We had a script to try the robot movments and
another script just to try the computer vision part. The union
of both scripts, as we said before, was done using sockets. So
we had to run two scripts in the terminal, one for the server
and one for the client.

Fig. 3. NAO robot in the Choreographe simulator.

We used a webcam and videos to see the angles that are
being sent to the robot. To first initaite the application you
have to run the server part, using a python 2.7 interpreter.
This can be done using the following command, in which you
have to specify the ip address of the robot as an argument:

python2 server.py "ip_address"

Then you have to run the client part, using a python 3.10
interpreter. If you want to send the landmarks using a webcam
you can use the following command:

python3 client.py

13

Fig. 4. NAO robot moving.

On the other hand, if you want to send the landmarks using a
video you can use the following command:

python3 client.py "path_to_video"

Sometimes the robot falls and if this occurs the application
might not work or would stop working, so we had to be careful
about this, because sudden movements of the robot could make
it fall. If the application stops working, there is no other option
than to restart the application repeating the steps above.

V. CONCLUSION AND FUTURE WORK

Even though the project is not finished, we think is a good
start for just using computer vision to apply it in robotics.
There is a lot of work to do, such as improving the calculation
of the angles or use both inverse kinematics and programming
the angles to move the robot.
In order to use the legs of the robot is necessary to do further
research, because we have to consider many other things
such as the mass center of the robot, and take care that the
movements are not too abrupt to make the robot fall.

ACKNOWLEDGMENT

We want to thank our proffesor, Dr. Christian Groth for
helping us during the project and thank also to the Hof

University of Applied Science for giving us the opportunity
to work with the NAO robot, which was a great experience.

REFERENCES

[1] NAOqi API, http://doc.aldebaran.com/2-5/naoqi/motion/index.html
[2] Mediapipe Pose Landmarkinghttps://developers.google.com/mediapipe

/solutions/vision/pose landmarker
[3] I. Irigoyen, ”Mimetización de movimiento por robot antropomorfo

basado en imágenes de sensor de profundidad,” Trabajo Fin de Grado,
Facultad de Informática, Grado de Ingenierı́a Informática, Universidad
del Paı́s Vasco, 2020.

[4] Nicholas Renotte - Robotics and AI, ”AI Pose Estimation with
Python and MediaPipe,” YouTube, 2021. [Online]. Available:
https://www.youtube.com/watch?v=06TE U21FK4t=2109sab channel=
NicholasRenotte.

14

Painting by Numbers with the Assistance of the
Dobot Magician

Applied Robotics 2023/24 Hochschule Hof, University of Applied Sciences

1st Patrick Schröder
UAS Hof

2nd Gleb Hubarevich
UAS Hof

3rd Denys Zarishniuk
UAS Hof

4th Marina Waller
UAS Hof

Abstract—Robotic arms such as the Dobot Magician offer

countless project possibilities as they can grip, lift and position

objects as well as create drawings precisely. Unfortunately, it can

be challenging to realize a project with the Dobot Magician due

to the lack of documentation on how to operate and program

the robotic arm. To bridge this gap, we aimed to develop an

application that enables the robot to automatically connect dots in

the correct order as well as color specific areas on a drawing. For

this, we used computer vision and machine learning to detect and

recognize objects with a digital camera. Additionally, we utilized

the Dobot Magician robotic arm to perform the movements and

attached a pen to empower the robot to draw. With this, we

were able to automatically connect dots in the correct order on

sample drawings we created. However, the task of coloring areas

was only partially successful, so that only simple drawings could

be automatically colored.

I. INTRODUCTION AND STATE OF THE ART

To introduce students and interested people to the field of
robotics, performing tasks using a robotic arm, particularly
the Dobot Magician, is an excellent approach. As in [1]
described, the Dobot Magician robotic arm has a wide range
of functionalities such as drawing, painting, 3D printing, etc.
It serves as an educational tool with hands-on-experience
that can be used to realize countless projects. Despite its
potential, it can be challenging to realize a project due to
the lack of documentation on how to operate and program the
robotic arm. The Dobot Magician relies heavily on its software
for control. For Python programming, users can employ a
library named pydobot. Nevertheless, this designated library
offers only limited control options and lacks comprehensive
documentation. This limitation motivated us to implement this
project to address these challenges.

The goals we aim to achieve with this project involve on the
one hand automatically connecting dots in the correct order
and on the other hand coloring specific areas of a drawing
using the Dobot Magician. To achieve our goals, we used
existing technologies. First, we integrated YOLO (You Only
Look Once) [2], which is an object detection algorithm, to
identify and localize objects in an image. In our case, we used
it to detect numbers and dots for the first goal and shapes
with numbers for the second. In addition, an OCR (Optical
Character Recognition) engine named Tesseract [3] helped us
to recognize each number. To integrate these technologies with

the Dobot Magician in a Python environment, we used the
pydobot library [4] to control the robot. By combining these
technologies, we were able to fully automate the process of
connecting dots in the correct order using the Dobot Magician.
However, the implementation of the second goal to color
certain areas of a drawing was only partially successful.

In the remainder of this paper, we present the design of our
implementation for both goals (Section II). Then we describe
the experiments and discuss their results (Section III). Finally,
we conclude and discuss future work (Section IV).

II. APPROACH

A. Hardware and Software Setup
Before we implemented the actual application, we needed

to figure out what hardware and software we could use and
how to set them up for each use case to get accurate results.
After some research and experimentation, we decided to use
a digital camera to capture images, specifically the Olympus
OM-D E-M10 III, instead of a webcam because of the image
quality. An additional benefit of the DSLM camera was that
we got the ability to directly control the brightness, focus and
focal length of the image. To connect the camera to a laptop
we used a mini-HDMI cable and a video capture card, so the
camera works as a regular USB webcam. To automatically
draw on a paper we used the Dobot Magician as the robotic
arm.

To ensure consistency throughout this project, we con-
structed a scaffold that sets the Dobot Magician, the digital
camera and the printed-out image in a fixed location (see
Figure 1). The simplest and cheapest solution was to build
it out of wood scraps and plywood. The base has a slot for
the Dobot that helps to precisely position it in place. The
platform for the drawings is made of plywood and gives a
flat surface for the robot to draw. Small dots on the platform
define the drawing area and help to adjust the camera’s zoom.
The drawing can be fixed with magnets that can be attached
to the screw heads on the platform. To create a stable and
adjustable mount for the camera, we used two 50cm 8mm
stainless steel threaded bars, metal discs and nuts. This allows
us to adjust the height of the camera, so it doesn’t collide
with the Dobot’s arm and captures the photos with as little
disturbance as possible.

15

Fig. 1. Arrangement of the Dobot Magician and the digital camera on the
scaffold

In terms of software, we implemented our application in a
Python environment. By using the OpenCV library [5] we
were able to access the video feed from our camera and
capture an image of it, which we saved and then used as
a data source. Technologies such as YOLO and Tesseract
were used to process the saved image. These tools made it
possible to detect and recognize the relevant data for further
procedures. For a better user experience, we implemented
a simple graphical user interface (GUI) using the library
customtkinter [6]. This allows the user to pause the application
to review the results and return the robot to its home position
with the DobotStudio software. To control the Dobot Magician
in our Python environment, we used the pydobot library.
This generally forms the basis for our project regarding both
hardware and software.

B. Object Detection and Recognition
In order to obtain the relevant data for the first goal, we

must detect and recognize each number and dot in the captured
image. With this data, the Dobot Magician knows where to
move and draw.

This can be accomplished using a YOLO object detection
model (see Figure 2). To get the model to detect the numbers
and dots in the captured image, we trained it with a dataset we
made ourselves. We created a few sample images with dots and
their corresponding numbers using the software Figma. These
images were also augmented to expand our dataset to a total of
150 images to increase the model’s accuracy. The dataset itself
was created using Roboflow [7]. Each image within the dataset
was annotated by marking the position of each number and
dot. To ensure that the model can make accurate predictions
on new, unseen images, the dataset was split into 70% training,
20% validation and 10% testing. Finally, we proceeded to train
the YOLO model using a Google Colab notebook to guarantee
independence from the performance of our local computers.
The training was completed over 100 epochs and achieved

Fig. 2. Process of Object Detection and Recognition

good enough results for our project. With our trained YOLO
model, we can now localize and crop each number and dot in
our image to use them in further procedures.

After the numbers and dots were detected, we needed to
recognize each number to sort the coordinates of the dots
obtained by the localization of the YOLO model (see Figure
2). To achieve this, we used the Tesseract OCR engine. The
cropped numbers we got from the object detection are now
being inputted into the OCR engine. With the help of OpenCV,
we processed the images to enhance the readability of the
numbers. This way every number got recognized. To ensure
that every dot is grouped with the correct number, the distance
between the detections of the dots and numbers was calculated.
This was done with the following formula:

p
(x2 � x1)2 + (y2 � y1)2

Each dot was grouped with the number that had the shortest
distance to it. At last, the data we obtained, containing each
number with the coordinates of the corresponding dot, was
sorted so it was in the correct order. On this basis, the data
can be used to control the robot so that it moves sequentially
to the coordinates of the dots.

C. Object Segmentation

To achieve our second goal of automatically coloring
specific areas of a drawing, we needed to use a different
technology than used in the first case of connecting dots. In
this case, our model should not detect numbers and dots, but
shapes containing a number. Object detection cannot obtain
the precise boundaries of these shapes. This is why we used
object segmentation instead of object detection.

This can be accomplished using a YOLO segmentation
model. We started creating ten sample images using the Soft-
ware Figma. To create the dataset, we annotated the images
with Roboflow by marking each shape that contains a number.
After that, we started to train the YOLO model for 100 epochs,

16

however, the results were inaccurate due to our limited dataset.
Since it successfully detected all shapes in simple images, we
decided to continue using this model because of time pressure.

After integrating the model into our application, it generated
a mask for each detected shape in the captured image. As this
data cannot be used to begin coloring the numbered shapes,
we had to convert the masks into polygons. This means that
the boundaries of the detected shapes were identified and
expressed as a series of connected vertices, forming a polygon.
Using the polygon points, i.e. the corner points of the shapes,
we were now able to use the data to color the individual areas.

D. Dobot Magician Control
Now that we have gathered the relevant data for both use

cases, we have begun programming the robot. To be able to
control the Dobot Magician in our Python environment, we
used the pydobot library. As this library is limited and not well
documented, we also had to use the DobotStudio software.
Without the software, it is not possible to control the robot’s
joints, which means that homing, a task that returns the robot
to its starting position, is not possible. This task is necessary
to continue with the further procedure. Once the robotic arm
is in its homing position, it can now move to the coordinates
of the dots in the given data. However, the coordinates from
the detection process do not fit in the coordinate system of the
Dobot Magician. For this reason, we converted the coordinates
into a system that matches that of the robot.

The printed-out image was in a 1:1 aspect ratio requiring
us to crop the width of the captured image since the digital
camera had a 16:9 aspect ratio. That is why the left-hand side
of the width of every coordinate was subtracted to achieve the
desired aspect ratio. It is important to note that the zero point
of the picture is located at the bottom left. For this reason,
only the left-hand side needs to be subtracted. Following this,
the coordinates were converted to percentages based on the
image resolution to make them compatible with the coordinate
system of the Dobot Magician. According to this data, the
robot should draw the coordinates directly under it. However,
as this is not possible, we had to add an offset. To fix this issue,
we simply added the offset to the coordinates which was found
through a trial-and-error process. Lastly, we noticed that the
x and y coordinates of our data and the Dobot Magician were
swapped so we switched their positions accordingly. Based on
these calculations, the converted coordinates were now ready
to be used by the robotic arm to draw.

In the first use case, the robot simply has to draw lines from
one point to another. With the help of the pydobot library, the
robotic arm can move to a specific coordinate. To connect the
detected dots, the Dobot Magician moves downward along
the z-axis at the first point, pressing the built-in pen onto the
paper. After that, the robot moves to the second point and as it
completes drawing the line, it moves upward along the z-axis
and lifts the pen off the paper. This process is repeated until
it finishes connecting all the dots. By inputting our previously
sorted data the robot should accurately connect the detected
dots in the correct order.

In the second use case, the Dobot Magician must colorize
areas on an image. This can be done with the scanline fill
algorithm, which works with lines and polygon edges. How-
ever, we decided to write a simpler algorithm that would work
for our example and other simple shapes like circles, triangles
or rectangles. This algorithm for area filling involves two key
steps. First, we determined the key coordinates by calculating
the topmost y-coordinate and identifying the farthest and the
nearest x-coordinate at this topmost y-level. Next, lines should
be drawn from the farthest to the nearest x-coordinate at
each y-level, starting with the topmost y-coordinate and going
downwards. These actions systematically fill the area of the
detected shape. By inputting the previously converted data the
robot should color all detected shapes.

With this, the Dobot magician automatically connected dots
in the correct order (see Figure 3) and filled specific areas on
a drawing.

Fig. 3. Final result of the first use case to connect dots in the correct order

III. EXPERIMENTS

During the development of our project, we conducted
several experiments. These experiments served to test the
current approach and enhance the application afterward.

1) Experiment: At a very early stage of the project, we
tested if it was possible to recognize numbers and dots
by using only the Tesseract OCR engine. We first tried to
recognize numbers in a digital image. To visualize the output,
we used OpenCV to draw boxes around the numbers and
display the recognition underneath (see Figure 4).

Since this turned out accurate, we proceeded to set up our
hardware and software and captured an example image. After
trying to detect the numbers and dots in the image captured by
the camera, the results were inaccurate (see Figure 5). With
this approach, we could not advance further with the project.
As a result, we had to optimize the accuracy of the detections.

17

We soon discovered that we could combine an object detection
algorithm with optical character recognition.

Fig. 4. Result of the detection and recognition of numbers on a digital image
using Tesseract OCR engine

Fig. 5. Result of the detection and recognition of numbers and dots on a
captured image using Tesseract OCR engine

2) Experiment: The second approach to detect and recog-
nize dots and numbers involves separating the steps of object
detection and recognition. For this reason, we proceeded to
train a YOLO object detection model to increase the accuracy.
To accomplish this, we created a dataset of sample images
that we can use to train the model. The images were labeled,
combining each dot and their corresponding number into one
single object. In this procedure, the dot and the corresponding
number are already grouped together and no longer need to
be grouped separately. Next, we integrated the model into our
Python environment to test it. We visualized the detections
using the supervision library [8]. The detections of the grouped
objects provided accurate results and correctly identified each
pair on the captured image (see Figure 6). Each dot with its

corresponding number was saved as a separate cropped image
so that it could be used to recognize the numbers and dots.

Fig. 6. Result of the object detection of numbers and dots as a group on a
captured image using YOLO model

Since the object detection worked accurately, we proceeded
to recognize the numbers and dots with the Tesseract OCR
engine. For debugging purposes, we displayed each cropped
number with the recognitions of Tesseract with OpenCV.
In this analysis we observed that the recognitions were not
accurate (see Figure 7). Numbers were misidentified and dots
and numbers were grouped incorrectly, making it impossible
to determine the exact coordinates of the dots. Therefore, we
tried to train the Tesseract OCR engine on the custom font
that we used in the sample images we created. However, this
did not improve the accuracy of the recognition. As a result,
we had to improve the accuracy of the recognitions by using
a different approach.

Fig. 7. Results of the recognitions of the cropped images with Tesseract OCR
engine

3) Experiment: The final approach of the first use case
involved treating numbers and dots as different classes within
the YOLO model. To achieve this, we retrained it with images
taken directly from the digital camera. We annotated the
images using Roboflow by marking the dots and numbers
separately. After we trained the model, we tested its perfor-
mance by drawing the detections on the digital image using
supervision (see Figure 8). This time, each dot and number
were successfully detected.

Before we used the newly trained model, there was no need
to group the numbers and dots, since they were detected as

18

Fig. 8. Results of the detections of numbers and dots separately on a captured
image using YOLO model

one single object. As the YOLO model no longer performs this
task, we also had to group the dots with their corresponding
number. For this purpose, the distance between the numbers
and the dots had to be calculated. After that, the dots were
grouped with the number that had the shortest distance to
them.

Following the grouping of each dot with its correspond-
ing number, we proceeded to recognize the numbers with
the Tesseract OCR engine. This time Tesseract only had to
recognize the numbers and not locate the dots. With the help
of image processing, it was possible to recognize all numbers
on the captured image with Tesseract.

This approach proved good enough, allowing us to continue
with the process of drawing using the Dobot Magician. We
combined the functionality of the detection with the control
of the robot. Before the robot used the data, we reviewed the
results of the detections and recognitions by visualizing the
dots and numbers on the digital image with OpenCV (see
Figure 9). Once this was successful, the robot began drawing.
During the process, we observed that the robotic arm was
not precisely connecting the dots. The reason for that was
an incorrect offset. We adjusted the offset through a trial-
and-error process to enable the robot to connect the dots as
accurately as possible. As soon as the offset was correct, the
robot drew the drawing perfectly and connected all the dots
in the correct order.

