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Abstract
1. The increasing disturbances in monocultures around the world are testimony to 

their instability under global change. Many studies have claimed that temporal 
stability of productivity increases with species richness, although the ecological 
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1  |  INTRODUC TION

Forest ecosystems provide humankind with a wealth of ecosystem 
services. The necessary transition to a bioeconomy as a pathway 
towards the UN 2030 Sustainable Development Goals will require 
joint efforts in the near future to achieve a stable, sustainable flow 
of forest goods and services through nature- based solutions, the 
urgency of which is exacerbated by the pressure of accelerating 
climate change. In this context, the temporal stability of primary 
productivity is essential, not only for the current functioning of eco-
systems (McCann, 2000) but also for securing the long- term pro-
vision of ecosystem services associated with productivity (Baeten 
et al., 2019).

There is compelling evidence that tree species diversity may 
enhance forest primary productivity (Huang et al., 2018; Jactel 
et al., 2018; Liang et al., 2016) and its temporal stability (Jucker 
et al., 2014; Schnabel et al., 2019). The greater productivity is mainly 
due to tree species niche complementarity and facilitation which allow 
for a greater supply, capture or use of light, water and nutrient re-
sources (Ammer, 2019). The stabilizing effect of species diversity can 
be explained by the insurance hypothesis, which states that species 
diversity insures against declines in functioning (i.e. greater stability) 
because some species will maintain functioning even if others fail 
(Yachi & Loreau, 1999). The temporal stability of productivity is usu-
ally estimated as the inverse of the coefficient of temporal variation 
(TS = μ/σ). Thus, species diversity may enhance temporal stability by 
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fundamentals have mainly been investigated through diversity experiments. To 
adequately manage forest ecosystems, it is necessary to have a comprehensive 
understanding of the effect of mixing species on the temporal stability of pro-
ductivity and the way in which it is influenced by climate conditions across large 
geographical areas.

2. Here, we used a unique dataset of 261 stands combining pure and two- species 
mixtures of four relevant tree species over a wide range of climate conditions 
in Europe to examine the effect of species mixing on the level and temporal 
stability of productivity. Structural equation modelling was employed to fur-
ther explore the direct and indirect influence of climate, overyielding, species 
asynchrony and additive effect (i.e. temporal stability expected from the species 
growth in monospecific stands) on temporal stability in mixed forests.

3. We showed that by adding only one tree species to monocultures, the level (ove-
ryielding: +6%) and stability (temporal stability: +12%) of stand growth increased 
significantly. We identified the key effect of temperature on destabilizing stand 
growth, which may be mitigated by mixing species. We further confirmed asyn-
chrony as the main driver of temporal stability in mixed stands, through both the 
additive effect and species interactions, which modify between- species asyn-
chrony in mixtures in comparison to monocultures.

4. Synthesis and applications. This study highlights the emergent properties associ-
ated with mixing two species, which result in resource efficient and temporally 
stable production systems. We reveal the negative impact of mean temperature 
on temporal stability of forest productivity and how the stabilizing effect of mix-
ing two species can counterbalance this impact. The overyielding and temporal 
stability of growth addressed in this paper are essential for ecosystem services 
closely linked with the level and rhythm of forest growth. Our results underline 
that mixing two species can be a realistic and effective nature- based climate 
solution, which could contribute towards meeting EU climate target policies.

