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Abstract
Global climate change is expected to further raise the frequency and severity of ex-
treme events, such as droughts. The effects of extreme droughts on trees are dif-
ficult to disentangle given the inherent complexity of drought events (frequency, 
severity, duration, and timing during the growing season). Besides, drought effects 
might be modulated by trees’ phenotypic variability, which is, in turn, affected by 
long-term local selective pressures and management legacies. Here we investigated 
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1  | INTRODUC TION

Climate change effects are broadly characterized by elevated tem-
perature, changed precipitation regimes, and increased interannual 
variability, often resulting in more frequent and intense climate ex-
tremes such as severe droughts (Dai, 2012; Spinoni, Vogt, Naumann, 
Barbosa, & Dosio, 2018). The increased frequency and severity of 
droughts can significantly impact tree growth by reducing their pho-
tosynthetic activity (Flexas & Medrano,  2002; Reddy, Chaitanya, 
& Vivekanandan, 2004) and altering their cambial activity (Gruber, 
Strobl, Veit, & Oberhuber, 2010). In addition, severe drought events 
have been associated to forest decline either through direct abiotic 
effects leading to hydraulic failure and/or carbon starvation (Adams 
et al., 2017; Choat et al., 2018; McDowell et al., 2008) or mediated by 
biotic factors, such as insects (Rouault et al., 2006), fungi (Giordano, 
Gonthier, Varese, Miserere, & Nicolotti,  2009), and mistletoes 
(Rigling, Eilmann, Koechli, & Dobbertin, 2010). These effects may ul-
timately induce shifts in forest composition (Buras & Menzel, 2019; 
Walther et  al.,  2002) and reduction in forest productivity (Ciais 
et al., 2005).

Growing recognition of the impacts of extreme droughts on forest 
ecosystems has spurred on a number of long-term experiments and 
observational studies (e.g., Breshears et al., 2005; Jentsch et al., 2011; 
Seidel, Matiu, & Menzel, 2019). The results of these studies revealed 
a large variability in pattern and magnitude of responses to extreme 

droughts (McDowell et al., 2008; Smith, 2011), because phenotypic 
acclimation to such extreme events may depend on a multitude of 
factors and their interactions, including drought characteristics 
(Anderegg et  al.,  2015; Gazol et  al.,  2018), drought history of the 
growing environment (Vicente-Serrano et al., 2013), species-specific 
functional traits and life-history strategies (Anderegg et  al.,  2016; 
Greenwood et al., 2017; Lévesque et al., 2013), provenance (Sánchez-
Salguero et al., 2018; Seidel, Schunk, Matiu, & Menzel, 2016), tree size 
and age (Granda, Gazol, & Camarero, 2018; Magnani, Mencuccini, & 
Grace, 2000; Serra-Maluquer, Mencuccini, & Martínez-Vilalta, 2018), 
tree-to-tree competition (Linares, Camarero, & Carreira,  2010), nu-
trient imbalances (Hevia et  al.,  2019), nutrient availability (Gessler, 
Schaub, & McDowell, 2017), species composition and stocking of the 
forest stand (Bottero et  al.,  2017; Forrester et  al.,  2016; Grossiord 
et  al.,  2014), trees’ neighbourhood composition (Grossiord,  2019), 
microclimatic conditions related to forest edge and interior (Buras 
et al., 2018), and growth trends prior to drought (Zang, Hartl-Meier, 
Dittmar, Rothe, & Menzel,  2014). In the longer term, acclimation is 
often complemented by evolutionary genotypic adaptation (Bose 
et  al.,  2020; Hamrick,  2004; Sánchez-Salguero et  al.,  2018) leading 
to differentiation of populations and ecotypes with varying adaptive 
capacities to drought, often observed for marginal populations at dry 
species range margins (Bolte et al., 2016; Hampe & Petit, 2005).