4) Experiment: Our approach to achieving the second goal
of filling areas of an image involves detecting the shapes
containing a number in the captured image. To detect the
shapes, we created ten sample images and labeled them by
marking the boundaries of the shapes. Afterward, we generated
the dataset with Roboflow and trained a YOLO model. We set
up the hardware and software to test the model. Following,
we integrated the trained model into our Python environment
and tested the results by visualizing the shapes on the digital

Fig. 9. Results of the located dots with their order on a captured image

image using supervision. There we recognized that the results
were inaccurate due to the limited amount of data. Since
it successfully recognized all shapes in simple images (see
Figure 10), we decided to still use this model.

Fig. 10. Results of the object segmentation of shapes containing a number
on a captured image using YOLO model

We proceeded with the task of coloring areas with the
Dobot Magician. After the drawing task was performed using
the detections from the YOLO model, the results were close
to the shapes from the captured image. However, the robot
took around 15 minutes to draw them because of redundant
points (see Figure 11). This also led to the robotic arm being
shut down as it took too long to draw. As a result, we tried
to fix this problem by implementing a function that checks
the distance between the points, identifying and eliminating
redundant points that were too close to each other. This
approach resulted in the robot drawing completely different
shapes. Consequently, the model must be retrained to improve
accuracy. This can be achieved by creating additional sample
images to train the model.

19

Fig. 11. Redundant points of the detected shapes

IV. CONCLUSION AND FUTURE WORK

Although we had limited guidance from the Dobot Magician
documentation, we managed to start this project and achieve
significant successes. During our project, we learned a lot
about the Dobot Magician’s functionality and how to operate
it. Our team developed an application that automated the
“paint-by-number” experience. We integrated computer vision
and machine learning, specifically a YOLO object detection
model and a Tesseract OCR engine, that allow the robot to
recognize and localize numbers and dots in an image and
connect them. When it came to coloring specific areas in
an image using the YOLO object segmentation model the
application did not meet our expectations.

The experiments show the challenges that arose during the
implementation of the application. We had to change our
approach several times to achieve good results. When realizing
a project, many problems will occur without comprehensive
documentation. However, the experiments also show that there
is still room for improvement for future work.

With our documentation of the approach and the experi-
ments we aim to provide future projects with a better starting
point. Looking ahead, there are a few areas that can be
improved. First, the detections of our YOLO models could
be enhanced by increasing the amount of training data to
retrain them with a larger dataset. The recognition of the
numbers could be improved by either switching the OCR
engine or fine-tuning Tesseract on the characters. In addition,
the coloring process could be adjusted. This can be done by
choosing a more complex algorithm such as the “scanline fill
algorithm” for more accurate and detailed results. To add more
complexity, functionality could be implemented so that the
robot can use different colors and switch them autonomously.

In summary, while we achieved our first successes, the
outlined future work can address limitations and unlock the
full potential of the automated Painting by Numbers with the
Assistance of the Dobot Magician.

REFERENCES

[1] Dobot magician - desktop robot. Accessed: February 13, 2024. [On-
line]. Available: https://ifdesign.com/en/winner-ranking/project/dobot-
magician/236534

[2] Ultralytics yolov8 docs. Accessed: February 13, 2024. [Online].
Available: https://docs.ultralytics.com/de

[3] Tesseract documentation. Accessed: February 13, 2024. [Online].
Available: https://tesseract-ocr.github.io/

[4] Python library for dobot magician. Accessed: February 13, 2024.
[Online]. Available: https://github.com/luismesas/pydobot

[5] Opencv - open computer vision library. Accessed: February 13, 2024.
[Online]. Available: https://opencv.org/

[6] Customtkinter. Accessed: February 13, 2024. [Online]. Available:
https://github.com/TomSchimansky/CustomTkinter

[7] Roboflow: Give your software the power to see objects in images
and videos. Accessed: February 13, 2024. [Online]. Available:
https://roboflow.com/

[8] Supvervision. Accessed: February 13, 2024. [Online]. Available:
https://supervision.roboflow.com/

20

General Purpose Optics-Based Collaborative
Robotic Followers

Andreas Schmidt
Department of Computer Science

University of Applied Sciences

Hof, Germany
andreas.schmidt@hof-university.de

Boris Tolgurov
Department of Computer Science

University of Applied Sciences

Hof, Germany
boris.tolgurov@hof-university.de

Given Daniel Reul
Department of Computer Science

University of Applied Sciences

Hof, Germany
daniel.reul@hof-university.de

Given Jael Bernice-Walter
Department of Computer Science

University of Applied Sciences

Hof, Germany
jael-bernice.walter@hof-university.de

Abstract—In this paper, we present an optics-only approach

for robots to collaborate with and follow human operators. The

system is designed in a modular way. As such, it can be adapted to

any robot. We leverage YOLOv8 object detection in conjunction

with BoT-SORT tracking and deterministic decision-making for

optimal tracking accuracy. Tests are run on a common NAOv6

robot, which is controlled by a custom algorithm based on

tracking data.

Index Terms—robotics, YOLO, object detection, people track-

ing, robot companion

I. INTRODUCTION

For a long time robots were mainly used in industry, but
there is also a rising demand for social robots that assist or
just befriend humans in their everyday life. Such companion
robots (further abbreviated as cobots) can be used for enter-
tainment purposes or as child toys, but they also have more
serious applications. They can be used in elderly care or for
therapeutic purposes. Cobots already play a significant role
in modernizing and securing hazardous working environments
and are used to assist workers in various business applications.
Considering the demographic changes, the lack of staff in
elderly care or the rising loneliness in western countries, the
demand for cobots can be expected to grow in the next few
years.

Building a robot that can follow and interact with a human
in an unknown environment in real time has always been a
difficult task, especially the persistent tracking of a specific
person. Previously, a large number of sensors would have been
required to achieve this goal. However, in recent years, great
advances in the field of real time image detection were made.
We hypothesize that due to these improvements, it is possible
to build such a tracking system by only using optical image
data.

To show this, we implement a system able to follow a
human by using a state of the art YOLO image detection
model. For testing, the robot “NAOv6” is used. Notably, the
core of the detection system is designed to work on any

platform. Tracking and position calculations are executed in a
separate process. This makes this system highly adaptable to
other situations and robots. Positional data is transferred via
network. Because of our optics-only approach, no mapping
techniques like SLAM are needed. Persons can be tracked
by correlating subsequent detections with previous tracking
information. The system is designed to work even in situations
where the target is in a crowd of people or obstructed by an
obstacle. It is also able to process events and react in an easy,
human-understandable way through speech.

II. APPROACH

A. System Architecture

We use the NAOqi framework to control the robot. It
provides all robot functions using a proxy mechanism via
network as described in [1]. Due to the limited computational
power of the in-built computer on the Nao robot itself, the
decision was made to process all data remotely. The calculated
motions are then transmitted back to the robot in order to
control its actuators.

The system consists of two main modules. The robot control
module is responsible for calculating the angles for various
actuators, as well as for processing and interpreting events sent
by the tracking module, converting them into robot commands
if required. The tracking module handles the image detection
and the tracking. Both modules run independently of each
other. This makes both modules, most importantly the tracking
module, reusable for other, similar applications.

The separation of both modules aids versatility. As already
mentioned, the two-process approach decouples the tracking
and generation of positional data from the robot in use. Any
robot using any programming language can be integrated
into this system merely by implementing the protocol used
to transfer the positional and image data. In our concrete
example, this separation was used to achieve interoperability
with python2 and python3. Current versions of packages that
are crucial for this project, like OpenCV, no longer support

21

python2. Most modern and probably future python image
detection models are not expected to run with python2. As
the NAOqi API is based on python2, we are coupled to this
version on the controlling side of the robot.

The main loop of our application is as follows: The robot
control module accesses the current image of the upper camera
and sends it to the tracking module. The tracking module runs
a YOLOv8-based object detection algorithm on that image and
applies its tracking logic to the result. Thereafter, either the
box with the new location of the target or an empty result
is transmitted to the robot control module. Then the control
module adjusts the cobot’s movements, updates its inner state
and sends the next frame. It should be noted that new frames
are gathered from the robot while waiting for the tracking
process to complete. This increases the speed with which
images can be processed.

The protocol used for communication between the modules
is based on fixed packet sizes. Images, as well as detection
results are assumed to be of a fixed size. As such, there is
no need for additional delimiters between transmitted packets.
This makes communication relatively simple and less error-
prone.

B. Robot Control Module

The nao-follower.py file provides both the routine for
the Cobot through the run function of the NaoFollower

class and the main function to start the robot control module.
An interface for the tracking module is provided by the
YOLOClient of the interop2.py file. The interfaces to
the NAOqi library are provided in nao.py. In order to inform
the user about the cobot’s current state and state changes,
EventService in evt.py was implemented. In this case
the user is notified about the cobot’s current state through
speech and LEDs around the robot’s eyes.

1) NaoFollower: The NaoFollower is initiated and run by
the main method. Its run function contains the Cobot routine.
It initializes the interfaces of nao.py and interop2.py.
The Cobot is configured to have autonomous life deactivated
[2] and to stand up. Using the YOLOClient interface, it
sends the camera input and retrieves the results of the tracking
module. The result is provided as a YOLOResult instance
and contains a transpose function to map its coordinates
to an origin in the middle of the picture for further use.
Depending on the validity of the result, NaoFollower

either adjusts the Cobot’s head and movement using the
NaoMotionService, or it stops the robot and sends a target
lost event to the EventService. Furthermore, exceptions
and keyboard interrupts are caught, causing both the Cobot
and the routine to stop.

2) YOLOClient and YOLOResult: YOLOClient in
interop2.py is an interface that sends an image to the
tracking module and receives the results. This data is then
packed and converted into a YOLOResult object. The
YOLOResult class is located in the common.py file and
provides the identified bounding box of the target through
the x and y coordinates of its center, as well as the height

and width of the box. Additionally, it offers a function
to transpose coordinates, aligning them with a coordinate
system originating in the center of the image for simplified
calculations later on. This is done by subtracting half of the
respective screen dimension from the position:

td = pd �
fd
2

8d 2 {x, y} (1)

Where:
d = the respective dimension
f = the frame coordinate
p = the coordinate retrieved from the tracking module
t = the transposed coordinate

3) NaoPictureClient: The NaoPictureClient class in
nao.py provides an interface for the ALVideoDeviceService
API [3] of NAOqi. It implements a function to retrieve the
camera image.

4) NaoMotionService: The NaoMotionService class in
nao.py serves as an interface for the ALMotion API [2],
calculating movement directions based on the positional data
of the YOLOResult.

The data of the upper camera angles [4] and the maximum
angles of the two head joints [5] are used.

During initialization, the NAO’s native external collision
protection is enabled. This ensures that our Cobot automat-
ically stops when it detects an obstacle.

The head_adjust function provides calculations for turn-
ing the head towards the target. By employing this method,
the Cobot can track the target autonomously, irrespective of
its own velocity. This is done by minimizing the horizontal
deviation of the subject’s position to the middle of the frame.
Additionally, the top y-position of the bounding box is kept
within the upper half of the picture. If the y-position is equal
to the hight of the frame, the head is moved downwards to
ensure the subject stays in view.

The calculate_speed function adjusts the Cobot’s
forward movement speed. As we expect the bounding box to
grow as the Cobot approaches the target, the size of the box
is used to regulate the speed. This is done by calculating the
area of the bounding box with respect to the area of the frame
itself.

The move function defines the movement configurations of
the Cobot. For the forward movement, the calculated speed is
used. For rotational speed, the calculated speed is multiplied
with the fraction of the current yaw angle with respect to
its maximal possible rotation so that the torso aims to adjust
to the head orientation. Additionally, the EventService is
notified of the action.

5) EventService: The EventService is located in
evt.py. It collects information on the Cobots actions in the
form of events. Through that, it manages the robots state and
its transitions. Classes can subscribe to this service if they
provide functions to call on certain events. Before notifying
the subscribed classes, it filters which events to actually hand
over.

22

This provides an easy way to add new states and events and
reactions in subscribed classes.

6) NaoSpeechService: The NaoSpeechService class in
nao.py is an interface for the ALTextToSpeech API [6]. It
uses a dictionary which provides various sentences for an
event. If the EventService hands over an event through
the corresponding function, the say function picks a random
sentence of the associated category in the dictionary. To
prevent an accumulation of speech calls to the Cobot, the
function checks how much time has passed since the last call
to say. The choice of sentences are further enhanced with
modes to differentiate between characters.

7) NaoLedService: The NaoLedService class in
nao.py is an interface for the ALLeds API [7]. As the
speech service is constrained by time and the need for clear
sentences, the eye LEDs are designed to provide quicker and
more easily interpretable feedback on the current state.

8) PictureClient: The PictureClient is an interface for
receiving pictures from a YOLOClient instance and sending
YOLOResult tracking information. It is used in the system’s
YOLO tracking module and provides easy access to the single
frames sent by the cobot. It also allows for automatic reshaping
of the array to a BRG-coded picture matrix.

The YOLOResults are packed using the python “struct”
package and subsequently transmitted.

C. Tracking Module

Modern object detection systems like YOLO are able to
detect people in various lighting conditions, spaces and pos-
tures. One major challenge is tracking these people reliably
from frame to frame. In order to establish reliable Multi-
Object Tracking (MOT), multiple pre-existing algorithms are
evaluated. Specifically, MOT Accuracy (MOTA), Higher Order
Tracking Accuracy (HOTA) and IDF1 metrics are evaluated to
find the best possible candidate.
The MOTA score

[...] accounts for all object configuration errors made
by the tracker, false positives, misses, mismatches,
over all frames. It is similar to metrics widely used in
other domains (such as the Word Error Rate (W ER),
commonly used in speech recognition) and gives a
very intuitive measure of the tracker’s performance
at keeping accurate trajectories, independent of its
precision in estimating object positions [8].

It enables estimations regarding the consistency of the track-
ing generated by the aforementioned tracking algorithms. As
stated in [9], MOTA is slightly biased towards measuring
detection accuracy rather than association accuracy. As such,
another metric is needed for detecting errors on associations.

In order to better understand how different tracking meth-
ods will contribute to a more stable tracking, we use the
IDF1 score. Reference [10] describes the IDF1 score as “[...]
the ratio of correctly identified detections over the average
number of ground-truth and computed detections”. As already
described by [9], the IDF1 metric is biased towards mea-
suring association accuracy, rather than detection accuracy.

This means that this score, in combination with the MOTA
score mentioned above, gives us a relatively clear picture
which tracking algorithm performs better, and in which way.
According to [9], many scientific papers measuring tracker
performance have often only adopted MOTA scores “[...]
because detection is such an important part of tracking evalu-
ation, and IDF1 isn’t able to adequately measure it”. IDF1
excels at measuring “identification”. In this context, IDF1
identification, as explained in [9], tries to measure and evaluate
the trajectories of objects tracked by the MOT tracker.

Finally, we are using the HOTA score to give us a better idea
of the general performance of the tracker. ”The HOTA is a rela-
tively new metric, as per the description provided by [9], which
states that it ”[...] balances the effect of performing accurate
detection, association, and localization into a single unified
metric for comparing trackers”. Additionally, “HOTA also
incorporates measuring the localisation accuracy of tracking
results which isn’t present in either MOTA or IDF1” [9]. The
localization aspect is especially interesting to us. Reference [9]
defines localization errors as “[...] errors [which] occur when
prDets are not perfectly spatially aligned with gtDets”. In other
words, a single localization is erroneous when a detection in
the set of ground-truth detections (gtDets), or the set of actual
detections in a given frame, does not spatially align with its
matching predicted detection (prDet) location. This means, in
addition to balancing IDF1 and MOTA biases, HOTA allows
one to make assumptions about how well a given tracker will
be able to correctly predict the position of a given identified
object in the next expected frame.

In [11] and [12], it can be seen that SMILETrack, as well
as SparseTrack, consistently achieved the highest scores in
MOTA metrics. This means they are well suited for tracking
scenarios requiring high detection accuracy. UCMCTrack and
Deep-OC-SORT achieve the highest HOTA score in MOT17
and MOT20 evaluations, respectively. This indicates that both
are good choices in tracking scenarios in which a good general
performance across all metrics is favorable. Lastly, UCMC-
Track and Deep-OC-SORT achieve the best IDF1 scores in
MOT17 and MOT20 dataset evaluations.

For our experiments, we conclude that the use of SMILE-
Track, SparseTrack or UCMCTrack would be best suited for
building a tracking algorithm.

As of the time of writing this paper, no easily usable imple-
mentations of any aforementioned algorithms exist. Prototypes
using BoxMot [13] yielded inconclusive results. Due to time
constraints, we had to resort to trackers provided by the YOLO
implementation “ultralytics” [14], which provides out-of-the-
box tracking using either ByteTrack or BoT-SORT. Neither of
both options ranked first in any of the aforementioned tracking
metrics. However, BoT-SORT seems to consistently show
relatively high scores in both MOT17 and MOT20 evaluations.
Especially the consistent results across both evaluations make
it a strong second tracker choice for the purposes described in
this research.