K E Y W O R D S
additive effect, climate effect, forest ecosystems productivity, mixed forests, overyielding, 
species asynchrony, temporal stability
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increasing the mean productivity (μ) ‘performance- enhancing effect’ 
or by reducing the variance (σ) ‘buffering effect’ over time (Hector 
et al., 2010; Tilman et al., 1998; Yachi & Loreau, 1999). Overyielding 
(Figure 1) has frequently been used to evaluate the effect of species 
diversity on community productivity in forest ecosystems (Pretzsch 
& Forrester, 2017), although its effect on the temporal stability of 
productivity (performance enhancing effect) is unclear, with previous 
research providing contrasting results (del Río et al., 2017; Jucker 
et al., 2014; Schnabel et al., 2019). However, there is consensus that 
the buffering effect emerges mainly from asynchrony fluctuations in 
productivity among species (Loreau et al., 2021). The existing analyses 
of forest ecosystems also point to a major role of species asynchrony 
(del Río et al., 2017; Dolezal et al., 2020; Jucker et al., 2014; Morin 
et al., 2014; Schnabel et al., 2021; Yuan et al., 2019), although the 
underlying mechanisms remain still unclear. Species asynchrony in 
mixtures may result from asynchronous species- specific responses to 
environmental fluctuations and intrinsic rhythms, although other fac-
tors such as species interactions or demographical stochasticity may 
also play a part (Loreau et al., 2021; Loreau & De Mazancourt, 2013). 
The two first mechanisms could theoretically be inferred from species- 
specific behaviours in monospecific stands, so between- species asyn-
chrony in the respective monocultures may indirectly explain part of 
the species diversity stabilizing effect (Figure 1).

Beyond the underlying mechanisms, for forest management, it is 
important to infer to what extend mixing species can increase tempo-
ral stability of productivity. For this aim, it can be useful to estimate 
the average of species temporal stability in monocultures weighted 
by the species abundance in the mixture (Figure 1), referred to 
henceforth as ‘additive effect’ (Forrester & Pretzsch, 2015; Jourdan 
et al., 2021), since it reflects the reduction in variance that can result 
from averaging out variations in species productivities when species 
are added and behave as they would do in monocultures.

Climate change can modify forest productivity (Pretzsch 
et al., 2014) and increase its variability due to the higher vulnerability 
to extreme climatic events (Anderegg et al., 2015; Choat et al., 2012). 
Several recent studies have revealed the impact of climate conditions 
on the temporal stability of ecosystem productivity and, more gener-
ally, on diversity– stability relationships (Garcia- Palacios et al., 2018; 

Hallett et al., 2014; Ma et al., 2017). Only a few studies have fo-
cused on this aspect for forest ecosystems (del Río et al., 2017; Jing 
et al., 2022; Jourdan et al., 2021; Ouyang et al., 2021), which still do 
not allow, a comprehensive understanding of climate as a driver of 
the temporal stability of forest productivity.

Although it is accepted that productivity increases with the num-
ber of species following an asymptotic pattern (Liang et al., 2016; 
Tilman et al., 1997), it is becoming increasingly patent that the un-
derlying mechanisms start as soon as two species are mixed in forest 
ecosystems (Pretzsch & Forrester, 2017). To what extent this pat-
tern can be extended to temporal stability of productivity is of great 
relevance to forest ecosystems management given that (i) there are 
already large areas of mixed forests composed of two species; (ii) 
from a management perspective, transition from monospecific to 
two- species mixed forests is often a more realistic option than direct 
conversion to multispecies forests.

In Europe, approximately 33% of the forested area is composed 
of monocultures (Van Brusselen et al., 2020). However, in relation 
to climate change, there are concerns about the ability of these for-
ests to maintain their productivity over the long term. Recent ob-
servations suggest that monocultures are more vulnerable to biotic 
and abiotic hazards than mixed- species forests (Jactel et al., 2017; 
Knoke et al., 2008). In this study, we examine the temporal stabil-
ity of stand growth (as an indicator of productivity) and its main 
drivers in monocultures and two- species mixtures along a climate 
gradient in Europe. We use a unique dataset of 261 plots including 
beech (Fagus sylvatica L.), oak (Quercus robur L. and Q. petraea [Matt.] 
Liebl.) or spruce (Picea abies [L.] H. Karst.) in combination with pine 
(Pinus sylvestris L.). All these tree species are native, productive and 
economically valuable for the European forestry sector, with the 
greatest values of growing stocks (Freudenschuss et al., 2020). In 
a previous study, we used 93 beech and pine plots to study tem-
poral stability of productivity in mixed and monospecific stands at 
different organizational levels (tree, population, community; del Río 
et al., 2017). Here, we focus on the community level and specifically 
aim to: (i) assess the effect of two- species mixing on stand growth 
performance (overyielding) and temporal stability; (ii) evaluate direct 
and indirect effects of climate conditions on temporal stability; and 

F I G U R E  1  Definitions of temporal 
stability of stand growth in mixed stands 
and of its main drivers and hypotheses of 
mediated and causal effects among them.
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(iii) determine which driver is the most relevant to explain temporal 
stability in mixtures. We hypothesize that: (H1) mixing two species 
results in overyielding and greater temporal stability of productiv-
ity; (H2) climate, overyielding and species asynchrony are the main 
direct drivers of temporal stability; (H3) the additive effect explains 
an important part of the temporal stability in two- species mixtures.