Moreover, the effects of past drought and growing condi-
tions (legacy effects), can remain for several years and modify the 
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the magnitude and the temporal changes of tree-level resilience (i.e., resistance, re-
covery, and resilience) to extreme droughts. Moreover, we assessed the tree-, site-, 
and drought-related factors and their interactions driving the tree-level resilience 
to extreme droughts. We used a tree-ring network of the widely distributed Scots 
pine (Pinus sylvestris) along a 2,800 km latitudinal gradient from southern Spain to 
northern Germany. We found that the resilience to extreme drought decreased in 
mid-elevation and low productivity sites from 1980–1999 to 2000–2011 likely due 
to more frequent and severe droughts in the later period. Our study showed that 
the impact of drought on tree-level resilience was not dependent on its latitudinal 
location, but rather on the type of sites trees were growing at and on their growth 
performances (i.e., magnitude and variability of growth) during the predrought period. 
We found significant interactive effects between drought duration and tree growth 
prior to drought, suggesting that Scots pine trees with higher magnitude and vari-
ability of growth in the long term are more vulnerable to long and severe droughts. 
Moreover, our results indicate that Scots pine trees that experienced more frequent 
droughts over the long-term were less resistant to extreme droughts. We, therefore, 
conclude that the physiological resilience to extreme droughts might be constrained 
by their growth prior to drought, and that more frequent and longer drought periods 
may overstrain their potential for acclimation.
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tree growth and physiological responses to the current drought 
(Anderegg et al., 2015; Kannenberg et al., 2019; Seidel et al., 2019). 
An important question in the debate on drought and acclimation is 
whether individuals will be able to acclimate fast enough to cope 
with increased frequency and severity of droughts (Dai,  2012; 
Szejner, Belmecheri, Ehleringer, & Monson, 2020). It is therefore 
important to understand how tree growth responses to extreme 
droughts vary across sites with different productivity (Valladares, 
Gianoli, & Gómez, 2007; Valladares et al., 2014), since site productiv-
ity can modify trees’ phenotypic strategies such as tree height, root 
to shoot ratio, and crown development for efficient conservation 
and utilization of water (Vanninen & Mäkelä, 2005). For example, 
tree height which is commonly used as an indicator of site produc-
tivity (e.g., Westoby, Falster, Moles, Vesk, & Wright,  2002) was 
reported to be the strongest predictor of tree mortality in south-
western United States where 1.8 million trees were studied (Stovall, 
Shugart, & Yang, 2019).

Several recent studies conducted in southern and central 
Europe have reported drought-induced dieback of Scots pine (Buras 
et al., 2018; Camarero, Gazol, Sangüesa-Barreda, Oliva, & Vicente-
Serrano,  2015; Etzold et  al.,  2019; Galiano, Martínez-Vilalta, & 
Lloret,  2010; Hereş, Martínez-Vilalta, & Claramunt López,  2012; 
Sánchez-Salguero, Navarro-Cerrillo, Camarero, & Fernández-
Cancio, 2012) causing a shift toward the dominance of oak (Quercus 
spp.) species (Carnicer et  al.,  2014; Galiano et  al.,  2010; Rigling 
et al., 2013). Although the impact of various tree- and site-level fac-
tors on tree growth during drought has been studied from local to 
global scales (e.g., Anderegg et al., 2015; Buras et al., 2018; Gazol 
et al., 2018; Zang et al., 2014), their interactive effects are still not 
clearly understood (Maes et al., 2019). For example, some large-scale 
studies found a low to moderate influence of drought severity on 
tree growth response (e.g., Gazol, Camarero, Anderegg, & Vicente-
Serrano, 2017; Sánchez-Salguero et al., 2018), possibly because they 
did not consider interactive effects between drought characteristics 
and long-term tree growth performances. In addition, large-scale 
studies often characterize drought according to a predefined meteo-
rological season (e.g., drought in spring–summer) irrespective of local 
site conditions, soil moisture content, and geographic location (e.g., 
Bottero et al., 2017; Gao et al., 2018; Gazol et al., 2018). As a conse-
quence, site-specific climate-growth signals might be overlooked if 
a particular studied season is not the most relevant period for tree 
radial growth (Pasho, Camarero, de Luis, & Vicente-Serrano, 2011; 
Sánchez-Salguero et al., 2015).

Here we combined Scots pine tree-ring width data from 30 
sites into a network to determine how growth responses to ex-
treme drought varied along a latitudinal gradient across Europe 
stretching from southern Spain to northern Germany. Tree growth 
response was assessed to retrospectively quantify short- and 
long-term drought effects on growth for numerous individuals, 
sites, and species at annual resolution. Tree growth resilience was 
defined as the capacity of a tree to reach growth rates similar to 
those prior to a given drought event. Thus, resilience encompasses 
the capacity to buffer the impact of a disturbance (resistance), 