Preliminary tests reveal that the use of the Track-ID from the
aforementioned BoT-SORT module exhibits inaccuracies. In

23

particular, we are seeing the track identifier (TrackID) switch
once tracking is lost for a brief moment. Due to this, an
algorithm which is able to stabilize tracking in case of TrackID
switches is implemented. This algorithm consists of multiple
steps. A YOLOResult can be returned in any step.

The first three steps ensure a near instantaneous result if
the detection result permits it. If no detections are found, an
invalid result is returned. If exactly one person is detected, the
position of this person is returned and tracked in subsequent
frames. In case multiple people are detected and no previous
track-point exists, the person closest to the middle of the image
is tracked. All distances in each preceding and subsequent step
of the algorithm are based on the L2-Norm.

The most important step in the algorithm is the association
of previously tracked detections to new detections with a
different TrackID and nearly equal position. In order to achieve
this, a record of a configurable amount of previously tracked
detections (History), in our case 40 of them, is kept. The Most
Significant Detection (MSD) is the one whose TrackID appears
most frequently in this list. All detections for the current frame
are iterated and the best one is selected. We define a penalty for
the current detection by calculating the detection’s L2-Norm
distance to the average position of the MSD. Positions for all
previous detections are calculated using a weighted average,
grouped by TrackID.

w(i, l) =

(
100 if i = 1

(2� i
l)

6 otherwise
(2)

W =
lX

i=1

w(i, l) (3)

p0 =

Pl
i=1(pi ⇤ w(i, l))

W
8pi 2 {xi, yi} (4)

Where:
W = the combined weight of all points
l = the amount of detections for any given TrackID

pi = the position of the current detection for both x and y
coordinates

Equation (4) shows that recent detections have more in-
fluence on the average position than earlier detections. Ad-
ditionally, the latest detection is given the highest weight of
100. If the detection’s TrackID is already known, an additional
penalty is calculated. The penalty is the sum of the distance
of the current detection to the average of the TrackID position
and the jitter value, which is defined by Equation (5):

j =

����

Pl
i=2(xi�1 � xi)

l � 1

���� (5)

Where:
l = the amount of detections for any given TrackID
x = the x coordinate

The jitter value j is the average of the change of x-
coordinates between frames. A high jitter value indicates

that the subject was either moving too quickly, the position
changed rapidly or the tracking was unstable in general.

If the calculated penalty is higher than 200, the detection
is not used due to the high uncertainty. In that case, if the
previously tracked TrackID is found in the list of detections,
this TrackID is used for the current frame.

As a last resort, the box with the lowest distance to the
previously tracked box is used. Because this can lead to a
high amount of TrackID switching in cases where multiple
people are in view and close to the previous detection, an
invalid YOLOResult is returned as long as the new tracking
candidate was tracked in less than 10 previous frames. This
leads to the robot stopping if it is unable to accurately track
any given candidate due to multiple people being in view.

Tracking is done using the mechanisms defined
in yolo-client.py. The main script uses a
PictureClient to receive pictures from the Nao
and send results to it. The function find_best_option

implements the detection selection as described above.
The get_avg_position function returns a map of
average positions and jitter for all detections found in the
detection history using the aforementioned calculation. The
get_most_sig_det function returns the MSD based on
the history. Lastly, the L2-Distance is calculated using the
dist function, which is then used by find_lowest_dist
to find the lowest distance to a given point for all detections
supplied.

To aid human operators in understanding the choices made
by the tracker, we added a visualization of the currently pro-
cessed frames. Frames are annotated with symbols generated
through tracking data. All detected people are identified by a
gray bounding box. The tracked person itself is highlighted
through a green bounding box. The distances of all people to
the previously tracked positions are made visible by orange
lines between the tracked point and the center of the corre-
sponding detections. A light red circle shows the uncertainty
threshold around the MSD. An orange circle indicates the
uncertainty value around the currently tracked point. Finally,
average positions and their corresponding jitter are indicated
by dots with varying color, where blue dots mean a high jitter,
green dots indicate a low jitter value. The TrackID and YOLO
confidence values are shown as text in the center of the box
as can be seen in Fig. 1.

Fig. 1. An example of the tracking visualization.

24

III. EXPERIMENTS

To test the implementation of the system described above,
we used five distinct test cases:

A. Straight-line walking

The robot should be able to track the subject when simply
walking in a straight line without obstructions. This test is
the most basic situation. The robot was accurately able to
follow the person based on the tracking module’s positions.
The instability induced by the robot’s movements had no
negative effects on the stability of the tracking. Because of
the mechanism described in the “Tracking Module” subsection
(II-C), the robot would have followed the person in view in
any case. As such, this experiment only shows how well the
tracker is able to handle the unstable camera images.

Fig. 2. The NAOv6 robot walks towards a target in a straight line.

B. Curve tracking

The robot calculates the turning radius based on the devi-
ation of the head angle from its normal position. As such, a
crucial test is whether the body actually follows the head and
if the head is able to accurately follow the tracked person.
The tracker needs to be able to track the person even if the
background is moving and changing rapidly. In our case, this
worked as expected.

Fig. 3. The NAOv6 robot tracks the subjects movement in curves and adjusts
its course accordingly.

C. Tracking with multiple detections

In cases where the tracker detects multiple people, the
currently tracked person needs to remain the MSD. This was
tested by placing the subject in front of two other people and
walking in front of them in a half-circle. The tracker is able
to accurately track the subject. The robot correctly kept the
person in view and adjusted its body and turning radius as
expected.

Fig. 4. The robot tracks the subject while multiple other people are in view.

D. Tracking and following with varying TrackIDs

The subject is placed in a crowded environment. The robot
then needs to accurately predict the subject’s path, even if
the subject’s TrackID changes. No abnormalities could be
provoked during this test. The robot was able to correctly
detect the TrackID switch and continued following the subject
as desired.

Fig. 5. The robot is able to maintain a stable tracking, even though the
TrackID changes from 3 to 18.

E. Tracking and following in crowded environments

The subject was placed in a crowd of people. Due to the
amount of people on our team, we were only able to test this
scenario using three individual people. The algorithm shows
deficits in trying to accurately follow the subject when it is
overlapped by other detections. Since the algorithm is largely
based on average positions, this problem was expected. We
were unable to find a scenario in which this test case worked
reliably. [1] An example of this problem happening can be
seen in Fig. 6.

25

Fig. 6. The tracker shows deficits when the subject can not be reliably tracked
in multiple subsequent frames while being overlapped by other people. The
correct subject is TrackID 34.

IV. CONCLUSION

In summary, the findings in the course of this work support
our initial hypothesis. A system able to detect and reliably
follow human operators was implemented and successfully
tested on a NAOv6 robot. The use of a pre-trained YOLOv8
object detection model significantly sped up the development
process. Using data generated by the model, we are able
to differentiate between object classes and effectively filter
out unwanted object types. In order to reliably track subjects
from frame to frame, we used the tracking algorithm ”BoT-
SORT”. BoT-SORT is able to correctly identify the subject
of a previous frame in most cases. However, in some specific
cases, another tracking layer was needed. We implemented
a deterministic decision-making algorithm, which is able to
detect switches between TrackIDs. This is done by keeping
a history of all previously detected subject positions and then
calculating a weigthed average for this history. Using a mostly
distance-based approach, we are able to correctly identify
tracking errors and remediate them effectively.

In order to minimize the data processing duration, it was
decided to transfer the computation to a remote machine.
Motion calculation is done on this remote host, which then
generates and sends commands to the robot. We combined
the results of the tracking algorithm with the robot’s motion
service. One challenge was making the robot move in the
target direction. As the NAO does not feature in-built camera-
stabilization, the head movement speed and angle are adjusted
to keep the target in focus while moving.

In-built sonar sensors are used for keeping distance between
the NAO and obstacles. This ensures the robot will stop
moving if it gets too close to any object. This safety system
works even in circumstances where the remote controller gets
disconnected due to latency or unforeseen errors. Additionally,
movement speed decreases when the target’s boundary box
increases in size.

We also designed the NaoSpeechService to let the
robot act more humanly. It can differentiate between situations
and adapt its phrases.

The robot solved most of our test cases without any is-
sues. However, we saw deficits when operating in crowded
environments. The robot is unable to correctly identify the
subject in cases where it was obstructed for more than a few
frames at a time. Additional research should be done in order
to investigate how an even more stable subject tracking could
be achieved. Another major unsolved problem is maneuvering
around hazards and obstacles. More work needs to be done
on optics-only path planning for this system to be used in
real-world environments.

REFERENCES
[1] SoftBank Robotics Europe. “Key concepts.” (n.d.), [Online].

Available: http://doc.aldebaran.com/2-
8/dev/naoqi/index.html%5C#naoqi-overview (visited on 02/09/2024).

[2] SoftBank Robotics Europe. “Almotion.” (n.d.), [Online]. Available:
http://doc.aldebaran.com/2-8/naoqi/motion/almotion.html (visited on
02/09/2024).

[3] SoftBank Robotics Europe. “Alvideodevice.” (n.d.), [Online].
Available:
http://doc.aldebaran.com/2-8/naoqi/vision/alvideodevice.html (visited
on 02/09/2024).

[4] SoftBank Robotics Europe. “Nao- video camera.” (n.d.), [Online].
Available:
http://doc.aldebaran.com/2-1/family/robots/video robot.html (visited
on 02/09/2024).

[5] SoftBank Robotics Europe. “Joints.” (n.d.), [Online]. Available:
http://doc.aldebaran.com/2-8/family/nao technical/joints naov6.html
(visited on 02/09/2024).

[6] SoftBank Robotics Europe. “Altexttospeech api.” (n.d.), [Online].
Available:
http://doc.aldebaran.com/2-8/naoqi/audio/altexttospeech-api.html
(visited on 02/09/2024).

[7] SoftBank Robotics Europe. “Alleds.” (n.d.), [Online]. Available:
http://doc.aldebaran.com/2-8/naoqi/sensors/alleds.html (visited on
02/09/2024).

[8] K. Bernardin, A. Elbs, and R. Stiefelhagen. “Multiple object tracking
performance metrics and evaluation in a smart room environment.”
(n.d.), [Online]. Available: https://cvhci.anthropomatik.kit.edu/
⇠stiefel/papers/ECCV2006WorkshopCameraReady.pdf (visited on
02/09/2024).

[9] J. Luiten, A. Ošep, P. Dendorfer, et al., “Hota: A higher order metric
for evaluating multi-object tracking,” International Journal of

Computer Vision, vol. 129, no. 2, pp. 548–578, Oct. 2020, ISSN:
1573-1405. DOI: 10.1007/s11263-020-01375-2. [Online]. Available:
http://dx.doi.org/10.1007/s11263-020-01375-2.

[10] R. Henschel, T. von Marcard, and B. Rosenhahn, “Simultaneous
identification and tracking of multiple people using video and imus,”
n.d. [Online]. Available:
https://www.tnt.uni-hannover.de/papers/data/1359/02.pdf.

[11] PapersWithCode. “Multi-Object Tracking on MOT20.” (n.d.),
[Online]. Available:
https://paperswithcode.com/sota/multi-object-tracking-on-mot20-1
(visited on 02/09/2024).

[12] PapersWithCode. “Multi-Object Tracking on MOT17.” (n.d.),
[Online]. Available:
https://paperswithcode.com/sota/multi-object-tracking-on-mot17
(visited on 02/09/2024).

[13] M. Broström, BoxMOT: pluggable SOTA tracking modules for object

detection, segmentation and pose estimation models, version 10.0.43,
n.d. DOI: https://zenodo.org/record/7629840. [Online]. Available:
https://github.com/mikel-brostrom/yolo tracking.

[14] G. Jocher, A. Chaurasia, and J. Qiu, Ultralytics YOLO, version 8.0.0,
Jan. 2023. [Online]. Available:
https://github.com/ultralytics/ultralytics.

26

http://doc.aldebaran.com/2-8/dev/naoqi/index.html%5C#naoqi-overview
http://doc.aldebaran.com/2-8/dev/naoqi/index.html%5C#naoqi-overview
http://doc.aldebaran.com/2-8/naoqi/motion/almotion.html
http://doc.aldebaran.com/2-8/naoqi/vision/alvideodevice.html
http://doc.aldebaran.com/2-1/family/robots/video_robot.html
http://doc.aldebaran.com/2-8/family/nao_technical/joints_naov6.html
http://doc.aldebaran.com/2-8/naoqi/audio/altexttospeech-api.html
http://doc.aldebaran.com/2-8/naoqi/sensors/alleds.html
https://cvhci.anthropomatik.kit.edu/~stiefel/papers/ECCV2006WorkshopCameraReady.pdf
https://cvhci.anthropomatik.kit.edu/~stiefel/papers/ECCV2006WorkshopCameraReady.pdf
https://doi.org/10.1007/s11263-020-01375-2
http://dx.doi.org/10.1007/s11263-020-01375-2
https://www.tnt.uni-hannover.de/papers/data/1359/02.pdf
https://paperswithcode.com/sota/multi-object-tracking-on-mot20-1
https://paperswithcode.com/sota/multi-object-tracking-on-mot17
https://doi.org/https://zenodo.org/record/7629840
https://github.com/mikel-brostrom/yolo_tracking
https://github.com/ultralytics/ultralytics

Documentation for RcpU (Robot that can play UNO)

Lukas Drescher Aruzhan Turashbayeva Tomiris Ismaganbetova
Niklas Demel Mekhmetetka Turan Tim Wagner

February 9, 2024

Abstract

In an era of technological advancements, the impact of robots has significantly increased over

the last decade. From robots that can mix you drinks to robots that can construct complex

machines, they become important to a lot of industries. This project introduces an application in

the realm of card games, specifically focusing on the Niryo Ned 2 [1] robot to autonomously play

the popular card game UNO against a human in real time.

1 State of the art

Imagine you want to play UNO, but your friends and family are unavailable at the moment. Now
let’s consider a robot that allows you to enjoy UNO cards every day, even if you find yourself feeling
completely alone. While you could purchase UNO as a computer game from Steam [2] and play it
in single-player mode, we believe that’s not the ”real” UNO experience. The true joy lies in holding
physical UNO cards in your hands and having someone to interact with you or even sharing a few
curse words.

We built something for this purpose, because we got the project idea to build a robot that can play
UNO cards with another human. In this way, a single person can engage in the game entirely on their
own, without the need for others.

2 Approach

At first, we attempted to find a solution for detecting UNO cards. There are several approaches
to achieve this, both with and without machine learning. Initially, we prioritized the non-machine
learning approach to save time and ensure simplicity and clarity for the entire team. However, due to
some challenges with our initial method, we used a neural network. We will focus on that later in this
document.

2.1 Hardware

We requested some hardware in order to accomplish RcpU and its use cases. Our requirements included
a robotic arm capable of grabbing cards and move them to another position, as well as a camera for
detecting the robot’s hand of cards. Professor Groth provided us with a Niryo Ned 2 robotic arm and a
Logitech webcam. In addition to these components, we had to consider some additional requirements.
Like what do we need in order to let the robot grab a card and what material should be used to
improve the conditions of the environment? Which is why we brought some of our own materials - a
black blanket to improve the card detection, a deck of UNO cards, and some rubber bands.

Why rubber bands, you may ask? Well, the robot’s gripper has di�culties when attempting to
grab a card due to a small gap when it’s fully closed. To fix this, we added rubber bands to the gripper,
allowing it to securely hold the cards.

1 27

2.2 UNO card detection with OpenCV

We searched for some approaches for detecting cards using OpenCV, and we discovered a solution that
works with edge detection and color thresholds. UNO cards typically have distinct shapes and edges.
We applied a contour detection algorithm to identify the outer boundaries of each card within the
robot’s field of view. To enhance contrast and simplify card recognition, we applied image thresholding
techniques. This process allowed us to extract card features, resulting in more accurate subsequent
processing. UNO cards feature specific patterns and symbols. For their recognition, we utilized
template matching techniques to compare the extracted features with predefined templates, helping
us in identifying card types and values.

2.3 Color detection with OpenCV

The robot’s task is to place a card on the stack, ensuring it matches the previous card. Players have
two options for finding a card that fits: either it should have the same color or a matching number.
Let’s consider the color first.

In the classic UNO game, there are four colors: Blue, Green, Red, and Yellow. While single
pixels in images are typically represented in RGB (Red, Green, Blue), we found that using the HSV
(Hue, Saturation, Value) color model is more e�cient for our color detection logic. Here’s what each
component represents: Hue refers to the color itself, Saturation indicates the intensity of the color
and Value represents the brightness. The HSV model allows us to define color ranges e↵ectively. To
detect a specific color, we define these ranges within the HSV color space. The program then looks at
each pixel, checking for a significant presence of the desired color. Additionally, we’ve defined a mask
that determines whether the sum of pixels for a particular color exceeds a given threshold (which is
adjustable). If the sum is higher than the given threshold, the program identifies and returns the color.
If no defined color presence exceeds the threshold, the program simply reports “not recognized.”

However, it’s worth noting that we adopted a di↵erent approach in the final version of our project.

2.3.1 Final Approach: ColorMath

ColorMath is a Python module that implements a wide range of color operations, including color
detection. In our approach, we first defined the four di↵erent UNO colors to compare them with a
given color.