2  |  MATERIAL S AND METHODS

2.1  |  Dataset

The data used come from 87 triplets distributed in three transects 
with different tree species compositions across Europe (Figure 2). 
Each triplet was composed of a two- species mixed plot and two re-
lated monospecific plots of their component species growing under 
similar site conditions (261 plots). The studied species compositions 
were beech– pine (32 triplets), oak– pine (35 triplets) and spruce– pine 
(20 triplets). The triplets covered a wide range of climatic condi-
tions, with mean annual temperatures ranging from 3.2 to 11.1°C 
and mean annual total precipitation from 502 mm to 1336 mm (more 
details in Table S1 in Supporting Information). Plots were established 
in mature, mostly monolayered, fully stocked stands without signs of 
recent thinning interventions. Plot sizes ranged from 0.02 to 1.55 ha, 
where the diameter of all trees was measured, and two increment 
cores per tree were taken at a 1.3 m stem height in a sample of ap-
proximately 20 trees per species and plot. Annual ring widths were 
measured and cross- dated using standardized dendrochronologi-
cal techniques. See Pretzsch et al. (2015, 2020) and Ruiz- Peinado 
et al. (2021) for more details on field measurements and main stand 
characteristic calculations (Table S2). Fieldwork permits were ob-
tained from the respective forest owners when required. Ethical ap-
proval was not required.

The annual stand basal area increment (BAI, m2 ha−1 year−1) was 
used as an indicator of community productivity (del Río et al., 2017; 
Dolezal et al., 2020), as this variable can be precisely estimated 
from field measurements and in forest stands is highly correlated 
with net above- ground productivity. The studied period was 2000– 
2013 for the beech– pine transect and 2004– 2017 for the oak– pine 
and spruce– pine transects, the last year corresponding to triplet 
establishment. The series of annual stand basal area increments for 
the studied period (14 years) were estimated based on measured 
tree diameters and tree ring width series. Using data from cored 
trees, tree diameter increment– diameter models were fitted by 
year, species and plot to estimate annual diameter increments of 
noncored trees.

Annual climate data were obtained from meteorological weather 
stations located in the proximity of each triplet (50 triplets). When 
local station data were not available, national digital climatic atlas 
data (24 triplets) or more general gridded data (13 triplets) were used 
(see Table S1). For analyses, we considered the average mean an-
nual temperature (T), total annual precipitation (P) and the Martonne 
aridity index (M = P/[T + 10]) (Martonne, 1926) during the studied 

period, as they describe the large variability of climates in the study 
area (Figure 2), and are related to productivity variation at large 
scales in a simple way (Huang & Xia, 2019). In a preliminary analysis, 
we also explored the effects of the standard deviation and coeffi-
cient of variation of climate variables (Craven et al., 2018), but finally 
we discarded them due to their high correlations to the mean values 
(Figure S1).

2.2  |  Overyielding

Overyielding (OYj) was estimated for the 14- year study period 
by triplet j through the ratio of absolute productivity (Pretzsch & 
Forrester, 2017), which compares the observed productivity in the 
mixed stand (BAImixed) with the expected productivity if the two 
species would grow as in the monospecific stands (BAIexp). The ex-
pected productivity was derived from the average productivity of 
the two species in neighbouring monospecific stands (BAIsp1_mono, 
BAIsp2_mono) weighted by species proportion in mixed stand (msp1, 
msp2) (see calculation of species proportion in Table S3).