as well as the ability to return to predisturbance growth levels 
(recovery; Lloret, Keeling, & Sala,  2011). Specifically, we asked 
four research questions: (a) How does the impact of the climatic 
water balance (CWB; i.e., precipitation minus potential evapo-
transpiration) of different seasons on tree growth vary along a 
latitudinal gradient? (b) How do radial growth rates of Scots pine 
during drought and nondrought years vary across sites? (c) Has 
tree growth resilience to extreme drought changed over the past 
decades due to an increased frequency and severity of droughts 
(Serra-Maluquer et  al.,  2018; Szejner et al., 2020)? (d) How do 
drought characteristics, site conditions, and tree growth-related 
variables modulate the tree growth resilience to extreme drought 
events? For this last research question, we considered a list of 
biological hypotheses based on a literature review (see Table S1: 
e.g., Gazol et al., 2017, 2018; Sánchez-Salguero et al., 2018; Vitali, 
Büntgen, & Bauhus, 2017; Zang et al., 2014).

2  | MATERIAL S AND METHODS

2.1 | Study sites and tree-ring data

We compiled tree-ring width data of Scots pine from 30 sites 
(Table S2) along an approximately 2,800 km long latitudinal gradi-
ent from southern Spain (Baza; 37.2°N, 4.0°W) to north-eastern 
Germany (Torgelow; 53.6°N, 14°E; Figure  1). To avoid age-related 
growth effects only trees older than 30 years at the time of exam-
ined drought were selected, resulting in 615 adult Scots pine trees 
(6–60 trees per site). From each tree, two to four tree ring width 
series were included, measured from increment cores extracted at 
breast height (1.3 m height) and cross-dated following standard den-
drochronological procedures (Grissino-Mayer, 2001).

Considering the large differences in productivity among study 
sites along this long gradient, the sites were grouped using a hier-
archical cluster analysis (Kaufman & Rousseeuw,  1990). The clas-
sification was based on site productivity index (i.e., dominant tree 
height at 50 years of stand age) and site elevation. Dominant tree 
height has been commonly used as an indicator of site productiv-
ity (e.g., Bugmann,  1996; Diéguez-Aranda, Burkhart, & Rodríguez-
Soalleiro,  2005; Westoby et  al.,  2002) including Scots pine sites 
(e.g., Diéguez-Aranda, Álvarez González, Marcos Barrio, & Alberto 
Rojo, 2005; Hökkä & Ojansuu, 2004; Mäkinen, Yue, & Kohnle, 2017; 
Palahı ,́ Tomé, Pukkala, Trasobares, & Montero, 2004). The hierarchi-
cal clustering was done using the hclust function and ward.D method 
in R (R Development Core Team, 2018). Based on the hierarchical 
cluster analysis (Figure S1), three groups (i.e., site types) were char-
acterized as (a) high-elevation sites (1,865–2,011 m a.s.l.) with low 
productivity (6.0–14.0 m in stand dominant tree height) referred as 
“HELP”, (b) mid-elevation sites (600–1,450 m a.s.l.) with low produc-
tivity (7.5–11.0 m in stand dominant tree height) referred as “MELP,” 
and (c) low-elevation sites (33–326  m a.s.l.) with high productiv-
ity (15–23.7  m in stand dominant tree height) referred as “LEHP” 
(Figure S1).
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2.2 | Analytical approaches

Addressing our four research questions, the analytical approach 
involved two steps: data preparation and data analysis. The data 
preparation step embodied four substeps, (a) quantification of 
tree-ring width indices; (b) quantification of drought indices; (c) 
identification of drought, predrought, and postdrought periods 
(i.e., years); and (d) quantification of tree growth resilience indices. 
The data analysis step embodied four steps, that is, one for each 
research question.

2.3 | Quantification of tree-ring width indices

We aimed at quantifying growth responses to extreme drought 
events over the recent 50 years period roughly from year 1960 to 
year 2011. However, our studied trees largely differed in age across 
sites (Table  S2). Hence, ring width data were transformed into di-
mensionless ring width indices (RWI) with both age-related growth 
trends and lower frequency variation removed from the time series 
(Cook & Kairiukstis, 1990). For this, ring width data were detrended 
by fitting a negative exponential curve or using a 30 year cubic spline 
with a 50% frequency cutoff (Cook & Kairiukstis, 1990). In addition 
to these detrending methods, we also converted the raw ring width 
data into basal area increment (cm2 per year; Biondi & Quedan, 2008) 
using the dplR package in R (Bunn et al., 2018). We assessed the 
suitability of these approaches to disentangle the drought effects 
on tree growth by computing the correlation coefficient with the 
drought indices (cf. next section) and by characterizing the trend 
over a 50  year period (Table  S3; Figure  S2). The results showed 
that the negative exponential detrending method performed best 
among the used approaches in terms of the magnitude of correlation 
with the drought and of capturing the long-term trends (Table S3; 
Figure S2). We thus used the detrended negative exponential RWI 
(hereafter referred to as RWI) for the analysis.