Our program iterates through all four UNO colors and converts them from RGB to Lab Color Space.
Lab is more perceptually uniform compared to RGB, making it better suited for color comparison as it
aligns more closely with human vision. After this conversion, the program calculates the color di↵erence
using the CIEDE2000 formula, which serves as the corresponding color di↵erence metric. Finally, the
program returns the color that has the lowest di↵erence with the card color to be determined.

Now, let’s address how we detect the card number.

2.4 Card number detection with YOLOv8

Due to challenges in detecting the numbers on UNO cards using OpenCV, we used to train a neural
network for this purpose. Our approach involved a pretrained YOLOv8 [3] model as a base and adjust
it specifically for UNO card detection with transfer learning. YOLOv8 is user-friendly and easy to use,
making it suitable for a wide range of object detection tasks, including UNO cards. We created a lot
of UNO card images and labeled them to train our model. Notably, this labeling process consumed a
significant amount of our time, but it was crucial for achieving a well-performing model.

2 28

2.5 Creating and collecting training data

We created our own dataset with our own images and combined them with an existing dataset for
subsequent training. To create our custom dataset, we used an online tool called CVAT [4]. CVAT
allows users to label images and export them in various formats, including YOLO formats, which
suited our needs.

Of course, labeling requires images. Tim decided to capture a numerous amount of UNO card
images using his phone. After that, we imported these images into the CVAT tool and labeled them.

Figure 1: Labeling our own UNO card images in CVAT

However, due to the need for more training data, we looked for an additional image source. For-
tunately, we discovered an UNO cards dataset [5] on Roboflow [6]. We downloaded this dataset and
initiated the training process, combining images from both Tim’s phone and Roboflow.

3 29

2.6 Training

We initially trained the model using UNO card images on a local computer for three epochs. However,
we discovered that this wasn’t enough, as the model’s performance on real UNO cards was not that
good. Metrics such as precision [7] and mAP50 [8] indicated that there was more potential with longer
training.

As a result, we decided to retrain the model, this time for 200 epochs. Because the first training
on a local computer was very slow, we used the JupyterHub hosted by the Institute for Information
Systems at Hof University (iisys) to speed up the training process. Once the second training cycle was
finished, we tested the updated model with real UNO cards and observed significant improvement.

Figure 2: YOLOv8 model performance comparison

On the left side, you can see a comparison between the model trained for 3 epochs and the model
trained for 200 epochs on the right side. The longer-trained model successfully detects all 7 cards
in the image, whereas the previous model only identified 5 cards and had several problems, such as
mistaking Tim’s hand for a ‘4’.

2.7 Combination of OpenCV and YOLOv8

We achieved a model with a good performance, but it was limited to detecting the numbers on the
cards. However, what about the color? To address this, we made slight adjustments to the color
detection component of the existing Python project, enabling it to work seamlessly together with the
trained model.

Here’s how it works: When the model identifies numbers in a given image, it produces an array of
bounding boxes, each bounding box encapsulating a single number. To also determine the color, our
Python program extracts the color from a pixel located at the center-right boundary of each bounding
box. We specifically chose this position because it minimizes the likelihood of including a pixel from
the number itself. This approach allows us to safely detect the color of a card using the existing color
detection logic.

4 30

2.8 System Design

The overall system is designed as a facade, structured into di↵erent subsystems to manage complexity.
The system consists of three major subsystems: The Game Logic system implements the rules and
mechanics of a typical UNO game. The Card Detection system is responsible for identifying and
tracking cards and also updating the game statistics to enable the robot to play the correct cards. The
Robotic Arm system’s role is to manipulate cards and moving them from one position to another.

2.8.1 Game Logic

Let’s take a quick look at the rules of UNO. To play properly, you’ll need at least two players. The
game begins with one player, and then the next player takes their turn. The game is over when a
player has played all their cards.

Here’s how the game flow works: The game requests the active UNO card from the card detection
system. Then, the card detection system takes an image and converts it into an array of UNO cards.
Next, the game determines the next player and prompts them to take their turn. After the player
completes their turn, the game checks if they have won. If so, it proceeds to the cleanup phase.
Otherwise, it switches to the next player. To di↵erentiate between human and robot players, we added
an interface for a “generic player.” Both human and robot players can implement their own logic within
this interface. The human player’s turn automatically ends after a specified time, but if the system
detects a change in the main stack, their turn also finishes. Meanwhile, the robot player calculates the
next possible card to play and coordinates the robot’s movements.

Figure 3: Workflow of the game logic

5 31

2.8.2 Card detection

The goal of card detection is to recognize both the top card on the main stack and the robot’s hand
of cards. This information is crucial for determining whether the robot can play a card and, more
specifically, which card it should play.

To achieve this task, the card detection system provides a function that takes the requested camera
index as input and returns the detected UNO cards. If you want to predict the cards on the robot’s
hand, you’ll need the camera pointed at the cards. Otherwise, it will predict the cards from the main
stack. The camera detection process automatically maps the recognized cards to their corresponding
positions in the image. For example, a bottom-left yellow ‘4’ card might be mapped to position 1, and
so on.

2.8.3 Control of the robotic arm

We need to verify whether the connection to the robot remains active. Additionally, we desire addi-
tional functionality when a method of the robot is called. To address this, Lukas designed a proxy for
the robot.

The proxy serves two purposes: Minimizing requests, so it reduces the direct requests made to the
robot itself and permission checks, so the proxy determines whether a specific move is allowed or not.
Its primary objective is to control the robot and execute physical tasks, such as grabbing the card at
position 2 and moving it to the main stack. If no connection exists, the operation will fail.

Figure 4: Class diagram of RobotProxy

6 32

3 Experiments

Throughout the development process of RcpU, we explored various approaches related to the position-
ing of items such as the robot, the card holder, the camera, and the overall structure of the robot’s
environment.

3.1 Picking up the cards

Our initial concept involved equipping the robot with a suction cup. The idea was that when the robot
detected a card, it would position itself above it and then lower its arm until the card attaches to the
suction cup. However, we encountered a challenge with this approach: While picking up the card
using the suction cup could be implemented relatively quickly, releasing the card would result into new
problems and significant adjustments. Consequently, we switched to an alternative solution: Utilizing
the robot’s gripper and attaching rubber bands to enhance its e�ciency in grabbing the cards.

3.2 Structuring the environment for the robot

In the project’s beginning, we encountered challenges with card detection due to changing light condi-
tions. Our OpenCV-based detection struggled with changing backgrounds and light reflections, forcing
us to explore potential solutions.

The most successful approach involved using a black blanket provided by Niklas. By placing
the cards on this blanket, they became more distinct from the background. The OpenCV detection
algorithm could then more precisely delimit the cards, benefiting from the high contrast between the
black blanket and the card colors. Ultimately, this improved edge detection. Interestingly, as our
project evolved, we found that the black blanket became unnecessary. The trained YOLOv8 model
now accurately detects all types of UNO cards, regardless of the background.

4 Conclusion

Our team gained valuable insights into controlling a robot using Python, training neural networks
through transfer learning, and implementing color detection. We e↵ectively divided our project into
smaller components, with each team member contributing to specific tasks. For instance, Niklas and
Aruzhan took care about color detection, Lukas focused on robot movement, and Tim trained the
neural network to enable the robot’s visual recognition of UNO cards.

This project served as a trial for us, as all team members are in higher semesters and have expe-
rience in courses such as Object-Oriented Programming, Artificial Intelligence, and Applied Machine
Learning. Combining our diverse skills into a single project was a rewarding experience!

7 33

References

[1] Niryo Ned2 User Manual: https://docs.niryo.com/product/ned2/v1.0.0/en/index.html

[2] Steam link to UNO: https://store.steampowered.com/app/470220/UNO/

[3] You Only Look Once: https://docs.ultralytics.com/

[4] Computer Vision Annotation Tool: https://www.cvat.ai/

[5] Link to UNO cards dataset: https://public.roboflow.com/object-detection/uno-cards

[6] Roboflow is a great source for datasets, tools, tutorials etc. for machine learning

[7] The accuracy of the detected objects, indicating how many detections were correct

[8] The mean average precision, a measure of the model’s accuracy
considering only the ”easy” detections

[9] The smallest pretrained model, trained with the COCO dataset

8 34

https://docs.niryo.com/product/ned2/v1.0.0/en/index.html
https://store.steampowered.com/app/470220/UNO/
https://docs.ultralytics.com/
https://www.cvat.ai/
https://public.roboflow.com/object-detection/uno-cards

Documentation Vovracar

Kevin Mündel
Mobile Computing

Moritz Süß
Mobile Computing

Patrick Alves
Mobile Computing

Abstract — This is a documentation of our project
Vovracar. That contains the birth of the idea, the materials and
the whole process.

I. INTRODUCTION

At the beginning we got presented with some interesting
ideas for our project. „Robopets“ was one of them. We
wanted to set up some basic applications, so other groups
could build upon our ideas. The basic things a Robopet has
to do is to react to a users voice and follow its orders. To
follow its rules, it has to move and the easiest thing to move
is a model car. But this wasn’t enough for us. We wanted to
do something exciting. We had some prior experiences with
VR applications, so it didn’t take long for us to finalize our
thoughts. We planned to create a model car that is voice-
controlled and equipped with cameras to stream the video to
a VR headset. That was the birth of Vovracar.

II. THE BEGINNING

A. Idea
First of all we had to define some goals and functions we

want to deliver. We aimed to build an application which can
control a racing car through voice commands. The focus
would be on simple commands such as „forward“, „left/
right“ and more. The car’s speed should be controllable with
voice inputs.

In addition we wanted to use the existing camera on the
race-car to stream the video to a VR headset. This enables
the user to make better and more reasonable inputs. We
would use the VR headset’s microphone to receive the voice
commands.

These two functions were our key functions. If we had
some time left, we planned to use sensors, which assist
controlling the car and reducing the number of collisions and
accidents. Depending on the required distance between the
car and the user, there may have also been a need to create a
race track. With the already mentioned sensors we could
have establish checkpoints the user has to drive through.

B. Materials
As already mentioned

before, we needed a model
car and we got provided
with a race-car. This was a
MuSHR race-car, which
a l ready had a camera
installed. There is a Nvidia
Jetson Xavier NX built in
which is used as a built in
PC. There are python scripts
on that PC which were used
for an app before. We were allowed to use these scripts. We
decided to use the Meta Quest 2 VR headset because we had

some work experiences with it. We were also given a
Windows PC to work with because we have reached some
understanding during working
with Unity and the Meta Quest
2. It was required to use a
Windows PC if we wanted to
use the Oculus Integration SDK
and the Oculus app. The usage
of sensors was a goal we set up,
if we get finished way faster,
but that was optimistic.

C. Concept
Before getting to work we had to decide on some

concepts and design decisions. There were two ways to
control the race-car, either dynamic or static. Controlling the
car in a static way would mean that the user needs exact
information about the distance and direction the car needs to
drive. That’s why we decided to use dynamic controls. That
means the car uses one command and executes that
command until „stop“ or another command is put in.

Another thing we had to think about is what application
do we want to produce. We had two choices. We could make
a web application or a unity application. After some research
we decided to make a unity application because we already
had some experiences working with a VR headset in unity.
It’s easier to create an Android application in Unity, which is
getting launched on the VR headset. We need Unity to
translate the input by the VR headset and send it in a way to
the race-car, so the python scripts can be used. This has to
work the other way too because the camera can be controlled
through a python script which needs to send the video to the
Unity application. The video needs to be made usable for the
Quest 2, there..

III. DEVELOPMENT

A. First Approach
Our initial plan was the installation of ROS. To do that

we had to install Docker and make some initial set up. We
needed a Nvidia graphics driver to be able to run ROS on the
system. Unfortunately, this driver was not available for
macOS, so we had to find another solution. During that time
we started to realize how valuable the existing python scripts
are and we cancelled the idea of using ROS from scratch.
After failing the first approach we decided on testing the
existing python scripts.

35

B. Testing the python scripts

We had a lot of scripts on the race-car and it took some
time to get through them. We found two scripts which were
usable for us. The first one was named „car.py“ and the
second one was called „carServer.py“. These scripts contain
all the controls for the race car and got used in an app
developed by another student. With the first script we were
able to test the controls via the command line, while with
the ,,carServer.py,, script the controls were controllable via
the API endpoints.

We encountered two problems while testing the scripts.
The car didn’t react to any input we made, but after
changing some ports we were able to give commands via
console. The other problem we had to solve is the camera
stream. Firstly, we tested the camera functionality in the
browser which didn’t work at the beginning. After some bug
fixing we got the video, but only in form of pictures and not
as a video. We had to rewrite the script to get a video
stream. That worked and we could get the video stream on
our MacBooks.

C. Meta Quest 2
After checking the scripts, we wanted to put all the pieces

together. But we didn’t expect the following problems. The
racecar has a Linux operating system and we wanted to
install the Oculus SDK onto the racecar. This didn’t work out
because it was only available for Windows, but for MacOS it
still had some problems.

We skipped testing the VR headset for now and split
ourselves in two groups. We split the following tasks into
two parts. The first task was to adjust the python scripts to be
used by the Unity application and the second task was to set
up a Unity project and do the basic implementations to use
the VR headset in our project.

D. First problems and challenges
At this point we got access to a Windows PC because

working with Unity on our MacBooks didn’t seem to work
without problems. We wanted to install the newest Nvidia
graphics driver on the PC to be able to use SteamVR, which
would get us access to the Meta Quest 2.

We also changed the camera functions on the Flask
server. This had to be done because the functions only sent
pictures, but no video. Setting up the Unity project went
according to our plans and we could already do changes to
the Unity script. This enabled us to use the camera and
speech recognition.

But the next problems appeared. After installing the
Oculus Integration SDK we got the info that it was
deprecated since a few months. To use the Meta Quest 2 in
combination with Unity we had to put it into developer
mode. For this, we installed the Meta Quest App on a
smartphone to connect it with the Meta Quest 2 via
Bluetooth and put the headset into developer mode. We also
had to use our own Meta account on the Quest 2 for this.
This worked after deleting the existing accounts on the Meta
Quest 2. On the PC, we installed the Meta Quest Developer
Hub with which we could launch apps on the Meta Quest 2.

Now that we had installed the necessary software, we
wanted to display the camera stream from the car in our
Unity project. To do this, we tried to display the stream in
our app, which we could retrieve using a get request via the
API. Our first approach was to convert the video stream into
a byte array, but this didn't work at first.

At this point in time we thought about scrapping the VR
component of our project because it seemed like too much of
a task to make it work.

E. Access to video stream finished
But after a short replanning we changed our approach.

Firstly we completely set up our unity project in the most
basic way. We didn’t want to run into any problems we
weren’t responsible for.

We then checked the way to connect to the racecar and
using its scripts again. We also confirmed our suspicion that
we had a little setup problem. If we wanted to start the
scripts on the racecar through our application, we would
have needed a SSH connection to start the scripts or
something similar. Because that wasn’t that important, we
decided to work on voice commands and camera stream
before giving this more attention.

The camera stream was accessible through HTTP
requests which worked just fine when accessing the racecar
from our MacBook. But we had difficulties setting it up in
unity. After some testing and debugging we managed to
make it work.

With the help of a MJPEG stream decoder, which we
found on GitHub, we could stream the camera from the
racecar to the unity project. This decoder let us take the
video-stream and converted it into 2D Texture. We set up the
plane as a child of the camera, so whenever the user moves
his head he would always see the screen in front of him.

We created a Render
Material and selected
the standard Shader at
first, which didn’t work
until we found out that
the correct Shader was
the Oculus/Texture2D
Blit. After that, we
added th i s Render
Material to our Mesh
Renderer on our plane
object. We added the
MJPEG stream decoder
to the parent object

which contains our plane. This stream decoder streams the
camera from the race-car to our video texture.

F. Voice Control
With the first task completed we shifted our attention to

the voice control part. At first we tried a keyword recognizer
from Unity's own Windows.Speech library. With this
method, however, no POST requests were sent and we
thought that this was due to the microphone. Therefore, we
used Unity's microphone interface to get access to the
microphone of the VR goggles. After the microphone is
started, it should record for ten seconds. This recording
should then be converted to a byte array and sent to Wit.ai.

But first we had to set up Wit.ai which is a NLP model
from Meta that can process speech. On the Wit.ai website we
created an app called vovracar_speech and set the visibility
to „open“. In this Wit-app we defined a few utterances.
Based on these we defined appropriate entities and intents.

36

Entities are key terms or concepts that are to be identified
in the texts entered by the user. They represent the important
information that is to be extracted from the user input. In our
case, the entities contain keywords such as "start" or "stop",
i.e. the commands for controlling the car. Intents represent
the intention or purpose behind the user input. They describe
what the user wants to achieve with their input. By
combining entities and intents, a NLP model can understand
what the user wants to say and which actions should be
executed based on this. When an input is sent to Wit.ai, it is
checked for the keywords and a response is sent back in
JSON format. This response contains the respective entities
that were found in the voice input.