 At the population level, we estimated the relative productivity 
by species (RPsp) (Pretzsch & Forrester, 2017), that is, the ratio of the 
observed productivity of the species k in the mixture (BAIspk_mixed) 
upscaled to the hectare to the observed productivity of species k in 
the monoculture (BAIspk_mono) (see Table S3).

2.3  |  Temporal stability

The temporal stability of productivity (TS) in each plot i was calcu-
lated as the inverse of the coefficient of temporal variation of BAI 
during the 14- year period, that is, the ratio of the mean to the stand-
ard deviation (s) (Equation 2).

2.4  |  Additive effect

We estimated the additive effect (AE) for each triplet as the ex-
pected temporal stability if the two species would grow like in the 
respective monocultures (Figure 1; Jourdan et al., 2021). First, we 
calculated the expected productivity for each year y,

being all the variables like in equation 1. Then, we calculated the ex-
pected temporal stability as the inverse of the coefficient of variation 
of BAIexp- y during the 14 years (see Equation 2).

(1)OYj =
BAImixed

BAIexp
=

BAImixed
(

BAIsp1_mono ⋅ msp1 + BAIsp2_mono ⋅ msp2

) .

(2)TSi =
BAI

sBAI
.

(3)BAIexp_y = BAIsp1_mono_y ⋅msp1_y + BAIsp2_mono_y ⋅ msp2_y .
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2.5  |  Between- species asynchrony

The asynchrony in a mixed plot (Asynmixed) was estimated follow-
ing the synchrony metric proposed by Gross et al. (2014), that is, 
the average across species of correlation coefficients, which for 
two species mixtures results in the correlation coefficient be-
tween the two species growth series during the 14- year period, 
Asynmixed = 1 − corr (BAIsp1_mixed, BAIsp2_mixed). Additionally, we 
estimated in a similar way the asynchrony between the two spe-
cies growing in monospecific stands (Figure 1) (Asynmono = 1 − corr 
(BAIsp1_mono, BAIsp2_mono)). We also tested the metric community- 
wide asynchrony (Loreau & de Mazancourt, 2008), but the results 
were very similar as the two asynchrony metrics were highly cor-
related, r = 0.93.

2.6  |  Statistical analysis

2.6.1  |  Overyielding and temporal stability

To test whether OY was significantly greater than 1, we used a 
one- sided Student's t- tests. We tested mean OY of all triplets and 
by transect, as well as the relative productivity by species and by 
transect.

Whether TS was greater in mixed than in monospecific stands 
was evaluated by linear mixed models considering the type of com-
position (Ty: mixed vs. monospecific) as a fixed factor and the triplet 
as a random factor (Equation 4). TS was log- transformed to achieve 
normality of residuals.

where TSijk is the temporal stability of productivity of plot i, in triplet j, 
of type of composition k; Ty is the type of composition; tj is a random 
effect of the triplet; μ is the intercept of the model, and �ijkrepresents 
the independent and identically distributed residual error, both as-
sumed to follow a normal distribution with mean zero and variance σ j

2 
and σe

2. A similar model was fitted by transect considering the identity 
of species composition (Id: mixed, monospecific species 1, monospe-
cific species 2) as the fixed factor.

Differences between the three species mixtures (Mix: beech– 
pine, oak– pine, spruce– pine) were also explored using only data 
from mixed plots by a simple linear regression model.

(4)ln (TS)ijk = � + Tyk + tj + �ijk,

(5)ln (TS)ijk = � + Idk + tj + �ijk.

(6)ln (TS)jk = � +Mixk + �jk.

F I G U R E  2  Location of the 87 triplets corresponding to the three transects: beech– pine, oak– pine (red), spruce– pine (green). Bottom- right 
panel shows the distribution of triplets by average site temperature (axis x) and precipitation (axis y).
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2.6.2  |  Climate effects on TS

To analyse the influence of climate on TS, climate variables were 
added to Equation 4, including the interaction with the type of spe-
cies composition.

where Clij represents the different climate variables tested (T, P, M, 
although M was not significant in the final models) in triplet j, and all 
other terms are defined analogously to those in Equation 4.

