

Artificial Intelligence in Robotics - WS2022

As we progress further into the 21st
century, the importance of artificial
intelligence (AI) and robotics becomes
increasingly evident. These
technologies have the potential to
revolutionize industries, improve the
quality of life, and drive human
progress to unprecedented levels. With
their growing influence, it is crucial to
understand the significance of AI and
robotics in shaping our future.
For economic growth and job creation,
AI and robotics are transforming
industries by automating repetitive
tasks, increasing productivity, and
reducing operational costs. While there
are concerns about job displacement,
these technologies have the potential
to create new job opportunities in
emerging sectors, such as AI and
robotics engineering, data science, and
human-machine interaction design.

In healthcare, AI and robotics are
revolutionizing healthcare by enabling
early diagnosis, personalized
treatment, and improved patient care.
From medical image analysis and drug
discovery to robotic surgery and
rehabilitation, these technologies are
enhancing the efficiency and
effectiveness of healthcare services
while reducing the burden on
healthcare professionals.
These are only a few examples.
Therefore, the need for experts is
constantly growing. In the course ‘ai in
robotics’ students implemented
various projects, where they used state
of the art methods from ai and robotics.

Christian Groth (publisher)
University of applied sciences Hof
2023
DOI 10.57944/1051-136

Table of contents

Creating a Chess-Playing Robot Using Python and a Nyrio Ned 2

1

Herbie, the self driving RC Car

5

Creation process of a protoype for autonomous driving in the Formula Student

10

Neural Flappy Bird using EMOTIV

14

Creating a Chess-Playing Robot Using Python and
a Nyrio Ned 2

1th Sebastian Rainer Bär
Department of Robotics

Hof University of Applied Sciences

Hof, Germany
sebastian.baer.2@hof-university.de

2th Johannes Matus
Department of Robotics

Hof University of Applied Sciences

Hof, Germany
johannes.matus@hof-university.de

3th David Samuel Weiß
Department of Robotics

Hof University of Applied Sciences

Hof, Germany
david.weiss@hof-university.de

4th Dejan Reinhardt Fraas
Department of Robotics

Hof University of Applied Sciences

Hof, Germany
dejan.fraas@hof-university.de

5th Eugen Kudraschow
Department of Robotics

Hof University of Applied Sciences

Hof, Germany
eugen.kudraschow@hof-university.de

6th Ashanga Wayi Elvis
Department of Robotics

Hof University of Applied Sciences

Hof, Germany
ashanga.elvis@hof-university.de

Abstract—Implementation of a chess playing robot with visual
representation of the board, the ability of the robot to make
smart decisions regarding the current game status based on AI,
the option to input human moves by speech and to train the
algorithm for different chess openings.

Index Terms—nyrio ned 2, chess, chess engine, chess algorithm,
speech recognition, object grabbing, python, stockfish chess
engine, stockfish

I. INTRODUCTION

This paper presents a method for implementing a chess
game in Python for a Nyrio NED 2[7] robot to play against a
human opponent on a physical board. The human player may
input their moves through a graphical user interface or by
speaking, and the computer must then determine the optimal
response based on the current state of the digital board. To
achieve this, the project may utilize an in-house chess AI or
the open-source Stockfish[4] engine to calculate the robot’s
next move. Once this calculation is complete, the robot must
be provided with the necessary information to pick up and
move the appropriate chess pieces, including details on the
type of move (e.g. normal, capturing, en passant, castling) and
the types of the pieces being moved.

II. APPROACH / CONTRIBUTION

A. Hypothesis

The hypothesis of this paper is that it is feasible to design
and implement a chess game in Python for a Nyrio NED 2 [7]
robot to play against a human opponent on a physical board.
The computer system must be able to accurately analyze the
current state of the digital board and determine the optimal
response to the human player’s moves, and the robot must be
able to execute the chosen move by accurately manipulating
the necessary chess pieces.

B. Methodology

1) Game Interaction: To represent the current state of the
chess board visually, pygame[1] is used to draw the current
board to the screen and make it possible to interact with the
board. Further information about the game, like the turn of
the player or made moves and AI decisions are output to the
console. The graphical user interface can be utilized to move
pieces by clicking on a piece on a square and afterwards
clicking on the square the piece should be moved to.
During the Move of the robot the board is not responsive
and does not accept input. The board is drawn based on a
2D Array representation, which is produced by a Gamestate
class. In addition the human player can reset the game, undo
moves, record own opening strategies or input moves via
speech through pressing keys on the keyboard. The move of
the robot also needs to be triggered manually by pressing the
corresponding key after the human player input their move.
The already mentioned Gamestate class is used to wrap the
python chess library[2] to handle game logic. The Gamestate
class provides methods for making moves, interacting with
the chess-AI, and telling the robot which moves to execute. It
processes the user input and mediates between robot AI and
the user. It also provides functions for converting between
chess notation and tuple coordinates, and for accepting natural
language descriptions of moves. The GameState class itself
provides the representation of the chess board in a format the
GUI can interpret, based on the chess library.
To utilize the open source chess engine Stockfish[4], the Script
additionally uses the python stockfish wrapper library[3]. The
Stockfish engine[4] itself must be installed separately on the
system and the Path additionally needs to be specified within
the code. Alternatively the self made chess-AI can be utilized.

2) AI/Chess Engine: The chess AI is an implementation to
calculate the best possible next chess move. It defines some

CG
1

constants, including values that assign a numeric value to each
chess piece. The AI operates on the current state of a chess
game.
In order to improve the performance of the chess AI during
the opening phase of the game, we have implemented a
system that allows the user to record and save specific opening
strategies with a maximum of 20 moves. This is achieved
through the use of a database, specifically a CSV file, which is
accessed and modified through a Database Connector. The user
can initiate the recording of an opening strategy by pressing a
designated key, and then proceed to make the desired opening
moves.
These moves are then stored in the database for future ref-
erence. While the use of a CSV file for storing the recorded
opening strategies may not be the most efficient method in the
case of a large database, the current size of the database does
not significantly impact performance. To counter this issue, a
maximum of 20 moves per opening was implemented in the
opening database. As a result, after 20 moves, the opening
database does not need to be checked and the AI can make
its move more efficiently. Additionally, the use of a CSV file
allows for easy modification of the database system in the
future if needed, simply by modifying the Database Connector.
Basic and important opening strategies have already been
included in the database. If no opening move can be found,
it uses the negamax algorithm with alpha beta pruning to
determine the best move.
The negamax algorithm is a search algorithm used in two-
player games to find the best move for a player. It works by
assuming that the opponent will always choose the move that
is best for them, and therefore the player should choose the
move that is worst for the opponent.
The negamax algorithm is a recursive function that calculates
the best score that can be achieved from that state. It searches
through all possible moves and their resulting game states, and
assigns a score to each one based on how good it is for the
player. It then returns the maximum of these scores, since the
player will always choose the move that is best for them.
The current maximum possible depth is 3, meaning the AI
looks 3 moves ahead. Values above 3 would result in perfor-
mance issues and higher waiting times when calculating the
best next move.
Alpha-beta pruning is a technique used to improve the effi-
ciency by cutting off branches of the search tree that cannot
possibly produce a better score than what has already been
found. It works by maintaining two values, alpha and beta,
which represent the best score that the current player and the
opponent can achieve, respectively. If the score of a move is
greater than or equal to beta, the search can be stopped, since
the opponent will not choose a move that is worse for them
than what they already have. Similarly, if the score of a move
is less than or equal to alpha, the search can be stopped. This
allows the search to avoid exploring unnecessary branches.
The board is scored based on the current position of the chess
pieces. If the position is a checkmate, it returns a high constant
to indicate the significant positional advantage or disadvantage

of a move. Otherwise, it returns the material score of the
position, which is calculated by summing the values of all
the pieces on the board using the values of the chess pieces
(pawn: 1 point, knight: 3 points, bishop: 3 points, rook: 5
points, queen: 9 points, king: infinite points).
It also includes positional bonuses for each piece, which
are taken from arrays where the positions for every type of
piece are scored (Pawns and knights are more valuable in
the middle of the board for example). The positional bonuses
are multiplied by a constant value to tweak the weight of the
positions. By adjusting the value, it is controllable how much
of an effect the positional bonuses have on the final score. If
the value is set to a high value, the positional bonuses will
have a greater impact on the final score, while if it is set to a
low value, the positional bonuses will have a smaller impact.