The Meta Voice SDK,
which is included in the
Meta All-in-One SDK, has
already provided us with
scripts for using Wit.ai.
Wit.ai first had to be
configured in Unity, for
example the personal
server access token of our
Wit-app had to be entered
in order to gain access to
the NLP model. To be able
to receive responses from
Wit.ai, an App Voice
Experience is required as a
game object. This contains

the Wit Configuration,
which is started when the Unity app is opened via a script
"WitActivation.cs" created by ourselves.

Since we still had no access to
our microphone, we tried to use
the LipSync demo included in
the Meta Voice SDK. This
allowed us to check if Unity
could get access to the Meta
Quest microphone at all. When it
worked in this demo project from
Meta, we hoped to be able to
implement it in our project as
well. Because that didn't work
either, we planned to use a self-
defined speech-to-text script
instead of text verification with
Wit.ai. This was to convert the
audio input from the microphone
into text, which we could then
check for the keywords.

After this didn't work either, we
found out through a YouTube

tutorial that the Meta Voice SDK automatically uses the
correct microphone and that our error must lie elsewhere. It
turned out that we were not using Wit.ai correctly. To handle
the requests correctly, we needed response matchers in our
Unity project to provide us with the responses from Wit.ai.

This responses are then passed to our "HandleWit.cs"
script or its "handleWit" method. The method checks the
passed response for its value and then executes the
corresponding POST request within a coroutine to the Flask
server. These POST requests can be used to control the car's
API endpoints, which influence the motor and wheels.

G. Further improvements
Now that the app was basically working, we wanted to

implement further functionalities. On the one hand, we
wanted to be able to specify the angles for steering to the left
or right and the desired driving speed as a number in the
respective voice commands. Secondly, we wanted our car to
be able to drive certain shapes such as circles or a figure of
eight using voice commands.

However, processing the angle or speed turned out to be
difficult, as the handleWit method only ever receives one
value at a time. As the number is an additional value
alongside the direction, for example, it cannot be processed
in the same interation of the handleWit method and therefore
cannot be passed in the POST request. Instead of using
request handlers, we tried to use utterance handlers in order
to be able to process not only the value, but also the entire
language input including the number.

In the end, the utterance handler worked, but we had to
create significantly more objects in Unity and the transfer of
values still didn't work for unknown reasons. As our basic
implementation had also stopped working properly at this
point, we stopped developing the additional functionalities.

IV. INSTRUCTIONS
First of all the car must be started. An SSH connection is

used to access the car. The script can also be started on the
car, in which case a screen, mouse and keyboard must be
connected. When starting the vovracar.py script via the
terminal, it is possible that the port 5000 on which the script
will run must first be cleared. This will be indicated in a
message in the terminal. Clearing the port (in our case 5000)
is done with the command "lsof -i:[Port]". The application
running on the port that is displayed must then be terminated
with "kill [PID]". The script can then be executed with
"python vovracar.py" in the "Desktop/Vovracar" directory.

If the app is to be started on the Meta Quest 2 via the PC,
the Meta Quest Developer Hub is required on the PC. You
must log in to the Meta Quest Developer Hub with a Unity
Developer account, which is also used to log in to the VR
goggles and the Meta Quest smartphone app. With the Meta
Quest smartphone app, the VR glasses must be set to
developer mode so that apps can be installed on them via
USB from the PC.

37

If no APK file of the Unity project exists yet, it can be
built under File / Build Settings in Unity. Make sure that the
app is created for Android, that "Use Player Settings" is
selected for Texture Compression, that the correct device is
selected and that the Compression Method is set to "LZ4".
The APK file created must be added as an app in the Device
Manager of the Meta Quest Developer Hub. Then the app
can be launched from there.

If there is already an APK file on the Meta Quest 2, it can
be started in the menu under Library. To find the file easier in
the library, you can filter for "unknown sources". It needs to
be ensured that the Meta Quest 2 as well as the Ubuntu
server on the car are in the same network. Otherwise it’s not
possible to communicate with the Flask server.

The voice commands "left", "right", "forward",
"backward", "start" and "stop" are available for controlling
the car. "Left", "right" and "forward" change the angle of the
front axle, while "start" and "backward" move the car
forward and backward respectively. "Stop" ends all current
actions and brings the car to a standstill.

V. TESTING
The first tests were for the video stream. These were

easily done by checking wether we get a video or not. At one
point we just got one picture, but this problem was easily
fixed.

The tests regarding the voice control were surprising.
First, we could only send one POST request. Every other
command didn’t work. After adjusting the code a bit we
could make more POST requests.

During that period we saw that the servomotor wasn’t
well assembled. We had to be careful with the angles of the
wheels.

Then we wanted to make the video on the next day. But
we encountered the same problems again. The car couldn’t
receive any requests and our adjustments could only result in
getting one post request per test run.

On the following day we tried our working application
again and it worked. When we tried making the video, we
found that one of the cables which was connected to one of
the batteries had loose contact. And then we encountered the
problems from before again.

After sending the post requests from another device, it
seemed to be a problem with the Meta Quest 2 because the
requests being sent from our MacBooks worked just fine.
This is an assumption and we can’t really prove it.

VI. PROBLEMS
There could be problems regarding the IP address. If the

car doesn’t connect to the application, you’ll probably have
to change the IP address in the Unity script.

There may also be connection problems between the car
and Meta Quest 2, especially when there is a lot of network
traffic. The exact cause of this is unknown, but it is most
likely a network problem.

Another possible problem could be the Meta Quest 2
itself. After sending the post requests from another device we
made the assumption that the VR Headset has problems
regarding voice input or connection.

Voice input should be in English, commands in other
languages will most likely not be processed correctly by

Wit.ai. In addition, problems can occur with unclear voice
commands.

It must be ensured that the microphone of the Meta Quest
2 is not muted and that the app is allowed access to the
microphone.

VII. FUTURE PROJECTS
We made a pretty basic application, so improving the

application in any way would be ideal. It doesn’t have a UI.
Displays for speed and battery life would be very helpful. A
warning pop up when driving too far away form the user
would be a good addition.

The voice commands could be trained more and new
commands could be added. Our commands are set to have
default values, so there could be improvements, which could
led to the user being able to make specific left and right turns
or decreasing and increasing the speed while driving.

VIII. LESSONS LEARNED
At the start of the project we thought that this would be

way an easier task. We have worked on an unity project with
VR integration before, so we thought that adding voice
commands and letting a race-car drive would be the only
challenges where we needed to invest a lot of time.

But this assumption couldn’t be more wrong. The biggest
problem we had to face is the incompatibility of operating
systems were working on. We realized pretty fast that the
project is very hard to do on Macs and with the help of a
separate PC, which we got later, we managed to progress
more smoothly. But the most annoying thing is that Meta
devices and applications don’t support Linux, but our race-
car only has a Linux server installed. Therefore we needed to
make an unity application to connect the Meta Quest 2 with
our race-car’s Linux server.

This led us to have regular complication and some of
these were very special interactions. We don’t really know
whether more planning would have changed something. The
one thing we learned from this is that we are wary of using
different operating systems in combination.

IV. CONCLUSION
To summarize, we tried to send the video stream from the

race cars’ camera to a VR headset. By using the microphone
from the headset we wanted to send voice commands to the
Flask server, which handles the requests to control the car.
Technically speaking we made it work, but we encountered
some unknown problems at the end. We could only make
assumptions on the problems because documentation and
general support for the Meta Quest 2 is lacking or
deprecated.

38

Connect Four with a Robotic Arm: A
Comprehensive Approach to Human-Robot

Interaction in Gaming

Claudio Melero Martinez
Computer Science

Hof University of Applied
Sciences

Hof, Germany
claudio.martinez.melero@hof-uni

versity.de

Arent Dollapaj
Computer Science

Hof University of Applied
Sciences

Hof, Germany
arent.dollapaj@hof-university.de

Ali Sencer Irmak
Computer Science

Hof University of Applied
Sciences

Hof, Germany
ali.irmak@hof-university.de

Oguzhan Icelliler
Computer Science

Hof University of Applied
Sciences

Hof, Germany
oguzhan.iceliller@hof-university.

de

Vicky Wang
Computer Science

Hof University of Applied
Sciences

Hof, Germany
vicky.wang@hof-university.de

39

mailto:claudio.martinez.melero@hof-university.de
mailto:claudio.martinez.melero@hof-university.de
mailto:claudio.martinez.melero@hof-university.de
mailto:arent.dollapaj@hof-university.de
mailto:arent.dollapaj@hof-university.de
mailto:ali.irmak@hof-university.de
mailto:ali.irmak@hof-university.de
mailto:oguzhan.iceliller@hof-university.de
mailto:oguzhan.iceliller@hof-university.de
mailto:oguzhan.iceliller@hof-university.de
mailto:vicky.wang@hof-university.de

Abstract—This paper presents a robotic arm system capable
of playing the game of Connect Four against human players. The
system utilizes a combination of artificial intelligence and
robotics techniques to achieve high-level strategic
decision-making and precise motor control for executing moves.
The AI (artificial intelligence) component employs an algorithm
to evaluate potential moves and select the most advantageous
ones. The camera allows the board to be visualized by the AI. The
robotic arm, controlled by the AI decisions, can accurately place
and manipulate game pieces, allowing it to compete against
human players with a competitive level of skill. [We evaluate the
performance of the system in a series of human-robot matches,
demonstrating its ability to consistently defeat human opponents.
The proposed system represents a novel approach to
human-robot interaction in gaming, combining the cognitive
capabilities of AI with the physical dexterity of a robotic arm to
create an immersive and engaging experience.

Keywords—Robotics, human-robot interaction, Connect 4,
artificial intelligence, minimax algorithm.

I. INTRODUCTION
Connect Four, (also known as Four Up, Plot Four, Find

Four, Captain’s Mistress, four in a row, Drop Four or
Gravitrips in the Soviet Union) is a two-player strategy game
in which players take turn dropping colored coins into a
six-row, seven-column vertical grid. The objective is to be the
first to get four coins in a row, vertically, horizontally, or
diagonally.

The game is almost 50 years old, (first introduced in 1974),
and is still popular to this day. It is a great game against all
ages and all skill levels, family, friends or even a computer.

The game is played as such, each player takes turns dropping
coins in the grid, filling it up until someone wins, or the board
is filled, making it a tie.

To make this game playable by computer, we separated the
project into 3 components, the AI, the robot arm, and the
visual recognition of the board.

The robot arm will be connected to a camera that will capture
images of the game board. These images will be sent to the
backend, which will use an AI to determine the best move to
make.

II. THE GAME

A. The game logic
The game logic is made in python, the player starts by

choosing its difficulty, and afterwards has the honors of
starting first.

Before a move, the game verifies if the given move is valid
(e.g. a column is full, the column is in the range of the board)
and places it if so.

After the move the game checks if a winning condition is here
for the one who played or if the board is full, making it a tie,
otherwise it proceeds to the other player’s turn.

B. The artificial intelligence
When choosing the difficulty, the player is choosing the

depth of our AI, ranging from 3 to 6.

The calculation for 3 is instant, whereas for 5 can take up to a
second. The last difficulty can be challenging, having to see at
least 6 moves in the future to match the AI.

The AI works as such, depending on the depth, it will see
its amount ahead. So, a 4-depth AI will look 4 moves ahead.
Each move it makes at that depth is evaluated to see if a move
on that column will create a win condition. If it does, it places
it immediately as it is the best move. Otherwise, it either
maximizes his chances of winning, or minimizes the player’s
chances of winning by blocking his winning line.

C. The robotic arm
We use the Niryo’s Ned2 6 axis robot in the project. We

control this robot using the python API “pyniryo” and
“pyniryo2”. This robot is used to pick up the pieces from the
conveyor belt and place them into the relevant row on the
Connect Four game board.

Before the game starts the robot must be calibrated then set
up all of the 21 pieces on the conveyor belt. We assume that
the robot is placed on the right side of the conveyor belt,
assuming the conveyor belt’s motor is on the left and facing
away from the view point described here. 21 pieces should be
placed onto the magazine where the robot will pick them up
and place them on the belt.

What we describe as calibration is the process of robot
calibrating its motors if they are not already calibrated, set up
the magazine position and calibrate the game board position.

For the magazine while there is a pre-coded draft magazine
position the user asked to show the robot the exact position of
the magazine’s mouth where the robot is going to pick them
up. User shows this position using the “Freemotion” button on
the robot (or the “Freemotion” button from the Niryo Studio
software) and moves the robot to the relevant position while
holding the button. After that user should confirm by pressing
enter where they are prompted from the terminal. It should be
also noted that for precise movement the robot arm will slow
down while approaching, and moving away from the
magazine.

After this robot will pick up the first piece from the
magazine and will calibrate the game board using this. We
assume that the game board is placed parallel to the robot
piece holes facing the robot and the other side facing the
camera. Similar to magazine calibration there is pre-coded
draft game board position but the user is asked to show the
robot the first row using the “Freemotion” function again.
After this the robot saves the position of the relatively moved
0.05 units moved on the Z axis according to the first row. Then
the robot will show and ask the user to confirm each row one
by one by moving relatively to the first one.

The reason we are using the “Freemotion” button to get
input from the user is that during our testing we have realized
that the robot is not really accurate in terms of positioning
between different runs and different calibrations. So setting up
a constant position for the game board and magazine which
are crucial parts for the robot caused us more issues compared
to implementing the “Freemotion” method.

The belt placement works where 2 pieces are placed next
to each other where one is close to the robot and the other one

40

is far from the robot. After 2 pieces are placed they are moved
back in the conveyor belt making space for 2 more pieces. We
refer to these 2 pieces next to each other as a stack. According
to our calculations, the conveyor belt moving at 15% speed for
4.3 seconds for each stack lets us fit exactly 22 pieces on the
conveyor belt, this is just enough for our 21 pieces. The belt is
moved asynchronously using threading where the thread will
start the belt and stop it after 4.3 seconds. This allows us to
operate the robot arm while the belt is moving.

To speed up the belt placement where lets say from a
previous game “n” amount pieces were placed and there
currently “s” amount of pieces on stack (the stack can have 0,
1, 2 pieces). The user can give these parameters to the robot
and calculation will start from the leftover piece therefore the
user does not have to place 21 pieces if there are some set up
from previous games already.

After all of these operations the robot will wait for the
algorithm to respond with an answer. The answer will be a
value 0 to including 6 where each number represents a game
board row. The robot will pick up the next piece, which is the
far side from the robot first, and then it will place it into the
requested game board row by the algorithm. To avoid
colliding with the game board the robot will move its joint 1
then switch back to the idle position. The robot while
approaching the game board will also slow down its arm like
the magazine for precise movements.

To pick up and drop the pieces we are using the robots
gripper module. While this module seems very easy to control
from the API it has a software when it is used for long periods
of time, the software will report it as overheated, rendering the
module inoperable. To counteract this we can restart the
gripper using a function from the “pyniryo” python library.
While for all other things we are using the newer “pyniryo2”
library for only just this function we need to use the older
version of the library because this functionality is missing
from the new library. However our robot’s firmware was also
out of date which in the future versions of the firmware this
might be fixed so we cannot entirely blame this issue for
Niryo.

To fix this issue we check if the gripper is in an error state
or not before operating it. If it is an error state we call the error
handling routine for the gripper. In this routine we reboot the
tool and wait for 5 seconds and check again if the state is
cleared, if not cleared we repeat this process until it clears.
While this in most cases fixes the issue there are still some
edge cases where it fixes the issue during the routine but just
as the routine finishes the gripper fails again and causes the
requested gripper action whether it should open or close to fail
and not report anything or raise any exceptions during the
code resulting in the robot skipping critical actions. To detect
this we also check for error state after the requested action and
if another failure is detected we ask the user whether they
want to repeat the action or not. This way the user can repeat
the action if the robot faces this weird edge case.

We also faced issues with the “pyniryo2” API where
calling a function will throw a “RosTimeoutError” exception
where the API fails internally. To counteract this issue we

wrap every “pyniryo2” API call with a function where it
repeats the call until no exceptions are thrown. While this
might seem like a bad programming practice there is no way
to detect this beforehand and it is completely random with
regards when it is going to happen. Sometimes we never face
this issue. Other times we face this issue upwards of 10 times.
This issue also caused us to not plug the robot’s camera to
back of the robot but rather plug directly to the computer
which runs the python program. This causes unnecessary slow
downs during the execution of our program where this is not
our fault. Like we said before we cannot blame Niryo here
because our firmware was out of date and maybe this was
fixed in a future version of the firmware.

D. The camera
We use Niryo’s Ned2 default camera in this project. However,
the camera has a distortion issue. In order to solve this issue,
we use Intrinsic Parameters and Distortion Coefficients. The
aim of using a camera is detecting the pieces on the game
board and distinguishing each piece based on its color,

whether it be red or green. To achieve this goal, we leverage
the Python OpenCV library. Following the detection and
differentiation, we put numbers to an array to represent the
game board. Specifically, we assign 0 for empty spaces, 1 for
red-colored pieces and 2 for green-colored pieces. To facilitate
this classification, we establish lower and upper boundaries for
the red and green colors. We create masks to isolate pixels
falling within these color ranges. We proceed to identify

contours within these masks. Finally, we update the array to
represent the colors.