Then, we explored the overall climate effect on TS when con-
sidering the identity of species composition instead of the type of 
composition. We analysed all data together, including the seven lev-
els of identity of species composition (Id: beech, oak, spruce, pine, 
beech– pine, oak– pine, spruce– pine).

To test whether the climate effect varied among the three mixtures, 
we included the climate in Equation 6 and fitted it using only mixed 
plots.

Selection of the best models was performed based on AIC and 
the F- test based on the extra sum of squares principle. The selected 
model was fitted by the restricted maximum likelihood procedure 
(REML). All models were fitted using the lme procedure from the 
nlme package in R (Pinheiro et al., 2021).

2.6.3  |  Drivers of TS

The effect of drivers other than climate on TS in mixed stands 
(TSmixed) was explored by simple linear regression using only data 
of mixtures. As potential drivers, we tested Asynmixed and OY. We 
further explored the relationships between TSmixed and additive ef-
fect (AE).

To unravel the direct and indirect effects of climate and other 
drivers on TSmixed, we applied structural equation modelling (SEM) 
(Shipley, 2016), using data of mixtures. As direct drivers of TSmixed, 
we included climate variables, OY and Asynmixed (Hector et al., 2010; 
Loreau & De Mazancourt, 2013; Figure 1). We also considered AE as di-
rect factor, which may explain the effect of averaging species- specific 
variability. We included a path from Asynmixed to OY, since a positive re-
lationship has been previously reported (Allan et al., 2011), which could 
represent an indirect effect of Asynmixed on TS. We also assumed that 
Asynmono reflects the asynchrony in species- specific responses to en-
vironmental fluctuations and intrinsic rhythms in a given site, so it may 
explain a large part of Asynmixed and AE. Accordingly, as Asynmixed and 
the additive effect could covary, we included the covariance between 
them in the model. Moreover, we expected that climate could influence 
TS indirectly through changes in overyielding (Jactel et al., 2018) and 

in Asynmixed (Ma et al., 2017). The preliminary analyses of the effect of 
different drivers on TS indicated that both temperature and precipita-
tion modulated TS and that overyielding did not have any effect. Thus, 
overyielding was removed in the final fitted SEM to reduce paths due 
to the limited number of data from mixed stands (n = 87; Figure S2). All 
endogenous variables were log- transformed to achieve normality. We 
fitted the SEM based on a maximum likelihood method and used the χ2 
test, the comparative fit index (CFI) and standardized root mean square 
residual (SRMR) to evaluate the fit of the model. SEM fitting was per-
formed using the R package lavaan (Rosseel, 2012).

3  |  RESULTS

3.1  |  Higher level and stability of stand growth in 
forest mixtures

We found that the overall mean overyielding across mixture types 
was 1.062 (ln(OY) > 0 p- value = 0.0446), that is, growth was 6.2% 
greater in mixtures than expected by the growth in monocultures. 
Overyielding (in %) was 9.5% (ln(OY) > 0 p- value = 0.0511) in the 
beech– pine mixture, 5.6% (OY >1 p- value = 0.0329) in the oak– pine 
mixture and 2% (OY >1 p value = 0.2195) in the spruce– pine mix-
ture, with high variability within each mixture (Figure 3, Table S3, 
Figure S3). Beech, oak and spruce significantly benefited from the 
mixture by increasing their growth, while pine showed similar (beech– 
pine and oak– pine) or slightly lower (spruce- pine) growth than did the 
monocultures (Table S3).

The temporal stability of stand growth was 12.3% greater in 
mixed (TSmixed = 6.12) than in monospecific (TSmono = 5.45) stands 
(p value = 0.0016, Table S4a, Figure S4). There were no significant 
differences between the three species mixtures (Table S4e). TS 
was significantly improved for both beech and pine in the beech– 
pine mixture, for only pine in oak– pine mixtures and only spruce in 
spruce– pine mixtures (Figure 3, Table S4b– d).