3) Speech Recognition: Several speech recognition libraries
were tested. Finally, we chose the Python library Speech
Recognition [5] to process audio input, since some tried
speech recognition tools are either not available for free or
did not fit our needs. PyAudio[6] is used to record audio input.

Since speech recognition does not always accurately
generate what is spoken, the spoken audio signal must first
be filtered to avoid confusion of the spoken expression. The
corresponding format must be a string with the start and end
coordinates of the move. Furthermore, speech recognition also
supports the game mechanics castling and pawn promotion.
When recording a move, a sound is played to indicate that
the recording is starting. After the recording is done, another
sound is played to show that the recording is finished. If the
recording is not recognized an error sound is played instead.

Speech recognition starts when it is the player’s turn.
In addition, the ”a” key must be pressed. After the key is
pressed, a sound is played, which signals that recording for
speech recognition is starting. Voice command must be given
within 1.5 seconds, otherwise the recording will be stopped.
During recording, the player has 5 seconds to define the
voice command. After recording, the resulting string is then
analyzed and filtered for keywords. If these keywords are not
present or the voice command is not correctly understood,
nothing is passed to the game logic and a sound is played
which signals that the move is invalid.
The move string for a valid move can include the keywords:

• For a valid move: ”from” and ”to”
• For casting: ”side”
• For the pawn promotion the respective figure to promote

to
Due to the different pronunciation of words and numbers,

incorrect interpretations can occur. Thus leading to an invalid
move. To minimize these errors, words that sound similar, such
as ”form” and ”from”, and incorrectly interpreted numbers
are stored in a library so that they can be filtered afterwards.
Speech recognizer matches the confusing words to the correct
key and replaces it. Finally, a string in the chess notation

CG
2

format, e.g. ”a2a3”, is created.
The accuracy of the given input heavily depends on different
circumstances such as audio quality, environmental noises, the
duration of the record, the pronunciation of the individual
along with the context it is transmitted to. In order to avoid
any possibility of confusion the record has to be evaluated and
possibly replaced by the right keyword that is necessary for
further processing.
To ensure that the game logic accepts the edited format,
several moves were tested. Any mispronunciations that were
leading to confusion were added to the library to make speech
recognition more reliable. A quality microphone also mitigates
confusion of the spoken words.

4) Robot: The Robot we are working with is the Niryo
Ned 2 [7]. To control the robot we have used the Python
library Pyniryo [8].

Initially the robot should be controlled via WiFi. Due
to the fact that the speech recognition needs an internet
connection and two wireless connections are not possible, we
had to make a physical connection with the robot via Ethernet.

In general the robot is capable of playing either color,
which can be determined at the start of the game. The robot
object gets initialized depending on the choice, true for
playing with white and false for playing with black.

Because we do not have any visual object detection we
have resorted to the realities of the chessboard. The length of
the board are for the outside 38cm and for the field 32.5 cm.
The length of one square is 4cm. Our pieces heights are in
the range from four to eight centimeters. Therefore we have
determined a fixed entry point for the robot centralized at
the side of the chessboard, depending on the color the robot
is playing. From here on the piece coordinates do not differ
and could be found out by a trial and error approach. The
fields for the captured pieces and the substitute queen for
promotion are next to the chessboard, depending on the color
the robot is playing with. We have used an array with 15
different spots where for each capture the index of the array
gets incremented by one. This was managed by implementing
a Chess-Fields class which contains the necessary information.

For the moves we had to cover the following possibilities:
Moving a piece without a capture, capture a piece by moving
it on the side of the board and moving the capturing piece
to the destination square afterwards, castle rook and king
depending on the side (Queenside, Kingside Castling), en
passant captures.

To facilitate the proper tracking of promoted pawns
during a chess game, we have implemented a system that
converts their moves to those of a pawn for the purposes
of the robot determining the right physical piece to grab,
while maintaining the FEN (Forsyth-Edwards Notation)
representation of the promoted piece for the AI. This is

necessary because, in the context of the program, it is not
possible to physically substitute the promoted pawns with
the piece they were promoted to, but the robot needs to grab
the right physical piece even if it was promoted to another one.

In order to accurately track the positions and movements
of promoted pawns, an array is used to store and update
positions of promoted pieces while they get handled like
the pieces they were promoted to by the Gamestate. This
allows the program to maintain an accurate representation
of the positions and movements of promoted pawns while
preserving the appropriate FEN representation.

To successfully grab and place pieces without them getting
out of alignment, we used a chess-set where the pieces had
sharp edges. This gave the opportunity to pick every piece
either from the x-angle or the y-angle.
If a piece is picked up from the board the robot needs to
know the height of the piece so that the gripper has the right
angle.
If a piece is placed on the board, or beside it due to capture,
the robot needs to know the height of the piece so that a
collision of the picked up piece and the target ground is
avoided. This was managed by implementing a class which
contains all the necessary information in order to do so. Due
to the fact that the height of the pieces differ, especially the
queen and the king, the gripper could not reach the minor
piece without collision. We had to implement an algorithm
that turns the gripper either when picking or placing a piece
if it stands next to a king or a queen on the x-axis. The
code for the robot checks whether the king or the queen is
standing or will stand next to the target field. If so the gripper
is turned by 90 degrees and turns back to default after success.

III. EXPERIMENTS

A. Description

The experiment aims to evaluate the effectiveness of fil-
tering specific words in minimizing the error rate of speech
commands. The experiment is divided into two parts. First,
various possible moves are spoken multiple times and pro-
cessed without filtering. In the second experimental setup, a
particularly error-prone move is spoken and processed with
filtering, followed by the same move spoken again without
filtering. The results are then compared to assess the extent
to which filtering improves the output. Filtering is necessary
as there is often misinterpretation of words by the Google
API. Prior to the start of the experiment, certain restrictions
were established to ensure better test results, such as ensuring
that the same speaker speaks the moves under identical noise
conditions. The Python library ”Speech Recognition” was used
to perform the experiments. A custom-written library was
used for filtering, which replaces misinterpreted words. The
commands were spoken through a headset.

CG
3

B. Experiment I

For our test data, we first attempted various moves without
any filtering. The moves were spoken multiple times. Our
dataset was limited to the following moves: [A2A3, B2B3,
C2C3, D2D3, E2E3, F2F3, G2G3, H2H3, A2A4, B2B4,
C2C4, D2D4, E2E4, F2F4, G2G4, H2H4]. During the
implementation, 63% of the test cases failed.

37%not filtered
63%

0% 25% 50% 75% 100%

C. Experiment II

The move H2H3 was particularly prone to errors. We
conducted some tests both with and without filtering to
determine whether filtering could improve the accuracy of the
determined move. The filtering resulted in a correct outcome
in 81% of the test cases. In contrast, only 6% of the test
cases without filtering yielded a correct outcome.