E. The board
Board and Coin Material and Manufacturing:

The game board and coins were fabricated using polylactic
acid (PLA), a biodegradable and compostable polymer
derived from sustainable resources like corn starch. All
components were designed and 3D printed at the
University of Hof's MakerSpaces, leveraging open-source
software for both the design and printing processes.

Blender: This open-source 3D creation suite was employed
for the design and modeling of the game board and coins.
Cura: This open-source lamination software served as the
platform for preparing the 3D models for optimal printing
on the Ultimaker S5 & Ultimaker 3 printers.

41

III. CONCLUSION
This project successfully explored the integration of a

robotic arm into the classic game of Connect Four, creating a
unique and engaging human-robot interaction experience.

Key Achievements:

Developed a multi-component system: The project
combined an AI for strategic decision-making, a robotic arm
for physical interaction, and a camera system for visual
recognition of the game board.

Implemented a depth-based AI: The AI, with adjustable
difficulty levels, evaluated future moves and optimized its
choices based on the chosen depth.

Integrated a robotic arm: The robotic arm, controlled
through Python libraries, picked up and placed game pieces
according to the AI's instructions.

Established camera-based recognition: Using OpenCV, the
camera identified and differentiated pieces based on color,
mapping the game board state for the AI.

Employed sustainable materials: The game board and
coins were 3D printed from eco-friendly PLA plastic.

Challenges and Solutions:

Robot arm calibration: The project addressed robot
positioning inconsistencies by utilizing user input during
calibration through the "Freemotion" button.

Conveyor belt speed optimization: Calculations
determined the optimal belt speed and placement strategy for
efficient piece distribution.

Gripper overheating: The system implemented error
handling and user interaction to address occasional gripper
overheating issues.

API limitations: Workarounds were developed to handle
API-related exceptions and ensure smooth program execution.

Camera distortion: Intrinsic parameters and distortion
coefficients were used to compensate for camera distortion
and improve image processing.

Overall, this project demonstrates the potential of robotic
integration in game playing, offering a novel and interactive
experience while overcoming technical challenges.

ACKNOWLEDGMENT

42

FixMix

Julius Bauer
Applied Robotics WS24

Hochschule Hof
Hof, Deutschland

jbauer4@hof-university.de

Carsten Philipp Duttiné
Applied Robotics WS24

Hochschule Hof
Hof, Deutschland

cduttine@hof-university.de

Niklas Daniel Jenisch
Applied Robotics WS24

Hochschule Hof
Hof, Detuschland

njenisch@hof-university.de

Abstract—This paper presents the development and
construction of an automated cocktail mixer, named “FixMix”,
designed for private use. There already are many household
appliances that automate tasks like brewing coffee and
preparing food, but there are almost no solutions to the
preparation of refreshing beverage blends. Our motivation was
to create an automatic cocktail mixer, which provides a seamless
blend of convenience and consistency, offering users a quick and
effortless way to enjoy mixed drinks. Existing solutions
accomplish their purpose but use deprecated technologies and
packages or provide only a single way to interact with the user
interface. While the “Smart Bartender” by the “Hacker Shack”
had buttons and an OLED display, “nebhead” used a web
application to control his “PiTender”. Since there was no
combination of the two forms, we did it ourselves and while we
were at it, we used more recent packages and made some
improvements to code and design. The “FixMix'” has been
successfully tested and succeeded in supplying an entire
household with Cocktails.

Keywords— smart cocktail mixer, mixed drinks, cocktails,
automation, FixMix

I. INTRODUCTION

In recent years, advancements in technology have made
various aspects of our daily life more comfortable, through
transforming routine tasks into automated processes. While
smart solutions in areas such as brewing coffee and preparing
food are already widespread, the world of mixology has
remained nearly untouched by the trend of automation. This
paper describes the construction and upgrade of an already
existing but lacking blueprint called “Smart Bartender” from
the “Hacker Shack” team. It is common knowledge that, just
like many other things, preparing drinks at home is much
cheaper than paying a professional to do it. Unfortunately,
there are quite a lot of mistakes amateurs constantly make. The
right mixing ratio is especially difficult to achieve and basic
recipes are less widespread as one would expect. Aside from
that, the task of mixing drinks can be a very time intensive
chore. With our project, we aim to achieve a comprehensive
solution that not only mixes drinks more consistently than a
barkeeper ever could, but also does it in a very efficient way,
saving time and resources simultaneously. The accessibility
and user-friendliness should be regarded as well, so that
anyone can use our product without any former knowledge or
introduction. All of this provides a seamless and consistent
cocktail crafting experience.

II. STATE OF THE ART
There is an existing project by the group “Hacker Shack“,

that implemented an automated cocktail mixer. It is called the
“Smart Bartender“ and blends drinks at the push of a button.
Their machine is fully functional and can be extended, so more
ingredients get blended. There is also the possibility to link
with Alexa or other smart home technology. Furthermore, the
drinks can be selected via two buttons and an OLED display.

The database of drinks can be freely customized and
expanded. They built a solid foundation we can expand upon.
One thing that should be noted is the fact that their code is
about five years old and uses many deprecated libraries.

III. OUR GOAL

The goal we envisioned was to have a fully working drink
pouring and mixing machine with a large integrated beverage
library as another addition to the appliances commonly found
in every household. Its appearance should fit seamlessly into
every kitchen, right next to coffee machines and microwaves,
which also serve as size references for this project. Even
though it is able to act as an impressive attraction at parties, its
strength lies in the everyday use at home, bringing innovation
and convenience to every kitchen, bar or social gathering. The
aspect of comfort is at the center, on which it delivers through
its remote capability. The code and libraries of the projects it
is based on will be revised and brought up to date.
Additionally, quality of life improvements like adding
switches to the power plug, better pumps and a panel for
partitioning will be made as well as many other enhancements.
With its clean, white case, which is built from wood, the most
renewable resource, it will fit into any modern household. But
its appearance can be altered at any time, due to the mounting
of all electrical components on one easily removable plate,
which can quickly be taken into a new customized case. The
design features easy access for maintenance purposes and the
choice of components allow for infinite upgrade possibilities,
which makes it a long-lasting and future-proof companion.

IV. COMPONENTS

Our construct consists of a lot of different components.
Some of these are technical parts related to the function and
others are just for the case. The wooden box was constructed
using twelve wooden laths. Four of them were 40 centimeters
long and the other twelve were 30 centimeters long. Besides
that, we used eight wooden plates, two were 40 centimeters
times 40 centimeters, six were 36 centimeters times 40
centimeters, one was 36 centimeters times 24 centimeters and
the last one was 26 centimeters times 24 centimeters. On the
bottom side of the top plate is a 3d printed turbo funnel
mounted. On the bottom plate of the case, we attached four
rubber feet.

Of course, there are also many technical components
directly linked to the functionality. The most important piece
was the raspberry pi, serving as the heart of our creation. Other
parts were an eight-channel relay, a twelve volt switching
power supply, a five volt regulator, different jumper wires
(male to female, female to female and male to male), three
peristaltic pumps with food grade silicone tubing, a
momentary push button switch, an OLED display, some high
voltage, high current rated diodes, a power socket inlet module
plug, a power distribution board and a few more wires.

43

We adapted certain elements from prior projects to
optimize our current work. As a consequence we did not use
any LED stripes, since they do not have a real benefit besides
a more pleasing appearance. Initially, we opted to use only
three pumps in our build to assess functionality. However, we
designed our setup with expansion in mind. An example for
this is our relay because it has eight possible slots. Other major
differences were the addition of a power socket inlet module
plug, which allowed us to have a power switch on the
backside. The final modification was the exchange of a
breadboard for a power distribution board because
breadboards tend to get loose and are not optimal for
permanent solutions.

V. DESIGN

The appearance and functionality of the case shown in the
template was altered and upgraded quite considerably. To
begin with, all pumps were relocated to the inside instead of
the back, resulting not only in a cleaner outer surface, but also
an enhancement in safety. This design change eliminates
external wires, reducing potential safety risks and offers
protection for the components. In addition to that, the hoses
and wires are covered by a wooden board, while the pumps
themselves are still visible and can be checked for
functionality. All electrical components are mounted on a
single wooden panel, which is placed in the electronics
compartment under the bottom floor of the dispensing area,
which can be flipped open like the hood of a car. This allows
for easy access to maintain and upgrade the system, as well as
switching out the case if preferred. The input of the power
supply has been expanded to include a cold appliance plug and
a power switch. The template recommended the use and
implementation of led stripes for decorative purposes, which
we decided not to include, in order to keep the costs low and
the wiring less cluttered. A flowerpot coaster serves as an
indicator for the glass, while a 3d printed turbo funnel gathers
and bundles the tubes dispensing liquid to prevent spillage.

VI. CHASIS

We built the case out of wooden laths, encountering a
minor challenge as we needed to strategically position the
screws for stability while avoiding interference between them.
The panels were added much later to the framework since we
wanted to leave as many sides open as possible to make it
easier to work on the technical parts inside. To accommodate
the display cables and ensure the display was centered, we
drilled a hole in the wooden bar at the front. Moreover, there
was a knothole in the front, which we had to remove since the
front panel would not close completely. Later on, we
encountered a problem that required us to cut out a piece of a
wooden lath in the back due to the dimensions of our power
socket inlet module plug. Before attaching certain panels, we
needed to prepare them by drilling holes to accommodate
cables, tubing, buttons, and pumps. Others had to be cut into
shape, such as the one we used as a second floor. We removed
the corners to seamlessly fit into the framework and adjusted
the backside, so the cables connected to the pumps could reach
the electronics and were not visible to the user. Additionally,
we added some rubber feet to the bottom for stability and noise
reduction.

VII. HARDWARE

Initially, all the components were connected and laid out
loosely to be checked for functionality. Most were easy to
connect with a variety of cables, which we had to figure out

ourselves and could be stripped and plugged in or clamped.
Some components had to be soldered, for instance the cables
leading to the pumps and the ones that had to be soldered to
the circuit board of the voltage regulator for the Raspberry Pi.
The high voltage, high current rated diodes, bridging the
power cables leading to the pumps, had to be soldered on as
well. This process significantly improved the team's soldering
abilities. In most cases, cable colors of the individual cables
were matched to the ones shown on the circuit diagram. Only
the voltage regulator which is supposed to supply the
Raspberry Pi with 5 Volt instead of 12 had to be adjusted
manually by turning the potentiometer screw clockwise.
According to the circuit diagram, one cable required splitting
after the voltage regulator, but we were able to solder it right
to the circuit where the other cable is connected, which
worked just fine. Connections were frequently tested using a
circuit analyzer.

VIII. SOFTWARE

Initially, we planned to build an automated cocktail mixer,
based on the "Smart Bartender" with manual input. However,
as we encountered some issues with the OLED display, we
explored alternative options and came across a web interface
called "PiTender", which we modified to our purposes.
Fortunately, we successfully resolved the issue with the
display. As a result, the FixMix can now provide users with
the flexibility of choosing between manual input via display
and buttons or input through our easy-to-use web interface.
The following describes implementation of the manual input,
the web interface, and the challenges we encountered during
this process. While we used JSON files for configuration,
python serves as the primary language for the main aspect of
the project.

A. Manuel Input
For our manual input solution, as already mentioned, we

adapted the project “Smart Bartender”. At the beginning, we
had to enable SPI in the Raspberry Pi configuration, for the
OLED display to function properly. After this step, we also
had to add the following 2 lines of code, “i2c-bcm2708” and
“i2c-dev” in the i2c config to ensure that i2c will work
without any issues. Afterwards we need to set up the library
for the OLED screen, but since the project relies on a
deprecated library, we are utilizing the “Adafruit Python
SSD1306” package. Consequently, we had to update the
function calls according to the new module.

Continuing with the installation of the “requirements.txt”
file through the command line with “sudo pip install -r
requirements.txt”. This results in an outdated installation of
“RPi.GPIO”, we proceeded to update it to the latest version
0.7.1. This Adjustment was because the older version led to
errors during the executing of the code. In addition, as
mentioned earlier, we completely cut the code for controlling
the LED strip, because we decided to cut the whole LED part.

Here is a brief overview of the files within the FixMix:

1. bartender.py
x The file “bartender.py” is the heart of the

program by seamlessly interacting with all
other files. It imports the pump settings
from the “pump_config.json” and, if
necessary, writes changes into it, displays

44

the “FixMix” menu on the OLED display,
handles the input of the two buttons,
determines, based on the pump
configuration, which cocktails can be
mixed, and subsequently activates the
corresponding pumps. Most of the changes
were made in this file.

2. drinks.py
x The “drinks.py” file contains two object

arrays, the “drinks_list” and the
“drink_options”. The “drinks_list” array
stores values representing cocktails,
specifically their “name” and
“ingredients”. In this file we included our
preferred drinks along with the required
ingredients.

3. menu.py
x The “menu.py” handles everything related

to the menu we display on the OLED
screen. No changes were made in this file
as it worked out of the box and met our
expectations.

4. pump_config.json
x The “pump_config.json” file stores

information about each pump and its
associated pin, as well the current active
ingredient. We trimmed down the JSON
file to include information for only 3
pumps, because our FixMix only uses this
quantity.

5. requirements.txt
x The “requirements.txt” file installs the

latest "RPi.GPIO" version.
6. read.txt

x The “readme.txt” includes helpful
information about the project. We have
added explanations regarding the new
OLED library and a quick guide on how to
use the FixMix.

To launch the manual input of the FixMix, run the
following command “sudo python bartender.py” within
the FixMix directory. To immediately stop the process
use “ctrl + c”.

B. Input via web interface
For the input via web interface, as already mentioned, we

adapted the project “PiTender” from “nebhead” on GitHub.
Due to the OLED display issues we encountered, we were
looking for an alternative to test our entire setup and came
across the “PiTender”. This version removed the buttons and
display completely, aligning perfectly with our requirements.
It uses a flask web interface, with gunicorn and nginx to proxy
the web requests. The project runs two processes
simultaneously, the app.py handles the web routing and the
control.py handles the GPIO inputs. They communicate with
each other through JSON files. The installation was
straightforward using an auto-installation file but comes along
with an issue we will address in detail later.

What have we changed? Firstly, we changed the UI into a
Dark Mode, as the FixMix is likely to be used most often in
the evening or at night, providing eye comfort. Additionally,
we replaced the carousel that displayed mixable drinks

sequentially with individual cards presented in a vertical
layout. This allows users to quickly see the variety of drinks
the FixMix can provide. Furthermore, we replaced the old
simple cocktail images with appealing photorealistic ones. All
menus were also translated into German. Another change we
made is reducing the number of pumps in the source code to
three. The web interface launches automatically upon starting
FixMix. To modify its appearance, you'll need to edit the
HTML files in the templates directory and restart the system
afterwards.

C. Best of both worlds
After successfully testing our setup with the web interface

and resolving the display issue with manual input, we decided
to combine both projects, so we can provide our FixMix users
the best user experience possible. This integration enhances
the overall functionality and convenience of the FixMix,
ensuring a seamless and efficient cocktail mixing experience
for our users. Due to the fact that both input methods use
JSON files for their pump configurations, a configuration file
could be implemented which synchronizes the configuration
between both systems. This approach would enhance
consistency and streamline the management of pump
configurations across both the manual and web-based input
methods.

IX. FUNCTIONALITY
The main functionality of this device consists of

dispensing liquids from containers into a glass and mixing
them in the process. This action is carried out by peristaltic
pumps, controlled by a Raspberry Pi and relay module, either
via the web application or the buttons on the device itself. The
user is able to track the progress of dispensing by observing
the progress bar either on his phone or the machine itself and
plan accordingly. Besides mixing cocktails, the FixMix is
capable of cleaning itself by pumping water through all its
tubing. This can be executed by placing the intake ends of the
hoses into a container filled with water and selecting the
provided cleaning process. Due to excess space on the relay
module and power distribution board, FixMix can be
expanded to include up to five more pumps. Furthermore,
users have the flexibility to change the configuration of
assigned beverages directly on the device itself, as well as
using the web application to do so. The user can always add
more drinks to the integrated recipe book. Dispensing non-
alcoholic beverages and shots of liquor are also possible.
Though, FixMix will show only the recipes it is able to prepare
with the current number of pumps attached and their
configuration.

X. ISSUES WE FACED
During the project we faced some significant challenges,

with the majority of time devoted to addressing display issues.
The first OLED display we used had an incompatible
hardware chip. While we could have potentially worked
around the issue by rewriting parts of the code, it would have
been very complex and would have taken a lot of time.
Instead, we purchased another display which had the correct
chip but used the i2c technology instead of SPI. We
considered fixing the issue by resoldering parts of the display.
But instead, we decided to get another display, which would
have been the right one, but it got damaged pretty badly via
shipping. Subsequently the fourth display finally had all the
correct requirements and still didn’t work as intended. Upon
investigation we managed to locate the error: one jumper wire

45

was defective. After changing the corrupted wire, the display
finally worked as intended.

Another small issue occurred after we installed the pumps,
one of them did not work at all and forced an error which shut
down our whole system. Later we found out that the wires
were attached to the wrong ends on one pump. After rewiring,
the problem did not occur again and we could proceed.