3.2  |  Climate effect on temporal stability of 
stand growth

Increasing the mean temperature had an overall negative effect 
on TS (p < 0.0022) in both monospecific and mixed stands, indicat-
ing a greater variability in stand growth at warmer sites (Figure 4a, 
Table S5a,b). In contrast, the effect of annual precipitation was only 
significant when the identity of species composition was considered 
in the analysis (Table S5b). The TS of beech– pine mixtures slightly 
increased with higher precipitation, whereas that of spruce– pine de-
creased (Figure 4). The stability of the oak– pine mixture growth was 
not affected by precipitation. The stabilizing effect of mixing species 
(i.e. difference between mixed and monospecific stands) was stronger 
under higher precipitation for the beech– pine mixture (Figure 4b) and 
weaker for spruce– pine (Figure 4d). When comparing the three mix-
tures, there were only slight differences among the precipitation effect 

(7)ln (TS)ijk=�+Tyk+Clij+Tyk ∗Clij+ tj+�ijk,

(8)ln (TS)ijk=�+ Idk+Clij+ Idk ∗Clij+ tj+�ijk.

(9)ln (TS)jk = � +Mixk +Mixk ∗ Clij + �jk.
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on their TS (Table S5c; Figure S5). The effect of climate variables on 
overyielding was also tested, but we did not find any significant effect.

3.3  |  Drivers of temporal stability of stand growth 
in mixed forest stands

Simple linear regressions (Table S6) indicated that among the dif-
ferent drivers tested, the additive effect had the strongest relation-
ship (positive) with TSmixed (R2 = 0.34, p < 0.0001). Asynmixed was 
also positively correlated with TSmixed (R2 = 0.21, p < 0.0001), while 
overyielding did not show any relation. Interestingly, Asynmixed had a 
significant effect on overyielding.

The results of the SEM confirmed the direct negative effect of 
temperature (−0.21) and reflected the relevance of species asyn-
chrony on TSmixed (Figure 5; Table S7). Precipitation had an indirect 
weak influence (0.06 = 0.25 × 0.24) on TSmixed through its positive 
effect (0.25) on Asynmixed. Asynmono indirectly explained TSmixed by 
the effect on Asynmixed and by AE (Figure 5, Table S7). It is notewor-
thy that Asynmixed increased TSmixed beyond the AE. This reflects the 
effect of species interactions, which may modify the species fluctu-
ations in mixed stands in comparison to monospecific stands, emerg-
ing in more stable forest stands. However, the AE effect was greater 
(0.50) than the direct effect of Asynmixed (0.24).

4  |  DISCUSSION

Based on observational data of three relevant mixtures with Scots 
pine and another tree species across Europe, we demonstrate that 
adding one species to monocultures yields important benefits in 
terms of the level and stability of community productivity. We fur-
ther reveal the negative effect of temperature on TS and the relative 
importance of different factors acting on the stability gain.

The significant mean OY and greater stability in mixtures confirm 
results from previous overarching analysis that include two- species 
forest mixtures (Jactel et al., 2018; Jucker et al., 2014; Pretzsch & 

Forrester, 2017), as well as a previous analysis on beech– pine tran-
sect (del Río et al., 2017). It highlights general complementarity and 
buffering effects in mixtures in terms of stand growth. However, the 
magnitude of mixtures’ benefits can vary with species composition 
(Figure 3), which suggests the importance of species traits on di-
versity effects (Baeten et al., 2019; Craven et al., 2018; Schnabel 
et al., 2021) and the need to assess specific species compositions.

Previous results from experimental studies point to a high rel-
evance of climate conditions for TS (Craven et al., 2018; Schnabel 
et al., 2021), but their results cannot be easily generalized to other 
sites. Our observational approach allowed us to address for the 
first time the effect of climate on TS for specific forest mixtures 
along their main distribution range. We identify the destabilizing 
effect of temperature on stand productivity for all the studied for-
est types, as found for other plant communities (Ma et al., 2017; 
Valencia et al., 2020). Greater temperatures may be linked to sites 
where the species show greater climate sensitivity, which might 
increase growth variability. Nonetheless, the large variability ob-
served (Figure 4a) points to the need for a deeper analysis con-
sidering monthly climate variables and local growing seasons to 
clarify the reasons for the observed temperature effect. Although 
the temperature destabilizing effect was common for monocul-
tures and mixtures, the positive effect of mixing species on TS 
may counterbalance the negative effect of temperature. The 
greater TS in mixed stands was, on average, equivalent to the TS 
of corresponding monocultures under ≈ 2°C lower temperature 
(Figure S6), although uncertainty is large.