81%filtered
19%

6%not filtered
94%

0% 25% 50% 75% 100%

D. Conclusion

The experiment aimed to evaluate the effectiveness of
filtering specific words in minimizing the error rate of speech
commands. The results showed that filtering significantly
improves speech recognition accuracy, particularly for error-
prone moves like H2H3 and H2H4. The use of filtering
resulted in a 81% correct outcomes compared to 6% without
filtering. The experiment was conducted under controlled con-
ditions using Python. In conclusion, filtering improves speech
recognition and results in a smoother and more efficient game
flow.

IV. CONCLUSION / FUTURE WORK
In conclusion, the discussed project aimed to develop a

chess-playing robot that could play against a human opponent
on a physical board. Through the implementation of a chess
AI, the robot was able to analyze the current state of the board
and determine the optimal response to the human player’s
moves. The robot was then able to execute the chosen move
by manipulating the appropriate chess pieces. The project
was successful in demonstrating the feasibility of creating
a chess-playing robot using a combination of software and
hardware, and in evaluating the performance and capabilities
of the resulting system. The project has shown that it is
possible to build a functional and effective chess-playing robot

that can provide an engaging and challenging experience for
human opponents.

During the implementation of the project, we realized that
the quality and performance of the implemented chess AI
depends heavily on the method that evaluates the board after
each move. To make this more precise, an efficient way would
have to be found to include possible attacks or defenses of
the pieces and to evaluate the board in more detail. So far,
this has caused considerable performance losses and was
therefore excluded from the final program. Additionally a
different database system could potentially be implemented
to improve search performance for chess openings. Using
Stockfish does eliminate those problems.

Furthermore the package used for speech recognition
requires internet connection. It is possible to use the API
offline. However some additional files are needed that take
up too much memory. Making speech recognition available
offline without heavily increasing the project size would be a
beneficial addition.
In addition to that, implementing a camera system to track
the positions of the pieces on the board would be a useful
addition to the project. This could potentially improve the
efficiency of the system by eliminating the need for manual
input of moves and allowing the computer to directly observe
the state of the physical board. Overall, incorporating a
camera system into the project could bring several benefits
and enhance the capabilities of the system.

V. REFERENCES

1 https://www.pygame.org/news
2 https://python-chess.readthedocs.io/en/latest/
3 https://pypi.org/project/stockfish/
4 https://stockfishchess.org/
5 https://pypi.org/project/SpeechRecognition/
6 https://pypi.org/project/PyAudio/
7 https://niryo.com/product/ned-2-education-robotics-arm/
8 https://docs.niryo.com/dev/pyniryo/v1.1.2/en/index.html

CG
4

Herbie, the self driving RC Car
1st Sebastian Peschke

MC 5
Hof University
Hof, Germany

speschke@hof-university.de

2nd Ron Polenthon
MC 5

Hof University
Hof, Germany

rpolenthon@hof-university.de

3rd Hannes Steinel
MC 5

Hof University
Hof, Germany

hsteinel@hof-university.de

4th Johannes Strecker
MC 5

Hof University
Münchberg, Germany

jstrecker@hof-university.de

Abstract—This document is an introduction to our self-driving

RC car Herbie. This vehicle works with a 360° microphone, HD

camera and an Nvidia Jetson as processor. This vehicle waits for

sound in its range and follows a detected person. The detection

works with an objection detection AI model. In this paper we

explain how we built and programmed the car.

Index Terms—robotics, computer vision, speech recognition,

self-driving, python, jetson

I. STATE OF THE ART

In this paper we will explain how we built Herbie, our
self-driving RC car. In order for this to work we had to first
assemble the car, and then we had to also implement the self-
driving mechanism.

Most of the hardware we used is readily available and just
had to be connected together. The base of our car is a Red
Cat Blackout RC car. We used the provided AI-Car STL files
to 3D print all the parts we needed to mount our components
to Herbie.

As the main logic board for the project we used a Jetson
Xavier NX Developer Kit. To control the cars’ motors, we
utilized an Adafruit PCA9685 16-channel servo driver.

The microphone we worked with is a ReSpeaker Mic Array
v2.0. We used two different cameras throughout the project.
The first is an Intel Realsense Depth Camera D435 and the
second a generic Logitech webcam.

Fig. 1. The completed car

For the software we tried to use mostly pre-made code
snippets but ended up having to do a lot of coding on our
own.

Since we used an NVIDIA Jetson as our compute unit, we
used L4T [1], a proprietary Ubuntu based OS from NVIDIA,
as our operating system. Our programming language of choice
for this project was Python because there are a lot of useful
libraries for the parts we have.

We utilized the ReSpeaker’s library [2] for example to
automatically locate from which direction a speakers voice
comes from and also to control the RGB LED ring around the
microphone [3].

To control the car we used both the Adafruit PCA9685 [4]
and servo kit [5] libraries.

We also utilized a pre-trained roboflow model [6] for our
object detection and the roboflow inference server docker
container to run the model locally on the Jetson.

In this paper we will not only show how we built and
programmed Herbie, but also how to use and recreate it.

II. APPROACH

A. Goal
Our goal for this semester was the creation of a scale model

of a self-driving car. The car should be able to listen to a
wake-up word for activation and automatically drive towards
whoever is speaking, whilst avoiding obstacles.

During the project however, our goals have changed a little
because of a shift in focus to certain aspects, such as object
detection.

Fig. 2. 3D printing parts for Herbie

CG
5

B. The hardware
As a base for our self-driving car we used a default RC-car.

To set everything in place we 3D-printed (“Fig. 2”) mounts
for our camera, microphone and the processor.

Fig. 3. The complete hardware of Herbie

An Nvidia Jetson Xavier NX Developer Kit is used as the
main processor. The Jetson Xavier NX Developer Kit is a
powerful tool for developers.

It offers a comprehensive set of features, including an 8-core
ARM CPU, a 512-core Volta GPU, and a wide range of I/O
options. With this kit, developers can create applications that
take advantage of the latest AI and deep learning technologies.

Additionally, it provides a robust platform for developing
and deploying embedded systems.

The camera is a default Logitech HD Webcam. In our case
this was the right choice because we don’t need high quality
output or special features like depth detection.

We used a ReSpeaker Mic Array v2.0 as the microphone.
It features four microphones arranged in a circular array, pro-
viding 360° sound capture capability and noise cancellation.

Additionally, it has an integrated LED ring that can be used
for visual feedback. We also used an XBOX One Controller
as a remote control for the car and to switch between different
operating modes.

Fig. 4. The daughter-board connection on the Jetson

After a couple of experiments we figured out how to connect
the Jetson to our daughter-board in order to control the motors.

As you can see in “Fig. 4” we connected the i2c connectors
as follows:

• Ground(brown) to Pin 25
• SCL(orange) to Pin 28
• SDA(yellow) to Pin 27
• VCC(red) to Pin 17
We used an Adafruit PCA9685 16-channel servo driver as

an i2c daughter-board to control both the main drive motor
and the servo motor for steering.

Fig. 5. The motor connections to the daughter-board

As shown in “Fig. 5”, we connected the servo motor to
channel 1 on the PCA9685 and the drive motor to channel 0.

C. The software

The biggest problem we had to solve was the software
for Herbie, since we didn’t only have to program the RC
functionality from scratch, but we also had to add voice control
and object detection to the car. This part of the project took
by far the most time.

In the following sections we will go into detail how we
solved each of the three different main program parts: driving,
speech recognition and object detection. At the end we will
also explain how those program parts come together and
interact with each other.

1) Driving: Since we connected our motors to an Adafruit
PCA9685 we were able to use the Adafruit ServoKit for
Python to control the car. Whenever the drive of our car gets
initialized, we first set up the main drive motor as a continuous
servo and the steering servo as a standard servo motor.