To build the site-level tree-ring chronology, we averaged the de-
trended individual RWI series with a Tukey's biweight robust mean 
(Cook & Kairiukstis, 1990; Fritts, 2001). The RWI and average tree-
level chronology were calculated using the detrend and chron func-
tions, respectively, available from the dplR R package (Bunn et al., 
2018; R Development Core Team, 2018).

2.4 | Quantification of drought indices

Monthly mean temperature (°C) and total precipitation (mm) data 
were obtained for each site from different climate data sources 
(Table S4). To compute the correlation coefficient between drought 
indices and the RWI, we considered a 50 year period for all sites. 
However, the range of years for the 50  year period varied across 
sites due to differences in timing of data collection.

For drought index, we initially considered the De Martonne 
Index (De Martonne,  1926), the Standardized Precipitation Index 
(McKee, Doesken, & Kleist, 1993), and the Standardized Precipitation 
Evapotranspiration Index (SPEI; Vicente-Serrano, Beguería, & López-
Moreno, 2010). The SPEI had a stronger correlation with RWI than 
the other indices examined for most of the sites (see Table S5). Hence, 
SPEI was used for defining the drought and nondrought years.

The SPEI is a unitless drought index, which takes into account 
both precipitation and potential evapotranspiration effects in the 
calculation of the CWB, and is commonly used in the literature for 
identifying and characterizing drought and nondrought years (e.g., 
Bottero et al., 2017; Gazol et al., 2018). The potential evapotrans-
piration was calculated using the Thornthwaite function of the R 
package SPEI (Begueria & Vicente-Serrano,  2013). The SPEI was 
then calculated from CWB using the spei function of the R package 
SPEI (Begueria & Vicente-Serrano,  2013). For each site, we calcu-
lated SPEI of various timescales that is, integrated over 1–15 months 
in order to represent different lengths of the growing season or at 
least different growth sensitive periods within the current and the 

F I G U R E  1   Location of the 30 Scots 
pine study sites distributed along a 
latitudinal gradient that ranged from 
southern Spain to northern Germany. 
HELP, high-elevation sites with low 
productivity; LEHP, low-elevation sites 
with high productivity; MELP, mid-
elevation sites with low productivity. 
The grey shade used as a background 
within the map represents the natural 
distribution of Scots pine adapted from 
Mátyás, Ackzell, & Samuel (2004)
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previous growing season. We assessed the Pearson correlation be-
tween RWI and SPEIs (i.e. the different time intervals) for identifying 
the most relevant SPEI (i.e., most sensitive time interval) for each 
site to define the drought and nondrought years (see Table S6). The 
resulting SPEIs (i.e., those best correlated with RWI) are presented 
in the Table S7.

For identifying the extreme drought year of a site, we selected 
the year with the lowest SPEI value. For each site, we first selected 
the extreme drought years for the period of 1980–2011. We then 
selected the extreme drought year for the period of 1980–1999 and 
for the period of 2000–2011.

2.5 | Identification of drought, predrought, and 
postdrought periods

We characterized drought periods by single or multiple years based 
on SPEI ≤ −1.00 and predrought or postdrought periods (i.e., without 
drought) based on SPEI ≥ −0.99. We limited the predrought and post-
drought periods to a maximum of 3 years, but for drought periods we 
considered all consecutive years with SPEI ≤ −1.00 (see Table S6). 
We identified the most extreme droughts during 1980–1999, and 
during 2000–2011 for all study sites (see Table S6) for comparing 
the tree growth responses to extreme droughts during the recent 
decade (2000–2011) with the previous two decades (1980–1999). 
Since many sites had no drought during 1990–1999, we decided to 
enlarge the earlier period back until 1980.