In accordance with other studies (Ouyang et al., 2021; Valencia 
et al., 2020), TS was also modulated by annual precipitation, but 
we found distinct effects depending on species identities in mono-
specific and mixed stands (Figure 4) (Jourdan et al., 2021). We did 
not find any climate influence on OY, as found in previous analy-
ses of beech– pine and spruce– pine transects for a shorter period 
(Pretzsch et al., 2015; Ruiz- Peinado et al., 2021), but against those 
of the oak– pine transect (Pretzsch et al., 2020). Nevertheless, pre-
cipitation may have an indirect positive influence on OY, as found 
by Jactel et al. (2018), through its effect on Asynmixed (Table S6).

F I G U R E  3  Overyielding (red diamonds) 
and temporal stability of stand growth 
(grey quadrats) for the three types of 
mixtures: beech– pine, oak– pine, spruce– 
pine (mean and standard error). Temporal 
stability is given for monospecific and 
mixed stands. Green arrows indicate 
significant stabilizing effects by mixing 
species, and grey arrows indicate 
nonsignificant effects (Table S4).
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Asynchrony in species productivities is often reported as the 
main driver of the greater TS with increasing species diversity 
(Blüthgen et al., 2016; Schnabel et al., 2021; Yuan et al., 2019). By 
exploring Asynmixed and Asynmono, we demonstrated the relevant 
effect of asynchrony through two complementary mechanisms 
(Figure 5), that is, the difference between intrinsic species- specific 
fluctuations (responses to climatic variations and intrinsic rhythms) 
and species interactions, which results in the stabilizing effect of 
mixing species as predicted by the insurance hypothesis (Yachi 
& Loreau, 1999). Accordingly, our results reveal the substantial 
influence of AE on TS (Jourdan et al., 2021), which suggests the 

potential stabilizing effect by mixing any tree species (van der 
Plas, 2019), even when mixed by patches (i.e. spatial stability, 
(Loreau et al., 2021)). Asynmixed also had a positive effect on OY, 
which indicates the presence of temporal niche complementarity 
and points asynchrony in species growth as a key driver of forest 
ecosystem functioning (van der Plas, 2019). The lack of influence 
of OY on TS reveals that TS increased by the variance buffering ef-
fect (Schnabel et al., 2021) and that OY and TS were independent 
effects (Cardinale et al., 2013; Jing et al., 2022). However, caution 
is needed for causal interpretation of our SEM results given the 
observational, not experimental, approach.

F I G U R E  4  Climate effects on temporal stability of stand growth (in logarithm, ln(TS)), according to the model ‘equation 8’ presented in 
Table S5b (marginal effects): general effect of mean annual temperature (a); effect of annual precipitation on monospecific and mixed stands 
of beech– pine (b), oak– pine (c) and spruce– pine (d) transects. Shaded areas represent 95% confidence intervals (fixed effects).
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We found that on average, in two- species stands, growth was 
6% higher than expected and that temporal stability was 12% higher 
than in monospecific stands. Although the level and stability of pro-
ductivity may increase with the number of species (Liang et al., 2016; 
Schnabel et al., 2021; Vilà et al., 2013), we demonstrate that adding 
one additional species to monocultures has already a strong effect. 
Monocultures of conifers, such as pine and spruce stands, are effi-
cient systems for timber supply because of their high growth rates 
and simplified management. However, admixing just one species in 
these stands could stabilize the provision of wood and other eco-
system services linked with the level and stability of growth, such 
as nutrient and water cycling, carbon sequestration and storage 
or protective functions (Knoke et al., 2008), beyond the reduction 
and distribution of risks under higher climate uncertainty (Jactel 
et al., 2017). These findings underline that promoting two- species 
mixtures can be a realistic and effective nature- based climate solu-
tion, supporting the sustainability of forest productivity and contrib-
uting further to climate change mitigation (Mori et al., 2021).
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