This way we can use the built-in ServoKit functions
throttle and angle with the motor and servo respectively.
To further simplify the control structure we defined two
methods setSpeed() and setDirection().

The first normalizes the speed control from -1 (full speed
reverse) to 1 (full speed forward) with 0 being full stop. The
second method normalizes steering from -1 (full left) to 1 (full

CG
6

right) and translates those directions to angles for the servo
motor.

2) Speech Recognition: After experimenting with multi-
ple options for speech recognition as described in “Experi-
ments”(Chap. III-C), we settled on using the built-in function
of the ReSpeaker microphone array to calculate, where the
speech is coming from.

We used this data to divide the 360° around the car into 4
sectors:

• “in front”: don’t move
• “to the left”: turn 90° left
• “to the right”: turn 90° right
• “behind”: turn 180°
In order to correctly respond to those cases, we programmed

three different methods, which turn the car by 90°’s left, right
or 180° by turning and then driving for the exactly correct
amount of time. After Herbie detects voice and automatically
turns into the direction of the sound, it switches itself into the
“Object Detection Mode”.

3) Object Detection: After a lot of trial and error we found
the roboflow inference server docker container for our object
detection. This way we could easily run any roboflow model
directly on the Jetson’s GPU and quickly query for results via
the roboflow API running in the docker container.

The API also returns any detections as a simple JSON
object, which we can use in our Python codebase. We cur-
rently use the pre-trained roboflow model “Human v2”[6] to
recognize people in front of the car and follow them around.

To compute the output json from the model we used an
easy algorithm. The json automatically detects the center of
the detected object.

Fig. 6. Example image for the object detection - 1

Fig. 7. Example image for the object detection - 2

We calculate the difference of the y coordinate from the
center of the image to the center of the object. If this value has
an offset more than 10% we set the speed of the car directly
to the percentage of the y center value.

The reason for that is that if a person is further away the
camera sees more space between the object and the top of the
image. If the object fills the whole image in the y-axis, the
person is right in front of the car, and it can set the speed to
zero.

The x value is in range between 0 (left side) and 1 (right
side). The value is the input for this formula:

tanh((x ⇤ 2.0)� 1.0) ⇤ 0.25

This formula creates the following graph.

Fig. 8. The graph for the speed calculation

4) Bringing it all together: In order to bring all the different
pieces of software together, we had to write a main Python
script. Here we defined four different “modes” for Herbie:

CG
7

• Mode “stop”, Herbie cannot move and can be restarted
or turned off.

• Mode “controller”, Herbie can be controlled by an at-
tached XBOX One controller.

• Mode “voice”, Herbie listens to nearby voices and tries
to follow them.

• Mode “camera”, Herbie uses object recognition to follow
humans.

After Herbie starts, it is in mode “stop”. In order for us to
switch between the different modes, we utilized the ABXY
buttons on the connected Controller.

The Y-button switches into mode “controller” and turns the
LEDs yellow. The X-button turns on the “voice” mode and
the LEDs blue. The A-button switches Herbie into “camera”
mode and turns the LEDs green. The B-button is a sort-of
“emergency-off” and switches Herbie into the “stop” mode
which stops the car.

In this mode we can restart our herbieStartup system
service with the start button and shut down the system com-
pletely with the back button.

III. EXPERIMENTS

Quite early on in our project we realized that different
Python version requirements for the microphone, camera and
drive controller meant that we could not rely on a lot of pre-
made code.

To understand each of the problems we faced, our group
decided to run a couple of experiments to figure out which
part would work with which Python version and library.

A. The correct L4T version
The first experiment we ran was to try different Linux for

Tegra versions. In the beginning of our project we tried to run
the newest version L4T 35.1.

Unfortunately we soon ran into problems, since the Intel
realsense library was only supported up to L4T version 32.4.3.
This meant that we had to switch our NVIDIA Xavier NX
development board to L4T version 32.4.3 and Jetpack version
4.4.

B. Dead Hardware
Unfortunately we could not complete the project without

a bit of dead hardware. One experiment we did partake in
involuntarily happened, when the Jetson got unplugged whilst
we were installing some software.

This resulted in a corrupted installation of Linux as well
as a damaged SD-card and SSD. Fortunately we managed
to reinstall all the lost software and configuration despite
not having a backup. We accomplished this by mounting the
corrupted SD-card on a different PC and copying the bash
history

C. Speech Recognition
1) PicoVoice: The initial idea for our speech recognition

was to have an AI detect a “wake-up-word”. After a lot of
research we first tried to work with PicoVoice.

This approach would have worked as a local service on the
Jetson. The implementation is very efficient, and we would
have been able to process the audio feed directly without any
indirection.

However, after some experimenting we found out that
PicoVoice only works on Jetson Nano and doesn’t support
the CPU architecture of the Xavier NX.

2) OpenAi Whisper: Soon after we tried OpenAI Whisper,
which is only able to process audio files and no ongoing
microphone streams.

So in order to work with this particular technology we
had to write a script that converts a given audio stream into
separate audio files. After a pause or after silence an audio
file is generated so that coherent sentences or commands can
be issued.

This approach of creating individual audio files that can
be evaluated afterwards worked pretty well. Unfortunately the
transcribing of audio files with the Whisper Tiny Model (the
smallest possible model for more performance) took about five
to twelve seconds.

With that in hand we decided to take another approach and
keep this option as a backup plan if all else fails.

3) AssemblyAI: The last experiment was an attempt with
AssemblyAI. We tried to outsource the payload of detection
and computation with a cloud based solution.

The problem with AssemblyAI was that there were some
version conflicts with our Ubuntu and Python versions. Be-
cause of that we were not able to use the local library of
AssemblyAI.

IV. CONCLUSION AND FUTURE WORK

After a long project we can conclude that despite multiple
problems we still managed to partly fulfill our goal to build a
working, self-driving car. Our work of gathering information
to assemble and build the car was a huge success.

We were able to get our hands on various technologies
including the base board NVIDIA Jetson, the ReSpeaker Mic
Array v2.0, object detection with a RealSense camera and the
3D-printer to mount it all together on the RC-car.

We used the RC-car as a base and got everything to
communicate with each other.

The proprietary NVIDIA Ubuntu image as operating system
helped us as an interface to communicate to the single parts
as well as process the data we got from the peripherals and
develop an intelligent car that reacts to its surroundings.

The experiments have shown that versioning and finding
fitting technologies to suit our requirements is a big issue
in today’s robotics. Various technologies like PicoVoice also
show that availability for other platforms have to be engineered
carefully and with enough foresight to not be trapped in a state
of debugging and research which can be very time-consuming.

A further conclusion that is important to be drawn is that
one should always operate with care and caution to not break
components or even the entire operating system when working
with hardware on low-level.

CG
8

The only thing left to do is to really let the car drive on
its own. The final implementation and further experiments and
adjustments concerning that matter will be referenced in our
future work and papers.

REFERENCES

[1] NVIDIA. “Jetson linux.” (Feb. 2, 2023), [Online]. Avail-
able: https://developer.nvidia.com/embedded/jetson-linux
(visited on 02/12/2023).

[2] J. Shao, jerryyip, and fanjm95. “Respeakerd.” (Apr. 8,
2019), [Online]. Available: https://github.com/respeaker/
respeakerd (visited on 02/12/2023).

[3] Y. Xiong, B. Zuo, J. Shao, HinTak, and jerryyip. “Pixel
ring.” (Jun. 24, 2021), [Online]. Available: https://github.
com/respeaker/pixel_ring (visited on 02/12/2023).