2.6 | Tree growth resilience indices

For tree growth resilience, we computed three resilience indices 
as suggested by Lloret et al. (2011): resistance, recovery, and resil-
ience. The resistance quantifies the ratio between growth during a 
drought period and growth during the preceding nondrought period, 
representing thus the capacity of the trees to buffer the stress and 
maintain growth during drought. The recovery quantifies the growth 
reaction following the drought period and is defined by the ratio be-
tween growth during the postdrought period and growth during the 
drought period. The resilience quantifies the ratio between growth 
during the postdrought period and growth during the predrought 
period, which represents the capacity of trees to recover and re-
gain the growth of the predrought period. We quantified resistance, 
recovery, and resilience for all trees of all sites during the most ex-
treme droughts in 1980–1999 and in 2000–2011 (see Table S6).

2.7 | Research question 1: Impact of seasonal 
drought (SPEI) on tree growth

Based on the results of preliminary analysis (i.e., correlation between 
RWI and different SPEIs), we identified the eight best correlated 
SPEIs for understanding the magnitude (i.e., degree of correlation) 

and pattern (i.e., type of correlation) of influences of drought on 
RWI, and how that magnitude and pattern of correlation varied 
across the latitudinal gradient examined in this study. The selected 
SPEI timescales were August 15 (i.e., from previous June to current 
August), May 12 (i.e., from previous June to current May), May 9 (i.e., 
from previous September to current May), May 6 (i.e., from previous 
December to current May), May 3 (i.e., spring, from current March to 
current May), August 6 (i.e., from current March to current August), 
August 3 (i.e., summer, from current June to current August), and 
November 6 (i.e., from current June to current November).

2.8 | Research question 2: Tree growth rate in 
drought and nondrought years

For understanding the absolute tree radial growth performances 
during drought and nondrought years, we modeled absolute tree 
radial growth (non-detrended tree ring width) as a function of site 
types (three levels: LEHP, MELP, and HELP), drought status (two 
levels: drought years and nondrought years), and the interaction 
between site types and drought status. For understanding the po-
tential role of tree age on absolute tree radial growth, we considered 
tree age as a covariate in this analysis.

2.9 | Research question 3: Temporal change in tree 
growth resilience to extreme droughts

We modeled resistance, recovery, and resilience as a function of 
time period (two levels: 1980–1999 and 2000–2011), site types 
(three levels: LEHP, MELP, and HELP), and the interaction between 
time period and site types.

2.10 | Research question 4: Factors affecting tree 
growth resilience to extreme drought

For this research question, we selected the most extreme drought 
during the entire 1980–2011 study period and used the correspond-
ing resistance, recovery, and resilience indices as response variables 
in a mixed-effects model (cf. next section). We considered several 
tree-, site-, and drought-level explanatory variables and various two-
way interaction terms (see Table S1). The variables included tree size 
(i.e., tree diameter at breast height [DBH] inside bark at the drought 
year), tree growth, and tree growth variability prior to drought repre-
senting the average and standard deviation of RWI, respectively of 10 
consecutive years prior to the extreme drought excluding the years 
considered as predrought period for quantifying the three resilience 
indices, site types, elevation, latitude, drought severity (measured 
by the average SPEI during the drought period), drought duration 
(measured by the length of the drought period in years), and drought 
frequency (measured by the number of drought years (SPEI ≤ −1.00) 
within 10 years preceding the maximum drought period).
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4526  |     BOSE et al.

F I G U R E  2   Seasonal correlations between Scots pine tree-ring width indices and the Standardized Precipitation Evapotranspiration Index 
(SPEI) for the period of approximately 1960–2011 across the latitudinal gradient. Only the seasons that exhibited the strongest effect on 
tree-ring width indices are plotted (see Section 2). Note. ‘previous’ refers to the year previous to tree ring formation, while ‘current’ refers 
to the current year of ring formation, summer: June, July, and August, spring: March, April, and May, autumn: September, October, and 
November, and winter: December, January, and February. HELP, high-elevation sites with low productivity; LEHP, low-elevation sites with 
high productivity; MELP, mid-elevation sites with low productivity. Pearson's product-moment correlation with a threshold <0.05 was used 
for statistical significance. Correlation magnitude: the larger the circles, the stronger the correlations. See Table S7 for correlation scores 
that are displayed in this figure
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2.11 | Statistical analyses