The web interface also brought its own set of
inconveniences. The changes we made in the template files
did not show in our browsers, because the debug mode, which
should enable previews by displaying changes in real time, did
not work. We managed to find out that we were working in
the wrong directory, because the installation file copied the
project it had already downloaded to a completely different
folder instead of using the one it already provided. After that
we noticed, this folder was protected and every change had to
be made by console commands as an administrator, which
disrupted the workflow considerably.

XI. HOW TO USE
We made it very easy to use the FixMix. You can decide

whether you want to use it manually via the buttons and the
display or through the web interface. Regardless of your
choice, always use a glass with a capacity of 250ml, otherwise
it may overflow.

A. Manually
By pressing the left button, you can cycle through the

available drinks. Once you find your desired drink, you can
confirm the input with the right button and FixMix will mix
your selected drink. Additionally, you can navigate through
the drinks and will see the possibility to configure, by pressing
the right button you get to the configuration menu. In that
menu layer, you have the option to modify the ingredients
linked to the pumps or initiate a cleaning process.

B. Web application
In the web application, you can perform the same actions

by navigating through a website instead of pressing a physical
button. At the top right of the interface is a burger menu that
presents the three main pages: the “Rezeptbuch”, where you
can add new drinks, edit existing ones and manage the
ingredients. The “Cocktailkarte”: here you have the option to
have your desired drink mixed. And the “Einstellungen” page,
used for configuring the pumps, setting the pump flow rates
and starting a cleaning procedure for the tubing and the funnel.

XII. TESTS
During the testing phase with water and orange juice,
everything worked as intended. The result had the correct
amount of the ingredients. A problem occurred in the second
testing phase with water and a carbonated energy drink. The
glass was not as filled as expected and after repeating with
the same ingredients we saw bubbles in the tubing that came
from the energy drink. This led us to the conclusion that
carbonic acid was the cause. We matched the carbonated
energy and water to determine the difference and calculated
the conversion factor of 1.6 based on the results. We adjusted
the amount of energy drink in the recipe accordingly by 1.6
times and it worked as intended. Therefore, we corrected all
the recipes that involved any sparkling ingredients like
lemonade for example. After these adjustments, we tried a

recipe that had only coke in it and the glass was correctly
filled.

 After using the FixMix we also tested the cleaning
program. There we put water into all the tubing and started
the cleaning process. After it was done, we removed the water
and started it again so all the water would get out. The result
was incredible, because no visible remarks of orange juice or
energy drink were visible and almost nearly no water was left
in the tubing.

XIII. EXPERIMENT
Since we were using stronger pumps than the original

project, we had to recalibrate the flow rate in the code to make
sure that exactly the required amount of liquid will be
dispensed. We determined our new value by experimenting
with different values. We measured the results using a setup
consisting of two containers, a scale and some water.

Our goal was to achieve a liquid capacity of 200ml with
marginal fluctuations.

TABLE I. FLOW RATE ADJUSTMENT

Flow rate value Result in milliliters

60/100 290

85/100 410

50/100 327

50/150 157

85/150 273

60/150 200

The flowrate value consists of 2 values. The initial entry
was "60/100". First, we began testing changes in the first
value: 60/100, 85/100 and 50/100 all exceeded the 200ml
mark.

After closer inspection of the setup provided in the
template, we discovered that the original pumps are rated at a
maximum speed of 100ml per minute, which is represented by
the second value. Consequentially we had to change this value
to 150, since our pumps operate at a maximum speed of 150ml
per minute. We tested the same values with the new parameter
in place and received results much closer to our objective.

At last, we determined that a value of "60/150" achieved
the desired results.

After running this setup multiple times, we obtained
results with negligible differences, within a range of ±5ml at
an operating time of 60 seconds.

XIV. FUTURE REVISIONS AND CONCLUSION
We managed to achieve most of the goals we set ourselves

and produced a working automated bartender. The possibility
to control it manually and via a web interface has been
realized. The design got enhanced with the addition of a power
switch and new positions for the pumps, to contribute to an
improved overall aesthetic appearance. Furthermore, we built
a database with many drinks and updated deprecated code
libraries, to ensure future proofing. The FixMix was a success
and is ready for parties or private use.

46

Looking ahead, there is potential for expanding this project.
This is shown by the pumps for example, since there are open
slots in the relay to attach five more. Introducing an LED
stripe could enhance the aesthetic look and provide better
lighting inside the mixer. On the software side, refining the
user interface or resolving the issue, where the manual input
and the web interface use two separate JSON files with their
own pump configuration as well as syntax, leading to no
synchronization between the configurations. To address this
problem, both 'control.py' and 'bartender.py,' which manage
the JSON input, require adjustments to ensure they read and
write using the same objects and values. The wooden case is
not perfect as well, considering alternative materials with
better water resistance than wood could be an upgrade.

XV. SOURCES AND ATTACHMENTS
PiTender:

https://github.com/nebhead/PiTender

Smart Bartender:
https://github.com/HackerShackOfficial/Smart-Bartender

Other attachments like circuit diagram and screenshots
are at the document folder:

https://github.com/Schnigglas/fixmix/document

47

https://github.com/nebhead/PiTender
https://github.com/HackerShackOfficial/Smart-Bartender
https://github.com/Schnigglas/fixmix

Dancing Nao Robot

Andreas Popp
Medienifnormatik

Hof University of Applied Science
Hof, Germany

andreas.popp.2@hof-university.de

Kevin Pertek
Medieninformatik

Hof University of Applied Science
Hof, Germany

kevin.pertek@hof-university.de

Emir Mervan Kanun
Medieninformatik

Hof University of Applied Science
Hof, Germany

emir.kanun@hof-university.de

Ercüment Zorlu
Medieninformatik

Hof University of Applied Science
Hof, Germany

ercuement.zorlu@hof-university.de

The following Project revolves around a Nao Robot that is
supposed to use video input to assume poses of people in said video.

I. INTRODUCTION

Our goal was to get the Nao robot to recognize specific
songs which lead him to dance a specific choreography
corresponding to given song. To reach this goal we set five
different milestones. Firstly, we wanted the Nao robot to
imitate poses from a picture. Secondly, the robot should
imitate poses using a video. Thirdly, save certain dances and
perform them on command. Fourthly, the robot recognizes
specific songs and dances the according choreography if he
doesn’t recognize the song, he will make up his own
choreography. Then lastly, we had an optional goal where Nao
is supposed to make up his own dance synchronized with the
beat of the song that is being played.

II. APPROACH

A. Nao Software
We installed the Nao software on Windows and Mac

which is composed of Choreographe, Robot Settings and the
NAOqi SDK from the Aldebaran website [1]. We got
ourselves accustomed to the Nao Software and tried
communicating with it. We also tried used Choreographe to
make Nao assume poses. We noticed that the Software was
old using Python 2.7 and Choreographe didn’t even work on
Mac OS with M1 chips at first. After a while Aldebaran rolled
out an update to support the M1 Mac OS platform.

B. Working with ROS
We decided to use ROS version 1 which is a Robot

Operating System. To use ROS, we needed an old version of
Ubuntu, we used version 20.04.02[2] and installed ROS [3].
We first tried to get an understanding of ROS through

research. Using ROS came with a lot of problems. Firstly,
finding the right versions of Ubuntu and ROS was hard and
packages used by ROS were too old and also hard to find.
Secondly, the Ubuntu made automatic updates and updated
software while installing other software rendering our
distribution of Ubuntu useless. We also realized that our
NAO robot does not belong to version 3 but version 6 which
meant that our version of the NAOqi SDK was wrong
because we needed version 2.8.7.4[1].

C. Working with Python
After these issues with ROS, we decided to drop our ideas

and use Python instead. Python as a lot of powerful libraries
and is a very well-known language for AI and Robotic
Applications. With a hint of another group which was
working with the Nao. We installed an even older version of
Ubuntu, that had Pyton 2.7 preinstalled. All the Group
members weren’t too comfortable in using Python so we had
to refresh our knowledge. After that we had to install NaoQi
to be able to program the robot. The installation was quite
tricky, due to the very old and flimsy documentations. We
managed to get it working after setting the Environment
Variables of our Python Version, so that it can load the Qi.
After some trial and error, we managed to connect to the robot
and run our first Hello World Program. Thrilled by this
achievement after so many frustrating fails, we had some fun
with the TextToSpeach function of the library.

D. Computational Vision and Pose Recognition
After our first successes with the robot, we now had to
research different libraries for CV (Computational Vision)
and Pose Recognition. There was just one real option in this
topic, as we used such an old version of Python. We installed
OpenCV and tried to get it to work. After several failed
attempts and a hint of the professor we dropped this Idea
again.

We decided to use the NAOqi on an old Python version but
use a current version of Python to get the Pose Recognition
running. We reinstalled our Ubuntu to be the most recent
Version with Python3 preinstalled and install Python2
separately. Reinstalling the NAOqi and setting the
Environmental Variables. After further researches we
installed Google Mediapipe. An easy to use and very popular
CV and Pose Recognition Tool. After some experimenting,

48

we managed to run Mediapipe and got our first rigged image
and the landmarks of a human skeleton as an output.

After a short break we returned to our project, but nothing
seemed to work anymore. We realized that another software
called OpenRoberta was running on the Robot. It was
installed by a professor to use it on a Project with pupils. We
tried to uninstall OpenRoberta but we couldn’t manage to do
it. After several tries to reach out to the professor and trying
to find other ways to uninstall it, we finally got a reply on
how to uninstall it.
So, we finally got rid of the program and our Code was
working again. We worked on a Jason Parser to save our
landmarks in a Json file and plotted them in a 3-dimensional
coordinate system with the use of MathPlotLib. We finally
had a way to see our Mediapipe result.

E. Calculate corresponding Angles
After that, we now had to translate our Google Mediapipe

results to be able to use them on our Nao robot. Our first idea
was to calculate the angles of the skeletal joints to pass them
to the robot. For that, we had to read some Documentation to
understand the complex math behind it [5] [6]. We managed
to calculate some easy joints like the knees. But we couldn’t
implement the other joints as they had more degrees of
freedom. The math behind these more complex joints was too
hard for us. Even after reading documentations and papers on
how it should work the problem was still too complex for us
to understand. We then tried to get more examples by using
different pictures with varying poses to get a better
understanding.

F. Using inverse kinematics
We could After all, we tried using inverse kinematics.

First, we read the documentation from SoftBank Robotics
[7] and used this information for our project, especially the
part about Cartesian control [8]. In this chapter they describe
the control of the Effectors of the Nao robot in a cartesian
space using inverse kinematics. To gain knowledge about it,
we used the example code and tried it with the robot. After
that we edited the code for our purposes. While exploring
the code we found out that Nao is working with meters and
has a maximum range where he can perform his movements.
Following that we gave the Robot a T-Pose from one of our
team members which he should perform but he did
everything but the T-Pose. To test the function, we gave him
absolute variables to look how Nao is making certain poses.
But changing even the numbers a little bit, Nao went crazy
again. Further we thought that not using normalized

coordinates for inverse kinematics could be a problem after
all too. So, we tried calculations to get the Mediapipe
landmarks to fit on the Nao movement. We changed the
rotation matrices of our Mediapipe landmarks, normalized
them and moving the coordinates to get a result to work
with.

III. EXPERIMENTS
The first tests we conducted were on the result of google
media pipe. To do this, we used some code that draws the
found landmarks on the input picture. This went quite well and
we left this in the final code. The “rigged” picture can be found
under “Landmarks/pictures/TPoseRigged.jpg”. This test
showed, that media pipe was quite apt in finding the right
landmarks in 2d. However, when looking through the output,
we quickly realized, that the 3rd Dimension wasn’t as easy for
media pipe, which is why we only used a constant for this
dimension when posing NAO.

The second batch of tests revolved around getting a feeling for
NAOs capabilities when using carthesian control. To do this
we fed him many different absolute values for each hand and
tried to assess where he moved them. After some confusion,
we found out that every value was measured in metres and
decided to use a ruler to find some example points. Even then
we had to try many similar values to get NAO into a T-Pose,
because as soon as NAO couldn’t move his hands exactly
where we told him to, he didn’t even try to approximate the
pose and instead did something completely different. This will
still happen in the final result, which is the main reason, why
we would recommend using the angle calculation approach
instead of carthesian control. However, as we found some
usable values in this experiment, we were able to use them to
calculate the scale we had to apply to the normalized
landmarks we got from our picture to convert them into
NAO’s coordinate system.

One of the last experiments we did went back to one of our
first major problems: The python version mismatch between
Mediapipe (python3) and NAOqi (python2.7). As using
choreographe for more than it’s virtual robot for testing
quickly proved to be a major problem, we couldn’t use the
suggested workaround and instead decided on a server-client
approach with the server running on python2.7 and waiting for
values on a Unix-Socket, while a clients could be run in
python3 to send values to the server. This approach required
some serialization to be able to send the data but didn’t cause
any major problems otherwise.

This means the program can be used in the following steps:

1. Adjust the port and IP-Address in
MotionServer/nao_communication in the
get_session Method if needed (Or use a virtual robot
from choreographe as per default)

2. Run MotionServer/MotionServer.py in python2.7

3. Adjust the image path in Landmarks/dance.py to
point to the intended input image if needed

4. Run Landmarks/dance.py in python3

One of the last problems we had to solve was the fact, that the
virtual NAO did the right pose after everything was done, but
the actual NAO Robot had problems with it’s left arm. We still
aren’t quite sure what causes this but can only assume that our

49

NAO actually has a bug. We recorded a video of the virtual
robot doing what it was supposed to from which the following
screenshot is taken:

In comparison, this is the pose the physical NAO did with the
same program:

IV. CONCULSION
We first installed Nao software from Aldebaran, then

tried using ROS after which we tried communicating with
NAO using only Python 2.7 and NAOqi. After that we used

Google Mediapipe and CV Pose Recognition to get
landmarks from people on pictures and had to calculate the
corresponding angles using the given landmarks. In the end
we used inverse kinematics using code provided by SoftBank
editing it for our purpose.

In conclusion we tried to get a Nao robot to dance but

weren’t able to. Sadly, there was a lot to figure out and the
only goal we were able to accomplish in the end was getting
Nao to imitate poses from a picture at least virtually in
Choreographe. We accomplished our first milestone. That
means that ultimately, we couldn’t get Nao to dance or even
use video input in the time that this project was concluded.
This means that there is still a lot to accomplish for future
courses.

For the students that want to approach this project we

recommend trying to get behind the math that is required to
calculate angles from landmarks which we couldn’t do in the
time given. Use Mediapipe and don’t bother using ROS, you
should use the tools provided by Aldebaran such as NAOqi
to communicate with Nao. Also our Nao robot might have
been broken.

V. REFERENCES
Sources:
[1] https://www.aldebaran.com/en/support/nao-6/downloads-softwares
[2] https://releases.ubuntu.com
[3] https://www.ros.org
[4] https://developers.google.com/mediapipe
[5] https://developers.google.com/mediapipe/solutions/vision/pose_land

marker
[6] https://temugeb.github.io/python/motion_capture/2021/09/16/joint_ro

tations.html
[7] http://doc.aldebaran.com/2-8/index_dev_guide.html
[8] http://doc.aldebaran.com/2-8/naoqi/motion/control-cartesian.html

50

https://www.aldebaran.com/en/support/nao-6/downloads-softwares
https://releases.ubuntu.com/
https://www.ros.org/
https://developers.google.com/mediapipe
https://developers.google.com/mediapipe/solutions/vision/pose_landmarker
https://developers.google.com/mediapipe/solutions/vision/pose_landmarker
https://temugeb.github.io/python/motion_capture/2021/09/16/joint_rotations.html
https://temugeb.github.io/python/motion_capture/2021/09/16/joint_rotations.html
http://doc.aldebaran.com/2-8/index_dev_guide.html
http://doc.aldebaran.com/2-8/naoqi/motion/control-cartesian.html

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Racecar

Akim Zholdoshbek
Computer Science
Hochschule Hof
Hof, Germany

akim.zholdoshbek@hof-university.de

Jamilya Tankimanova
Computer Science
Hochschule Hof
Hof, Germany

jamilya.tankimanova@hof-
university.de

Yedil Yelkhan
Computer Science
Hochschule Hof
Hof, Germany

yedil.yelkhan@hof-university.de

Albina Zekenova
Computer Science
Hochschule Hof
Hof, Germany

albina.zekenova@hof-university.de

Aidar Chakiev
Computer Science
Hochschule Hof
Hof, Germany

aidar.chakiev@hof-university.de

Abstract— The paper includes three outlines for research on
an autonomous shipment vehicle driven by a Raspberry Pi 4,
with a particular emphasis on steering and control in a preset
environment. Each iteration highlights the system's capacity to
stay on a line, make exact turns, and move utilizing visual
processing and a Flask server for remote manipulation and
monitoring, regardless the constraints of the hardware. The
techniques varied in detail, but they all emphasize the creativity
and possible utilization of affordable technology in challenging
automation challenges inside unmanned delivery networks.