[4] E. Herrada, sommersoft, A. Delaney, et al. “Adafruit
pca9685.” (Jan. 20, 2023), [Online]. Available: https :
//github.com/adafruit/Adafruit_CircuitPython_PCA9685
(visited on 02/12/2023).

[5] E. Herrada, A. Delaney, Kattni, et al. “Adafruit servokit.”
(Jan. 20, 2023), [Online]. Available: https://github.com/
adafruit / Adafruit _ CircuitPython _ ServoKit (visited on
02/12/2023).

[6] H. v2, Human dataset v2 dataset, https : / / universe .
roboflow . com / human - v2 / human - dataset - v2, Open
Source Dataset, visited on 2023-02-12, Apr. 2022. [On-
line]. Available: https://universe.roboflow.com/human-
v2/human-dataset-v2.

https://developer.nvidia.com/embedded/jetson-linux
https://github.com/respeaker/respeakerd
https://github.com/respeaker/respeakerd
https://github.com/respeaker/pixel_ring
https://github.com/respeaker/pixel_ring
https://github.com/adafruit/Adafruit_CircuitPython_PCA9685
https://github.com/adafruit/Adafruit_CircuitPython_PCA9685
https://github.com/adafruit/Adafruit_CircuitPython_ServoKit
https://github.com/adafruit/Adafruit_CircuitPython_ServoKit
%20https://universe.roboflow.com/human-v2/human-dataset-v2%20
%20https://universe.roboflow.com/human-v2/human-dataset-v2%20
https://universe.roboflow.com/human-v2/human-dataset-v2
https://universe.roboflow.com/human-v2/human-dataset-v2
CG
9

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Creation process of a protoype for autonomous
driving in the Formula Student

Jannik Maisch
Fakultät Informatik

Hochschule für angewandte
Wissenschaften Hof

Hof, Germany
jannik.maisch@hof-university.de

Tim Ordnung
Fakultät Informatik

Hochschule für angewandte
Wissenschaften Hof

Hof, Germany
tim.ordnung@hof-university.de

Max Kruggel
Fakultät Informatik

Hochschule für angewandte
Wissenschaften Hof

Hof, Germany
max.kruggel@hof-university.de

Benjamin Gruber
Fakultät Informatik

Hochschule für angewandte
Wissenschaften Hof

Hof, Germany
benjamin.gruber@hof-university.de

Christoph Kreutzer
Fakultät Informatik

Hochschule für angewandte
Wissenschaften Hof

Hof, Germany
christoph.kreutzer@hof-university.de

Abstract—Automatization does not lie in the future. In fact, it
is already implemented in many kinds of processes in various parts
of the industry. E.g., in the assembly of car parts or evaluation of
test results. Autonomous driving, a form of automatization, is a
field which is still in its infancy. Some car companies like BMW,
Mercedes and Tesla achieved some noteworthy improvements in
the last couple of years, but it is still far from perfect. To achieve a
better understanding of the problems that derive from this
technology, we attempted to create our own self-driving vehicle
based on a remote-controlled car. With information sourced by
two cameras, it can calculate the proper behavior to navigate
through an obstacle course made of pylons.

Keywords—autonomous driving, automatization, software
developement, student project

I. INTRODUCTION
According to one definition, autonomous driving refers to

fully automated driving of a vehicle without a driver
interfering with the behavior of the car [1]. Automated driving
is the process by which various assistance functions gradually
control or intervene in the engine (acceleration), braking and
steering systems. There are five levels of automated or
autonomous driving defined by the SAE (Society of
Automotive Engineers). All over the world, this classification
has become the norm in the automotive industry.

Level 0: No automation. The driver steers, accelerates and
brakes by himself.

Level 1: Automated systems such as antilock brakes
(ABS) or electronic stability program (EPS) intervene
automatically.

Level 2: Integrated systems take over partial tasks (e.g.,
adaptive cruise control, lane change assistant, automatic
emergency braking). However, the driver retains control of the
vehicle and responsibility.

Level 3: At certain points, the car can accelerate, brake and
steer on its own (conditional automation). The system prompts
the driver to take control if necessary.

Level 4: During normal operation, the vehicle can drive
fully autonomously. However, the driver has the option to
intervene and "override" the system.

Level 5: Completely automated, autonomous operation of
the car without the possibility (and necessity) of intervention
by the driver. [2]

Mercedes-Benz has been granted the world's first system
approval for highly automated driving according to Level 3,
which is valid internationally. The so-called "Drive Pilot" has
been available in the premium S-Class model since 2022.[3]
For example, drivers will be allowed to hand over
responsibility to the system in traffic jams on certain
Autobahn sections up to a speed of 60 km/h. However, drivers
must remain "ready to take over."

Furthermore, autonomous driving is being tested on
several routes in Germany - in cities such as Hamburg or
Karlsruhe, but also in rural areas such as Upper Franconia or
on company premises or campus areas. On these routes, self-
driving shuttles will drive, which will be used in the future to
transport people and goods.

Multiple universities from all over the world are offering
students the possiblilty to work on vehicles for a race setting.
As part of these Formula Student events, some are done with
so called driverless vehicles.

Formula Student has been present in Germany since 2005
and has been attracting more and more racing teams every
year. According to research, the driverless discipline of
formula student has been around since 2016. In the future,
according to the rules, every team must have an autonomous
driving vehicle.[3]

The project of this paper has similar boundaries, just the
car is of a smaller scale. The track we are given is limited with
red/pink cones on one side and and blue/green cones on the
other and our model is supposed to navigate through said
course.

II. APPROACH

A. Motivation and Background
This project was a collaboration between the project team

and HofSpannung, which is the Formula Student racing team
of the University of applied Sciences Hof.[4]

Because of the shortage of computer science students that
participate for Team Hofspannung, our Team decided to
support their endeavours by trying to create a prototype
plattform for them to work off.

To achieve this goal, the University supplied our Team
with the necessary hardware. The base plattform is a remote-
controlled car in the scale 1:10. The computational brain is a

CG
10

Nvidia Jetson Development Kit [5]. The perception of the
Environment is done with a ZED2 Camera [6] with
stereoscopic lenses. Additionally, an I2C Servo converter was
needed to control throttle and steering.

The basic idea is that the self-driving car drives through a
course in which cones are used as boundaries on the left- and
right-hand side of the track, as can be seen in Fig. 1.

Therefore, the car must be able to recognize the cones
while driving, calculate the trajetory and maneuver
independently through the outlined course.

The project is split into several stages to accommodate for
the almost insurmountable task at hand.

B. Stage 1: Taking control of the car
The first step is to familiarize with the car to achieve

successful results. The preinstalled scripts from the previous
car owner’s group are used gain more insigth into the setup.

Following the successfull connection of the GPIO pins to
the servo driver it is possible to control the car. The initial
accleration test was perfomed on a mount mechanism,
because the whole team was concerened about potential
damage to the vehicle if the throttle was too high. This is all
done through python scripts. To alleviate the control issues,
the search for alternative control options for the interim period
is done through a webinterface. This is especially useful to
improve iteration times, since weblanguages are easy to
change and adapt to the rapidly changing environment of the
project’s lifecycle.

A small Python web interface with two regulators, is used
to steer and control the throttle. Albeit not perfect, the solution
is feasible and easy to extend.

Alternative methods that were tested as well include an
XBOX controller. The responsiveness is way superior to the
web interface. However, it is difficult to control the car

accurately because the input values and the power of the car’s
motor were not properly adjusted for.

C. Stage 2: Object Detection
 After evaluating the preinstalled scripts and drivers

on the Jetson, the team opted to do a clean install of NVIDIA’s
own Linux distribution called “Jetpack” [7]. This was mostly

due to fact, that the Jetson platform has very specific driver
recommendations and requirements. Positive sideeffects of
the fresh install are an increase in performance as well as the
possibility to use the CUDA cores for the needed model
computation.