We used a linear mixed-effect modeling approach for research ques-
tion 2, 3, and 4 in which our variables of interest were considered 
as fixed effects and trees nested within sites were considered as 
random effects. The modeling was performed using the function 
lme of the R package nlme (Pinheiro & Bates, 2000; Pinheiro, Bates, 
DebRoy, & Sarkar, 2014). The response variables were log-trans-
formed to normalize residuals and homogenize variances and we 
checked the assumptions of normality of the residuals and homo-
geneity of the variances. Preliminary analysis indicated that an ad-
ditional error structure to account for plot spatial autocorrelation did 
not improve model performance and thus was not incorporated into 
the final model. We also assessed potential multicollinearity among 
explanatory variables using the Variance Inflation Factor (VIF) and 
discarded variables when VIF > 2.0. The VIF was calculated using the 
function vif of the R package car (Fox & Weisberg, 2011). The post 
hoc Tukey multiple comparison test was performed to detect the 
statistical differences (Hothorn, Bretz, & Westfall, 2008).

For research question 4, we used the information-theoretic ap-
proach (Burnham & Anderson,  2002; Johnson & Omland,  2004), 
which provides a measure of strength for each candidate model that 
represents a plausible hypothesis relative to the entire set of candidate 
models considered (Mazerolle, 2006). In the context of our research 
question (i.e., what are the factors driving the tree growth resilience 
to extreme drought?), we considered 16 hypotheses (i.e., candidate 
models; Table S1), which were developed based on the current under-
standing resulted from different studies that examined tree growth 
resilience to extreme droughts. Model selection was performed using 
the AICcmodavg package of R (Mazerolle,  2011). Candidate mod-
els were compared using Akaike's information criterion corrected 
for small sample sizes (AICc). Akaike weights were computed to as-
sess the support for each model. We used multimodel inference to 
compute the model-averaged estimates of the explanatory variables 
and their 95% confidence intervals (Burnham & Anderson, 2002). A 
confidence interval excluding 0 indicated that the corresponding ex-
planatory variable had an effect on the response variable (Burnham & 
Anderson, 2002; Mazerolle, 2006). In addition to our candidate mod-
els we also considered a null model and a full model. The coefficient of 
variation (R2) for fixed and random effects were calculated using the 
function r.squaredGLMM of the MuMIn package in R (Bartoń, 2013). 
The background map of Figure 2 was downloaded using the function 
map_data from ggmap package in R (Kahle & Wickham, 2013).

3  | RESULTS

3.1 | Impact of seasonal drought (SPEI) on tree growth

Our results showed significant differences in the response of tree 
growth to the different time periods of SPEI. The current year summer 
to autumn (June–November) SPEI significantly controlled tree growth at 
LEHP sites of northern Germany (Figure 2), while tree growth at MELP 

sites was driven by SPEI of spring (March–May), summer (June–August), 
and spring and summer combined. Tree growth in HELP sites was either 
nonrelated or negatively correlated with different time periods of the 
SPEI (Figure 2; Table S3). Overall, the magnitude of correlation between 
RWI and different SPEIs was higher for MELP than the two other site 
types (Table S3). Three sites of HELP site type had a negative correla-
tion with SPEIs while one site of HELP site type was not significantly 
correlated with any SPEI considered in our analysis (Table S3).

3.2 | Tree growth rate in drought and nondrought  
years

In drought and nondrought years, tree radial growth was higher at LEHP 
than at HELP and at MELP sites (Figure 3). The MELP sites had signifi-
cantly lower tree radial growth in drought years than in nondrought 
years (Table S8; Figure 3). Contrary to MELP, tree growth was not signif-
icantly different between drought and nondrought years at LEHP and 
at HELP sites (Table S8; Figure 3). Tree age was negatively associated 
with the radial growth (p < .0001) irrespective of site types (Table S8).

3.3 | Temporal change in tree growth resilience to 
extreme droughts

Tree growth resistance to extreme drought for all site types (i.e., 
HELP, LEHP, and MELP) did not change over the two periods (i.e., 

F I G U R E  3   Mean annual radial growth in drought and non-
drought years for the period of approximately 1980–2011 across 
the three site types (i.e., LEHP, low-elevation sites with high 
productivity; MELP, mid-elevation sites with low productivity; 
HELP, high-elevation sites with low productivity). Error bars 
represent the mean ± standard error (n = 615). Letters on top of 
the bars show the results (a < b < c) of the post hoc Tukey multiple 
comparison test with a threshold <0.05 for statistical significance 
indicating the differences among the three site types and between 
non-drought years and drought years within each site type
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1980–1999 and 2000–2011; Figure  4a). Nevertheless, resistance 
was higher at HELP than at LEHP, and higher in the latter compared 
to MELP, irrespective of the period (Table S9; Figure 4a).