Keywords— Raspberry Pi 4, Flask server, Vehicle, Jetson
Xavier, RESTful , Nvidia , APIs, RealSense D435 depth camera,
GPIO , I2C, HTTP, Python, JSON

I. INTRODUCTION

Vehicle manufacturers and scientists identically are
becoming more and more interested in self-driving
technologies. We go into further depth about our completed
project, its primary elements, the challenges we had and how
we overcame them, and the final product based on the interest
in this vital topic and the issues listed below.

II. PROBLEM EXPLANATION

A. Autonomous Vehicle Navigation Challenges
The development of new algorithms and improving the

performance of current ones used for automation by vehicles
are relevant because testing scenarios for autonomous
vehicles are continuously becoming more complex, the
expectations for operating such machines in an industrial
environment are becoming stricter, and the requirements for
systems are becoming tighter. Even if a lot of self-driving car
experiments currently are performed out in ideal
circumstances and natural settings, under human supervision,
there are still several issues to be resolved before establishing
a completely autonomous vehicle:
1. For instance, autonomous vehicles navigate using radar

and lasers. The radar's basic method of operation is to find
radio wave reflections from nearby objects. The car will
constantly generate radio frequency waves while it is on
the road, and these waves will be reflected off of other
vehicles and other objects. The distance between the
vehicle and the object is determined by measuring the
amount of time needed for reflection. Will an automobile
be able to tell its reflected signal from another car's when
hundreds of cars are using this technology on the road?
For these kinds of devices, global industrialization

presents a challenge. In our example, we used the camera
- as an advanced kind of radar - to get an image from the
camera and calculate the angle of inclination of the line
along which the car will travel. And depending on the
angle, he sent requests regulating the movement of the car
along the line. While computer vision algorithms can
analyze images to detect lines and estimate their angles,
despite the ideal operating condition of the algorithm,
factors such as perspective distortion, lighting and
shading conditions can introduce errors into the angle
estimation process. Using camera data exclusively to
determine the angle of inclination can lead to unreliable
navigation solutions, especially in dynamic and
unpredictable conditions, when road markings may be
blurred or ambiguous. Therefore, it is better to check in
the ideal conditions created. However, as it was tested on
the yellow line - the path of the machine - on a white
background, since there is no particularly bright contrast,
we can confidently say that our machine can correct its
work despite such an obstacle in image processing.

2. To execute maneuvers without overshooting or
understeering, precise control algorithms are essential.
Dynamic aspects including tire grip, road conditions, and
vehicle speed must be taken into consideration by these
algorithms. To maintain stability and maneuver through
curves with ease, algorithms that can adaptively modify
steering inputs based on real-time feedback from sensors
must be developed. Precise turns are necessary in
industrial settings to efficiently navigate vehicles around
obstructions and confined areas, optimize output, and
reduce downtime—all of which contribute to a
competitive advantage in the marketplace. Our machine
is programmed so that, depending on the angle of
inclination of the line from 0 degrees relative to the
camera in the vertical plane, the robot turns the wheels in
the right direction - to the right or to the left.

3. Driving a car over a pre-made map is a complex task that
requires both the ability to make judgments in real time
to go to a destination and a deep awareness of the
vehicle's position within a bigger area. This task involves
a number of complex elements, including as path
planning, spatial awareness, and flexibility in the face of
route variations. The vehicle is ready to explore a square
map with four locations that has been prepared,
remembering its current location.

51

4. Handling hardware restrictions is a major problem when
navigating autonomous vehicles, and this challenge is
exacerbated in projects where initial hardware selections
are met with obstacles that require modifications. Due to
hardware problems with the Jetson Xavier, we had to
switch to the Raspberry Pi 4 for our project. These
incidents highlight how crucially hardware capabilities
and the overall system design interact. The complexity of
algorithms that can be implemented and the speed at
which computations can be completed are directly
influenced by the hardware platform's processing
capability. In our instance, the Jetson Xavier's processing
power constraints forced us to reevaluate our computing
needs and the necessity for a more scalable and affordable
substitute.

B. Previous works
Daniel Hanik's paper "Aufbau und Implementierung eines

Elektrofahrzeugs mit REST API zur Steuerung und
Kamerabildübertragung" offers a thorough walkthrough of
building an electric car that has a camera for real-time picture
transmission. Here is a thorough synopsis based on the
material that makes up 74% of the document:

The project's goal is to create a camera-equipped remote-
controlled car, with an emphasis on component assembly and
setup for vehicle control and camera connectivity. The
objective is to build a vehicle equipped with a camera,
combine the camera, and set up a server for RESTful control.

Using Nvidia's SDK Manager for setting up the operating
system simplifies setup by installing all required software
elements. It involves choosing the desired both software and
hardware elements, setting up the operating system, libraries,
hardware function APIs, additional tools, and development
assistance samples. To operate the car, a Python script was
developed that makes use of the Adafruit_Servokit library to
modify the servo motor degrees while controlling the speed of
the Microcontroller. It details the values for forward and
backward movement as well as the tilt settings for turning.

The task at hand in this document serves as an illustration
of prior work and focuses on setting up the Jetson Xavier NX
to function as a vehicle's primary control unit. Emphasize the
incorporation of a camera, the construction of mechanical
parts, including the vehicle and a 3D-printed case, and the
development of a Flask server to allow control of the vehicle
and live picture signal extraction.

III. CONTRIBUTION
Our project is distinguished by a strategic shift to the

Raspberry Pi 4 as the cornerstone of our autonomous racecar
design, which is illustrated by its exceptional adaptability and
cost effectiveness. The desire to build a system that balances
affordability with strong computational capacity, which will
enable autonomous technologies to be made available to the
wider public motivated this choice. The Raspberry Pi 4, with
its high computing power, meets the needs of real time image
processing and vehicle control well.

Our project includes significant algorithmic developments
in line following and turn execution, pushing the limits of
what is possible in autonomous navigation.Our navigation
system is built on a sophisticated algorithm capable of

interpreting live video feeds and determining the racecar's
route with remarkable precision. The vehicle maintains a
precise course by estimating the slope of the line and
dynamically modifying the steering. Turn execution is also
upgraded; the system recognizes specified markers or
orthogonal lines and executes sharp 90-degree turns with the
reliability and precision that set a new bar for autonomous
vehicle navigation.

A. Software Architecture and Remote Control.
The autonomous racecar project's software design is built

around a Flask server running on the Raspberry Pi 4. This
server is carefully setup to handle HTTP requests for two key
functions: vehicle control and image retrieval from the
onboard camera. The Flask framework was chosen for its
lightweight design and ease of deployment, resulting in a
responsive and efficient interface for real-time interactions
with the racecar.

The server configuration entails setting specific endpoints
for command receiving (e.g., moving ahead, turning, and
stopping) as well as broadcasting live video feed from the
camera. This architecture allows for a modular approach, in
which the Raspberry Pi 4 works as a direct interface to the
car's electronics while also serving as a gateway for external
commands and data processing.

One of the most significant advantages of this Flask server
integration is the ability to perform remote control and
compute offloading. By detaching the computational heavy
lifting from the car's onboard system, the concept takes
advantage of external computers' more powerful processing
capabilities. This design choice improves the system's overall
efficiency and capabilities, allowing for real-time image
analysis and complicated decision-making processes without
taxing the Raspberry Pi's resources.

The strategic decision to move computing work to an
external laptop significantly improves the project's navigation
capabilities. This method overcomes the Raspberry Pi 4's
computing limits, allowing for the implementation of more
advanced image processing and decision-making algorithms.
For example, the external laptop can do complex
computations such as evaluating the video stream to detect
lines, interpret signs, and make navigation decisions, which
are then transmitted back to the Raspberry Pi for execution.

B. Hypothesis and Goal
• Our goal is to create an adaptable system that can be

readily adjusted or expanded to satisfy diverse
demands or to investigate different elements of
autonomous navigation. Our project's hardware and
software components underscore the need of
adaptability. We ensure that different sensors and
components may be easily integrated, as well as that
programming languages, frameworks, and algorithms
are flexible.

• One specific goal is to create algorithms that allow the
racecar to detect and follow a course with high
accuracy, regardless of external factors such as lighting
changes or surface textures.

• Another important requirement is to make exact turns,
particularly 90-degree turns, which are necessary for
navigating specified courses or surroundings. The goal

52

is to precisely detect indications for these turns and
ensure precision in control mechanisms so that the
vehicle can navigate effectively without human
assistance.

C. Methodology
System Architecture Overview:

• Raspberry Pi 4: The Raspberry Pi 4 is the core of our
self-driving racecar, acting as the central control unit
that interfaces with the vehicle's electronics. This
includes controlling motors and sensors through
GPIO pins and the I2C interface. Raspberry Pi 4 was
chosen because of its good blend of processing power,
cost-effectiveness, and strong community support,
making it a perfect platform for creating and
experimenting self-navigating solutions.

• Flask Server: A Flask server is installed on the
Raspberry Pi 4, serving as the primary
communication gateway between the racecar and
external computing resources. The major functions of
this server include receiving picture data from the
onboard camera and processing HTTP requests for
vehicle control directives such as steering and
acceleration control.

Integration with External Computing Resources:

• To improve the racecar's navigation skills without
sacrificing operating efficiency, complex
computational duties are delegated to external
computing resources such as a laptop or desktop
computer. This deliberate move allows for more
advanced image processing and decision-making
algorithms that outperform the Raspberry Pi 4's
computational capabilities.

• The Raspberry Pi 4's established communication
protocol with the external computer provides rapid
and secure data exchange. Commands are transmitted
and received in a structured format, often JSON for
commands and video streaming protocols, with
required security mechanisms such as authentication
included to protect command requests.

Image Processing and Navigation Logic

• The camera's integration with the Raspberry Pi 4 is
essential for recording real-time video, which is
required for navigation. The video data is sent to an
external computer and processed using particular
algorithms to recognize lines, understand visual cues
for turns, and aid in map navigation.

• The algorithms created to process the picture data
form the basis of our navigation logic. These
algorithms are intended to precisely compute the
slope of a line for line following, identify specific
markers or configurations for turning, and determine
the vehicle's position on a map for effective
navigation.

System Operation Flow

• The operational workflow of the system is
streamlined, beginning with image capture and
ending with command execution. The Flask server is

important for receiving processed commands from the
external computer, which are then translated into
actual actions by the Raspberry Pi 4, effectively
driving the racecar's motors and steering mechanism.

• Our system uses feedback mechanisms and dynamic
adjustments to provide the highest level of navigation
accuracy. These may include real-time steering
corrections based on continuous image analysis or
changes to navigation algorithms in reaction to
performance data, guaranteeing that our self-driving
racecar can negotiate difficult situations with
precision and reliability.

D. Implementation Steps
1. Switch from Jetson Xavier to Raspberry Pi 4.
The Nvidia Jetson Xavier was initially used in the project
due to its superior processing capabilities, which were
appropriate for challenging image processing jobs in
autonomous navigation. However, we ran into substantial
hardware obstacles, such as car communication issues,
power efficiency constraints, and integration challenges.
These challenges prompted looking for a more appropriate
and dependable solution.
After considering several options, we chose the Raspberry
Pi 4 for its low cost, adequate processing capabilities, huge
community support, and hardware compatibility. To fit the
Raspberry Pi 4's design, we needed to make significant
adjustments to our system setup and software
configurations. We also had to change peripheral
connections to enable flawless integration with the
vehicle's existing components.
Switching to the Raspberry Pi 4 successfully cured our
original hardware concerns, improving the project's
overall dependability and performance. The system
became more stable, with increased connectivity and
power efficiency. However, this transfer demanded certain
changes, such as adjusting processing power assumptions
and changing the development environment to meet the
Raspberry Pi 4's specifications.
2. Development of the Flask Server
A lightweight, efficient server was required for real-time
control commands and picture data coming from the car's
camera. The Flask server was chosen because to its ease
of use and efficacy in developing RESTful web services,
allowing for easy communication between the automobile
and external computing resources.
On the Raspberry Pi 4, we installed the Flask server and
used tools like Flask-RESTful to easily create APIs.
Endpoints were configured on the server to receive control
commands (e.g., steering, acceleration) and broadcast
camera images. This configuration used JSON for
command data formats and established protocols to ensure
secure and efficient data transport.
The Flask server greatly improved communication
between the external computing resources and the
Raspberry Pi 4. It enabled more responsive and
dependable racecar control, as evidenced by real-time
picture processing and command execution, confirming
the system's increased operating efficiency.

53

3. Algorithm Design for Navigation.
Developing strong algorithms for line following, turn
execution, and map navigation was important for attaining
precise and autonomous racecar control. These necessary
navigation functions are critical to the vehicle's capacity to
navigate complex settings independently.

• Line Following: We created algorithms that used
images from the onboard camera to detect lines and
determine their slopes. Based on these estimates, the
system modified the steering to keep the automobile
on course.

• Turn Execution: The system is programmed to
recognize specific markers or configurations that
indicate the necessity for a 90-degree turn. When
detected, it properly regulated the vehicle's turn.

• Map Navigation: Algorithms were created to
understand the car's position inside a predefined map
and make real-time navigation decisions to reach
specified places while taking into consideration the
vehicle's current location and the layout of the
environment.

These algorithms greatly enhanced the racecar's
navigation accuracy and dependability. Tests revealed

improved precision in line following, successful execution
of 90-degree turns, and good navigation via predetermined
routes, demonstrating the algorithmic approach's
usefulness.

IV. CONCLUSION

Our research paper summarizes the experiment's
approach, methods, and important findings, making
judgments about how well it performed in fulfilling its goals,
its consequences for navigational autonomy, and its potential
effect on the field. Furthermore, it advocates determining
future research areas, implying possible enhancements, and
developing new features such as broadened directions
algorithms or cooperation with other technologies,
emphasizing the document's goal of contributing totally to the
field of robotics and autonomous vehicle navigation.

REFERENCES

[1] Daniel Hanik, “Aufbau und Implementierung eines Elektrofahrzeugs
mit REST API zur Steuerung und Kamerabildübertragung”,
Hochschule für Angewandte Wissenschaften Hof, 15.09.23.

[2] Daniel Hanik, “Entwurf und Umsetzung einer Smartphone-App zur
Steuerung eines Fahrzeugs mit Echtzeit-Kamerabildübertragung unter
Einsatz von KI”, Hochschule für Angewandte Wissenschaften Hof,
15.09.23.

54

	01 Doku_smart_firetruck
	02 Drawing_Dobot_final backup
	03 mainNotEditable Kopie
	04 PaintingByNumbersPaper Kopie
	05 paper gorf
	Introduction
	Approach
	System Architecture
	Robot Control Module
	NaoFollower
	YOLOClient and YOLOResult
	NaoPictureClient
	NaoMotionService
	EventService
	NaoSpeechService
	NaoLedService
	PictureClient

	Tracking Module

	Experiments
	Straight-line walking
	Curve tracking
	Tracking with multiple detections
	Tracking and following with varying TrackIDs
	Tracking and following in crowded environments

	Conclusion

	06 RcpUno Paper backup
	State of the art
	Approach
	Hardware
	UNO card detection with OpenCV
	Color detection with OpenCV
	Final Approach: ColorMath

	Card number detection with YOLOv8
	Creating and collecting training data
	Training
	Combination of OpenCV and YOLOv8
	System Design
	Game Logic
	Card detection
	Control of the robotic arm

	Experiments
	Picking up the cards
	Structuring the environment for the robot

	Conclusion

	07 Vovracar - Paper Kopie
	I. Introduction
	II. The Beginning
	A. Idea
	B. Materials
	C. Concept

	III. Development
	A. First Approach
	B. Testing the python scripts
	We had a lot of scripts on the race-car and it took some time to get through them. We found two scripts which were usable for us. The first one was named „car.py“ and the second one was called „carServer.py“. These scripts contain all the controls for the race car and got used in an app developed by another student. With the first script we were able to test the controls via the command line, while with the ,,carServer.py,, script the controls were controllable via the API endpoints.
	We encountered two problems while testing the scripts. The car didn’t react to any input we made, but after changing some ports we were able to give commands via console. The other problem we had to solve is the camera stream. Firstly, we tested the camera functionality in the browser which didn’t work at the beginning. After some bug fixing we got the video, but only in form of pictures and not as a video. We had to rewrite the script to get a video stream. That worked and we could get the video stream on our MacBooks.
	C. Meta Quest 2
	D. First problems and challenges
	E. Access to video stream finished
	F. Voice Control
	G. Further improvements

	IV. Instructions
	V. Testing
	VI. Problems
	VII. Future Projects
	VIII. Lessons Learned
	IV. Conclusion

	08 c4arm document origin
	09 applied_robotics_fixmix Kopie
	I. Introduction
	II. State of the ART
	III. Our Goal
	IV. Components
	V. Design
	VI. Chasis
	VII. Hardware
	VIII. Software
	A. Manuel Input
	B. Input via web interface
	C. Best of both worlds

	IX. Functionality
	X. Issues we faced
	XI. How to use
	A. Manually
	B. Web application

	XII. Tests
	XIII. Experiment
	XIV. Future revisions and Conclusion
	XV. Sources and attachments

	10 Dancing Nao Robot
	11 delivery_racecar_paper