 The ability to detect pylons is granted through the
“YoloV5” [8] framework. To achieve this, a custom model is
needed, since the supplied (self bought) pylons do not have an
accessible model yet.

Initially hand-crafting training data on the Roboflow
platform [9] was deemed the best solution. But the class loss
and overall quality of the system was not sufficient enough.
The final model is using a procedural approach to generate
huge amounts of training data.

A script (“imagemerger”) [10] made by a member of
HofSpannung can generate a multitude of images by layering
raw pylon photos into random background pictures with
different lighting/orientation. To put the training data into
perspective, the old model uses 160 Images, whilst the
procedural approach generates over 24000 pictures if
necessary.

Figure 1: Course layout Formula Student

CG
11

Having more training data is not always the issue. The
main culprit of bad recognition in this case is caused by
differences in image capture devices. To circumvent this, the
raw image data for the cones and the backgrounds are gathered
by using the ZED Camera instead of Smartphones. Because
that is the simplest way to have coherent input while driving
regarding the training data. Fig. 2 is showing the working
pylon detection.

D. Stage 3: Coordinate System
The successful detection of objects is leading to the next

important step towards autonomy: locality detemination. For
the vehicle to be able to drive anywhere, the location of itself
and the target point need to be known variables. The ZED
Camera has a feature called positional tracking [11], which
means it can not only measure its location in world space
relative to its surroundings but can also measure the distance
to and location of the detected objects. This feature is crucial
to be able to circumvent using a LIDAR scanner for distance
measurements, which would increase the complexity of the
system. Furthermore, the RC-Car platform has no space for an
addional LIDAR scanner in a useful position.

The positional tracking works with the coupling of an
inertia sensor and the depth sensing capabilities of the stereo
camera setup, much like the human eye perceives depth
information and the inner ear registers gravity and linear
acceleration.

E. Stage 4: Path calculation
With successful point detection and positional tracking of

objects, it is possible to calculate points for the vehicle to drive
towards. The approach makes use of triangles “drawn”
between opposite Pylons, e.g., two inner pylons and one outer
pylon. The halfway points between opposite points make up a
simple path between the boundaries of the track. The car is
then using the closest of those points as the next target. After
getting sufficiently close, it deletes that point from the “points
not yet reached memory” and drives towards the next nearest
point. This results in predictable and save driving behaviour.
Fig. 3 shows the web interface displaying the detected

points(red/blue) and the calculated driving path(white) from a
standstill position, with the green dot referencing the cars
position and orientation.

F. Stage 5: Driving
After aquiring the points for the vehicle to drive to, the

final step is to send these to a “control” mechanism which
calculates the appropriate throttle and steering information to
the servo controller. To avoid damaging the vehicle by
applying incorrect velocity data to the car, it always receives
15% of maximum throttle. Steering data is then extrapolated
by calculating the angle between the forward vector of the car
and the vector towards the target point. The car then keeps
steering until the two vectors are coincident.

G. Problemsolving
During the implementation multiple issues arose that

needed to be fixed.

Initially the computational power of the jetson was unable
to fullfill the requirements. Thus, a client/server system was
created to distribute the workload more evenly. The ZED api
allows for an unfiltered media stream to another network
device. This is used to outsource the object detection to a more
powerful computer equipped with a Gefore 3090, causing an
FPS increase from <10 FPS to ~40 FPS. The importance of a
high framerate comes from inaccurate measurements through
vibrations and camera shake, thus needing multiple pictures
per frame to verify pylon locations. An additonal LIDAR
scanner could be used to verify the pylon position faster and
more reliably. The remote system then sends the positional
data back to the car. However, the seperation of computational
workload is negativly affecting the performance, when the
used network is congested, or the speed is inadequate.

Furthermore, multiple algorithms were constantly updated
and optimized to increase performance.

H. Future steps
The next step would be to integrate the yellow cones as a

start/stop or break area, as mentioned in Fig. 1(orange cones).
Additionally, it was planned that the car would drive a lap and
map the whole track, quickly calculate the optimal driving
lines to achieve the fastest lap. Originally, we had also planned
to integrate different disciplines, which can be viewed in the
Formula Student rulebook [12]

III. EXPERIMENTS
Over the course of the project multiple experiments were

conducted to verify theories and get intermediate results.

A. Initial car tests
During the starting weeks the team got aquainted with the

hardware and used the vehicle to perform some simple
remote-controlled driving. This lead to an understanding of
how dangerous it could become when the car gets out of
control and what kind of behaviour to expect when given
certain inputs.

B. Pylon recognition
As shown in Fig. 2, the object detection stage had us

conduct multiple experiments in which we had to verify
whether or not the model was capable of producing useful
results.

Figure 2: pylon detection on non-reflective university flooring

Figure 3: route calculation

CG
12

C. Driving test
The first fully autonomous driving tests showed us, that

the system had several flaws. The system relies on multiple
precise measurements and verifications to determine valid
course plotting. Because of many minor inconsistencies
regarding lighting and distance measurement, the team found
out that there is still a lot of refinement to do before fully
autonomous driving on a pylon track will be possible. Fig. 4
shows, that there are too many pylons incorrectly detected.

D. Final Driving test
Since there was no time to retrain the model from the

ground up, the team conducted one final test. A manual set of
points was sent to the car over the webinterface. The result
was that the car continuously drove to the same final point no
matter how often the test was repeated. The conclusion of this
is, that the accuracy of the positional tracking of the car was
very high and that the issue solely lies in the positional data of
the pylons being inaccurate.

IV. CONCLUSION AND FUTURE WORK
 In the current state of the software, the vehicle can almost
run autonomously through a parkour of cones. It receives
information about the positions of the cones and uses this to
calculate where it can drive. According to the calculation, the
behavior of the vehicle adapts, i.e., it calculates the angle of
the wheel position, as well as its own, relative position to the
cones.

 Level 4 autonomy is (partly) achieved. The vehicle is fully
automated, and it is not necessary to intervene in the driving
behavior. However, it lacks the precision in some areas to
fully satisfy the expectations of the team.

In the future, this could be built upon by gradually
introducing more actors and influences the vehicle needs to
react to. However, the whole thing is limited, as is currently
the case with Tesla, due to the structure of the software as a
decision-making machine. To achieve true autonomy, an
intelligent control system is required, which does not just react
to influences in a predetermined manner but has situational
awareness.

REFERENCES

[1] https://de.wikipedia.org/wiki/Selbstfahrendes_Kraftfahrzeug

[2] https://www.adac.de/rund-ums-fahrzeug/ausstattung-technik-
zubehoer/autonomes-fahren/grundlagen/autonomes-fahren-5-stufen/

[3] https://www.formulastudent.de/pr/news/details/article/rules-2023-v11-
published/

[4] https://hofspannung.de/

[5] https://developer.nvidia.com/embedded/jetson-developer-kits

[6] https://www.stereolabs.com/zed-2/

[7] https://developer.nvidia.com/embedded/jetpack

[8] https://github.com/ultralytics/yolov5

[9] https://roboflow.com/

[10] https://github.com/timoxd7/ImageMerger

[11] https://www.stereolabs.com/docs/positional-tracking/

[12] https://www.formulastudent.de/pr/news/details/article/rules-2023-v11-
published/

Disclaimer: No AI was used in the creation of this document.