Tree growth recovery changed significantly over the two peri-
ods for all site types, where recovery decreased from 1980–1999 
to 2000–2011 at MELP and HELP sites, while increased from 
1980–1999 to 2000–2011 at LEHP sites (Table  S9; Figure  4b). 

In 1980–1999, recovery was significantly higher at MELP com-
pared to the two other site types irrespective of period (Table S9; 
Figure 4b).

Tree growth resilience changed significantly over the two pe-
riods for LEHP and MELP sites, but not for HELP sites. Resilience 
decreased from 1980–1999 to 2000–2011 at MELP sites, while it 
increased from 1980–1999 to 2000–2011 at LEHP sites (Table S9; 
Figure 4c).

3.4 | Factors affecting tree growth resilience to 
extreme drought

The model that included additive and interaction effects of all vari-
ables considered in the analysis had full support of Akaike weight for 
resistance (Table 1). A lower resistance was associated with higher 
predrought growth rate (Table 2). In addition, a lower resistance was 
associated with greater drought frequency, and with longer drought 
but depending upon predrought growth rate (Table 2). Resistance was 
higher at HELP and LEHP sites than at MELP sites (Table 2; Figure 5a).

The model that included drought severity and site types, and the 
interaction between the two variables had the highest support of 
Akaike weight for recovery (0.74; Table 1). Recovery was lower at 
HELP and LEHP sites than at MELP sites (Table 2; Figure 5b). In ad-
dition, the recovery was higher where trees experienced a higher 
frequency of droughts (Table 2).

The model that included predrought growth rate and drought du-
ration, and the interaction between the two variables had the high-
est support of Akaike weight for resilience (Table 1). Resilience was 
negatively associated with predrought growth rate and predrought 
growth variability and there was no difference across the three site 
types (Table 2; Figure 5c).

4  | DISCUSSION

Using tree ring width data from 30 sites along a 2,800 km latitudinal 
gradient across Europe we analyzed whether tree growth resilience to 
extreme drought depended on the geographical location of the tree 
(Isaac-Renton et  al.,  2018) and if resilience to extreme drought de-
creased over time due to more frequent drought events in recent years 
(Serra-Maluquer et al., 2018; Spinoni, Naumann, Carrao, Barbosa, & 
Vogt, 2014). We examined these questions on Scots pine, one of the 
most widely distributed tree species in the world which is also con-
sidered vulnerable to extreme drought conditions (Camarero, Gazol, 
Sangüesa-Barreda, et al., 2015; Galiano et al., 2010; Matías, Linares, 
Sánchez-Miranda, & Jump,  2017; Rigling et  al.,  2013). Our study 
shows that tree-level resilience to drought was not dependent on the 
latitudinal location, but rather on the type of site they were growing 
at and their growth performance (i.e., magnitude and variability of 
growth) during the predrought period. Our results indicate that trees 
with higher magnitude and variability in growth are more vulnerable 
to long and severe droughts. In addition, we found that tree growth 

F I G U R E  4   Tree-level resistance (a), recovery (b), and resilience 
(c) to the most extreme drought during 1980–1999 and during 
2000–2011 for three site types. Error bars represent the 
mean ± standard error (n = 615). Letters on top of the bars show 
the results (a < b < c) of the post hoc Tukey multiple comparison 
test with a threshold <0.05 for statistical significance indicating 
the differences among the three site types and between the two 
periods within each site type. HELP, high-elevation sites with low 
productivity; LEHP, low-elevation sites with high productivity; 
MELP, mid-elevation sites with low productivity
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resilience to extreme drought was lower during 2000–2011 than dur-
ing 1980–1999 at mid-elevation and lower productivity sites. These re-
sults may indicate that more frequent drought events that occurred in 
2000–2011 than in earlier period make Scots pine trees more vulner-
able to extreme droughts. However, we found high variability in tree-
level responses (Figure 5) as detected by previous studies (e.g., Gazol 
et al., 2018; Maes et al., 2019). This high tree-level variability (Figure 5) 
and low marginal R2 values (Table 2) may indicate that combining tree 
information from different sites without direct measurements of local 
site-related factors (e.g., soil water content, nutrient availability, stand 
stocking, and rooting depth) compromises the predictive power of the 
models (DeSoto et al., 2020; Gazol et al., 2018; Grossiord et al., 2014).