Figure 4: inconsistent pylon measuring

https://roboflow.com/
https://github.com/timoxd7/ImageMerger
CG
13

Neural Flappy Bird using EMOTIV
Christian Groth

HOF University of Applied Sciences
HOF, Germany

christian.groth@hof-university.de

Sayali Patukale
HOF University of Applied Sciences

HOF, Germany
sayali.patukale@hof-university.de

Shaunak Joshi
HOF University of Applied Sciences

HOF, Germany
shaunak.joshi@hof-university.de

Shreya Daga
HOF University of Applied Sciences

HOF, Germany
shreya.daga@hof-university.de

Sankalp Chordia
HOF University of Applied Sciences

HOF, Germany
sankalp.chordia@hof-university.de

Parth Vaidya
HOF University of Applied Sciences

HOF, Germany
parth.vaidya@hof-university.de

Abstract—The electroencephalogram (EEG) is the test that
uses a multitude of tiny metal discs (electrodes) connected to
the scalp to assess the electrical activity in the brain. Brain
cells interact via electrical impulses and are constantly active,
even while sleeping. On an EEG recording, this activity appears
as wavy lines. This work aims to create a Brain-Computer
Interface (BCI) solution that will allow a user to operate a Flappy
Bird game using just his/her thoughts, which means a live and
unprocessed stream of electroencephalogram data. We employ
the Emotiv EPOC X, a commercially available EEG-based BCI
device, for this experiment. The apparatus features 14 channels,
which is more than adequate for this design (i.e., 14 electrodes
to pick up impulses from the surface of the skull).

Index Terms—EEG, EMOTIV, Game development, Flappy
bird, BCI, HCI, Python

I. INTRODUCTION

The brain is the most intricate system yet discovered, with
14-16 billion neurons. The EEG signal released by the human
brain is a mash-up of all ideas of activity, moods, and other
feelings [1]. Electrical signals are generated by ion movements
passing through brain neurons, which are captured by EEGs.
Neuronal activity generates circulating ion movements, and
the space-time potential created by these ion movements is
collected by putting electrodes over the scalp. Hans Berger
recorded the first electrical EEG signal from the human brain
using a d’Arsonval meter put in the brain with one electrode
in the early twentieth century and found a single wave known
as an alpha wave.
However, these systems are quite expensive and can require
specialized training. Advanced EEG-based instrumentation
systems are often based on numerous electrodes and can
distinguish five basic waves, such as delta, theta, alpha, beta,
and gamma.
An apparatus known as a brain-computer interface (BCI)
transforms neural impulses from the cerebral region of the
brain into information that may control external applications or
hardware, such as a CPU or a robotic limb. BCIs are often used
by persons with motor or sensory limitations as aids to daily
life.
BCIs can be classified into two types: invasive and non-

invasive. In the case of invasive BCIs, the subject’s brain is
implanted with electrodes or is stuck on the surface of the
skull to get readings. But when compared to non-invasive
ones, the electrodes are placed on the scalp of the user or
placed along the surface of the head to get the data. The non-
invasion method doesn’t require any kind of surgery whereas
the invasive does require a user to surgically implant the
electrodes into his/her brain.
With the help of this method, a system that is more au-
tonomous and less reliant on people will be introduced. These
cutting-edge, cyber-physical system-based strategies will sig-
nificantly alter educational, technological, and entertainment-
based applications while using Brain signals.

II. LITERATURE REVIEW

Analysis of brain activity, the stimulus of nerve tissue,
developments in technological advances, and robotic research
enable interfacing between the human brain and artificial de-
vices, known as Brain-Computer Interfaces (BCI). [1] Neural
activity is detected by EEG as faint electrical potentials on
the surface of the human scalp. The EEG signal is collected
by applying electrodes to the forehead in the 10-20 system.
However, EEG has limited spatial resolution (in the centimeter
range), therefore it is difficult to match underlying neural
activity with a single recording channel signal. However, in
order to be recorded, the signal must pass through the skull and
scalp; also, noise from the individual (eye motion, muscular
activity), as well as external disturbances, are added (electronic
devices, power line noise). [2]
There have previously been past efforts in this line of research
where one of the projects regulated brain rhythms. The individ-
uals were taught for approximately ten hours, and the results
demonstrated that it is feasible to control left or right motion
in a three-dimensional video game using brain impulses. [3]
In reality, whether invasive or non-invasive, the speed and
accuracy of most modern BCIs are still significantly lower than
those of systems based on eye movements. The majority of
existing EEG-based BCI devices have an information transfer
rate (ITR) of less than 0.5 bps.[5]

CG

CG
14

We hope to create a BCI-based flappy bird game in which the
player may control the bird via neural activity.

III. SETUP OVERVIEW

EPOC X is the most recent version of an electroencephalo-
gram (EEG) analysis wireless headset that has been updated
in response to input from the EMOTIV community. 14 EEG
sensors and two matching sensors are used to detect brain
waves for the development of brain wave applications em-
ploying neurofeedback.

Fig. 1. Emotiv EPOC X Headset [9]

The swivel headband allows it to be worn on either the
upper or occipital area. The swivel headband helps you to
gather more data in a more comfortable and precise manner,
even while utilizing a headrest, such as while sleeping. Raw
EEG data, as well as facial expression, emotional state, and
mental state information, may be obtained using the program
EmotivPRO. In this paper, we detect the brain activity of the
user and accordingly make the bird move up or down.

Fig. 2. Electrode Positions in the headset

The electrodes in such headsets can be broadly classified
into three types: saline electrodes, needle electrodes, and cup-
based electrodes. Silver chloride is the most commonly used
for scalp electrodes. While attaching the electrodes to the scalp
via the EMOTIV EPOC X headset, a saline solution is used.
The solution is required so as to lower the impedance between
the cortex and the electrode. To reduce aberrations in the EEG
signal, we must use very low electrode impedance, which can
be feasible according to our project. The precision of the brain
wave signals is directly proportional to the wetness of the
sponge electrodes that absorb the saline solution, the signals
become less precise as soon as the saline solution evaporates
and the electrode sponges start drying. To get the best results

using this headset, we must precisely position the electrodes
as stated in the user manual of the headset.

A. EMOTIV BCI Software Setup
[10] defines black, red, orange, yellow, and green as ”no

signal,” ”very bad signal,” ”poor signal,” ”fair signal,” and
”good signal,” respectively. To get a green or yellow color,
adjust the electrode slightly while pressing firmly for 10
seconds or applying more saline solution. When the headset
is turned on, the gyroscope will activate.

IV. GAME DEVELOPMENT

A. Model Design
The Flappy Bird game development is based on the idea that

a bird flaps its wings to rise with each screen contact and to
descend when not contacting the screen. Meanwhile, the player
receives 1 point for each successful passage of the bird through
the barrier. The bird that collides with the boundaries or the
floor dies, and the game finishes in this manner. Attention and
meditation waves are employed as input to increase the game’s
competitiveness and enjoyment.

The steps involves in making the Fallpy Bird game were as
follows:

1) Subscribe to the mental commands data from the EPOC
X headset and print it in a python terminal.

2) Make the Flappy Bird game from scratch that is able
to recognize brain activity i.e. that is able to use the
mental commands data from the headset to control the
movement of the bird in the game.

• Flappy Bird Design: Starting initially with a dot for
the Flappy Bird. The obstacles would be rectangles.
It will have a 2D design and GUI. A basic design
would be implemented initially.

• The design will evolve by adding a picture of the
Flappy Bird and 3D elements.

3) Test the Flappy Bird game using all three use case
scenarios of the bird flying up or being stable to avoid
the beams.

4) Adding advanced graphics to the Flappy Bird game.

B. Graphics
A lot of elements were used in the UI design of this game.

The graphics used in this game were designed manually. The
bird’s movements can be seen in the game as shown in Fig.
3, Fig. 4, Fig. 5. The bird, the poles, and the system UI,
with foreground and background, were used and designed by
ourselves.

V. METHODOLOGY

The implementation of this project has two major parts.
The first one being training of the model using the Live
Mental Commands. The second being the implementation of
this model in Python. The second part is further divided into
two parts; those being the front end and the back end. The
front end corresponds to the Flappy Bird Game being shown
on the screen while the implementation of the code. The back

CG
15

Fig. 3. Flappy Bird with it’s wings up

Fig. 4. Flappy Bird with it’s wings in the middle

end is the connection to the Emotiv BCI to pull the action
being performed and the strength of the action.

Training is a vital part of this project since the model
needs to understand which action is being performed. Emotiv
PRO offers the ability to train the model using its Mental
Commands feature. Whenever a certain action is performed,
there are small electrical impulses that are fired. This electrical
activity is picked up by the EEG Headset. This is the basic
working principle of any EEG Machine. Our model needs
to understand which electrical activity corresponds to which
action.

The headset needs to be connected properly before we train.

Emotiv PRO offers a number of different commands that
can be trained in the application itself. These include PUSH,
PULL, LIFT, DROP, etc. The application shows the user a
block that you are supposed to perform the action on. The
user is supposed to imagine themselves performing this action.
A successful training iteration will lead to the block being
moved according to the action. But before that, the user is
supposed to train the neutral state of the brain. The neutral
state is important as this is what the action commands are
compared with.

For successful training of the model, a distinct graph is

Fig. 5. Flappy Bird with it’s wings down

Fig. 6. Improper Connections

Fig. 7. Proper Connections

Fig. 8. Non Distinct Graph

Fig. 9. Distinct Graph

CG
16

necessary. With this graph, we can visually interpret and
understand the training process. A distinct graph essentially
means that the BCI model can distinguish between the brain
wave states of ”neutral” and other mental commands such as
”lift” and ”push”. This helps the BCI model produce data that
can be easily used to play the game. As you can see in Fig.8
the graph is not distinct as the distance between the dots
representing the neutral state and mental commands is less.
However, Fig.9 is a distinct graph as the distance between the
dots is greater. Hence, the profile of the user depicted in Fig.9
would be most suitable for playing the game as the model will
easily distinguish between mental commands and the neutral
state.

After the training, we have two main parts to our project.
The first is the code to run the Pygame interface. The second
is the connection to the EPOC Emotiv BCI. This is done using
the Cortex API. To use this we need to login into our specific
Emotiv Account, so that it has access to the specific training
profiles that we have trained.

The connection to the Emotiv BCI is done in further two
parts. The back end is the Cortex API code which deals
with the querying and the front end is the code that sets the
sensitivity, handles the actions, and loads the profiles.

After the connection is done, the main criterion for the bird
to jump is the power of the mental command. The power is
denoted on a scale of 0.0 to 1.0, where 0.0 is the least and 1.0
is the most power. The power of the action (mental command)
has to be more than 0.5 for the bird to jump. This includes
any action, lift, push, pull, etc. Essentially, any brain activity
will trigger the jump of the bird in the Pygame Interface. In
our program, we have selected the mental commands ”lift”
and ”push” to be monitored. If their power is above 0.5 the
bird will jump (fly above).

We need to run the two parts of the program i.e. the front
end and the back end of the game simultaneously. This is
because we need to access the power of the action as well
as run the game at the same time. This is done using the
multiprocessing library in Python by setting up a server and
a client. These two programs are run simultaneously in two
different python terminals.

Fig 10 is a flowchart demonstrating how EMOTIV connects
to the Python client and briefly explaining how the game
functions.

VI. RESULTS AND DISCUSSIONS

We have tested the application using a simulated headset.
We have also tested the application with a human gamer
operating the headset. The gamer was able to sit motionlessly
and operate the game using just their brainwaves. Since we
have used mental commands in our project, physical signals
such as blinking or stress in the muscles are not used to operate
the video game. The gamer is able to control the bird using
solely their brainwaves. The results demonstrated that the users
could play the game without moving any body muscles.

Fig. 10. Workflow of the system

Fig. 11. Starting Graphics of the Game

Fig. 12. While Playing the Game

CG
17

VII. CONCLUSION AND FUTURE SCOPE

The applications of this project could benefit people with
severe motor disabilities. An EEG system, for example, might
produce commands directly from the brain to control one
or more external devices for someone with a spinal cord
injury. We can also expand this project further to make a
Speech Generating Device. Initially, we can start with a game
application and further, extend this application to controlling
robotic arms using a brain-computer interface as the future
scope of this project.

VIII. ACKNOWLEDGMENT

We would like to thank HOF University of Applied Sciences
for giving us the opportunity and resources to work on this
project. We hereby express our gratitude and thanks to our
guide Prof. Christian Groth for providing his erudite guidance,
vision support, and constant encouragement to complete our
project successfully.

REFERENCES

[1] Ali, A., Afridi, R., Soomro, T.A. et al. A Single-Channel Wireless
EEG Headset Enabled Neural Activities Analysis for Mental Health-
care Applications. Wireless Pers Commun 125, 3699–3713 (2022).
https://doi.org/10.1007/s11277-022-09731-w

[2] Kerous, B., Skola, F. and Liarokapis, F. EEG-based BCI and
video games: a progress report. Virtual Reality 22, 119–135 (2018).
https://doi.org/10.1007/s10055-017-0328-x

[3] J. A. Pineda, D. S. Silverman, A. Vankov and J. Hestenes, ”Learn-
ing to control brain rhythms: making a brain-computer interface
possible,” in IEEE Transactions on Neural Systems and Rehabili-
tation Engineering, vol. 11, no. 2, pp. 181-184, June 2003, doi:
10.1109/TNSRE.2003.814445.

[4] Varol, Asaf and Ulaş, Mustafa and YILDIRIM, NILAY. (2015). A Game
Development for Android Devices Based on Brain Computer Interface
Flying Brain. 77-81. 10.15224/978-1-63248-040-8-46.

[5] Zhao, Q., Zhang, L. and Cichocki, A. EEG-based asynchronous BCI
control of a car in 3D virtual reality environments. Chin. Sci. Bull. 54,
78–87 (2009). https://doi.org/10.1007/s11434-008-0547-3

[6] Santhanam, G., Ryu, S., Yu, B. et al. A high-performance
brain–computer interface. Nature 442,195–198 (2006).
https://doi.org/10.1038/nature04968

[7] Muhammad N. Fakhruzzaman, Edwin Riksakomara, Hatma
Suryotrisongko, EEG Wave Identification in Human Brain
with Emotiv EPOC for Motor Imagery, Procedia Computer
Science, Volume 72, 2015, Pages 269-276, ISSN 1877-0509,
https://doi.org/10.1016/j.procs.2015.12.140.

[8] R. Raju, C. Yang, C. Li and A. Cangelosi, ”A video game design based
on Emotiv Neuroheadset,” 2016 International Conference on Advanced
Robotics and Mechatronics (ICARM), Macau, China, 2016, pp. 14-19,
doi: 10.1109/ICARM.2016.7606887

[9] Bharadwaj, Hemantha and Agarwal, Aayush and Chamola, Vinay and
Lakkaniga, Rajiv and Hassija, Vikas and Guizani, Mohsen and Sikdar,
Biplab. (2021). A Review on the Role of Machine Learning in Enabling
IoT Based Healthcare Applications. IEEE Access. PP. 1-1. 10.1109/AC-
CESS.2021.3059858.

[10] K. Stytsenko, E. Jablonskis, and C. Prahm, “Evaluation of consumer
eeg device emotiv epoc,” in MEi: CogSci Conference 2011, Ljubljana,
2011.

CG
18