4.1 | Impact of seasonal drought on tree growth

Our results reveal important seasonal differences across lower and 
higher productivity sites in terms of SPEI-RWI correlations. Scots 
pine trees growing at mid-elevation lower productivity (MELP) 
sites showed a greater sensitivity to spring–summer SPEI while 
trees growing at low-elevation higher productivity (LEHP) sites of 
northern Germany were more sensitive to summer–autumn SPEI 
(Figure 2). This is consistent with results from Pasho et  al.  (2011), 
who studied eight tree species including Scots pine for the period of 
1950–2005 using the Standardized Precipitation Index at timescales 
from 1 to 48 months. Our results showed that Scots pine trees grow-
ing in MELP are more sensitive to drought (measured by SPEI) than 
trees growing in LEHP and HELP sites (Figure 2; Table S3), which is 
consistent with the findings of other studies on Scots pine (Lévesque, 
Rigling, Bugmann, Weber, & Brang,  2014; Pasho et  al.,  2011; 
Sánchez-Salguero et al., 2015). Trees at MELP sites are likely to grow 
under water limitation during extended periods of the year, and 

changes in precipitation or evaporative demand during these periods 
will directly affect the water availability of the trees and thus their 
physiological responses, resulting in lower growth (Cabon, Peters, 
Fonti, Martínez-Vilalta, & De Cáceres, 2020). A tree at a less dry site 
in contrast is growing mostly without water limitations. During such 
periods with plenty of water supply there will be no strong direct 
effect of precipitation (and at least within a certain range of evapo-
rative demand) on tree physiology and on growth (Martínez-Vilalta 
et  al.,  2009; Sterck, Zweifel, Sass-Klaassen, & Chowdhury,  2008). 
Thus, it is reasonable to consider that the climatic control of tree 
growth is stronger at MELP which are relatively drier than LEHP sites 
(Table S2). However, we need to improve our understanding on local 
drought characteristics because the CWB and SPEI do not consider 
the soil water holding capacity and the depth of water table which 
are important parameters for estimating the soil water available for 
trees (Zang et al., 2020).

4.2 | Tree growth rate in drought and  
nondrought years

We found higher annual growth among trees at lower-elevation sites 
than trees at higher-elevation sites (Figure 3). Trees at low-elevation 
sites were relatively younger than trees at high-elevation sites and 
thus more likely in their full growth ontogenetic stage. However, 
Scots pine trees at high-elevation sites had no growth difference 
between our selected drought and nondrought years (Figure 3) ir-
respective of the fact that they experienced similar drought severity 
and frequency as the two other site types in terms of SPEI (Figure 6). 
Therefore, tree growth at high-elevation Scots pine forests is proba-
bly controlled by other factors than changes in water availability dur-
ing drought (Carrer, Nola, Eduard, Motta, & Urbinati, 2007; Cudlín 

Parameters
Types of 
effect

Estimate 
(β)

Lower 
95% CI

Upper 
95% CI

Resistance

Predrought growth Additive −0.13 −0.22 −0.04

HELP versus MELP Additive 0.31 0.09 0.52

LEHP versus MELP Additive 0.19 0.02 0.36

Drought intensity*predrought growth Interaction 0.005 0.002 0.008

Drought duration*predrought growth Interaction −0.22 −0.35 −0.09

Drought frequency Additive −0.13 −0.20 −0.06

Recovery

HELP versus MELP Additive −0.23 −0.45 −0.02

LEHP versus MELP Additive −0.16 −0.34 −0.01

Drought frequency Additive 0.08 0.01 0.16

Resilience

Predrought growth Additive −0.18 −0.28 −0.07

Predrought growth variability Additive −0.22 −0.43 −0.01

HELP, high-elevation sites with low productivity; LEHP, low-elevation sites with high productivity; 
MELP, mid-elevation sites with low productivity.

TA B L E  2   Log-transformed estimates 
of predictor variables and 95% confidence 
intervals (CI) based on model averaging for 
the three response variables resistance, 
recovery, and resilience. Only predictor 
variables that had a strong effect (i.e., a 
95% confidence interval excluding 0) are 
presented
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et al., 2017). In our dataset, three out of six high-elevation sites had 
negative correlation with SPEI (Table S3) indicating that tree radial 
growth at high-elevation sites examined in our study was more re-
lated to other factors such as ontogeny and temperature (Camarero, 
Gazol, Galván, Sangüesa-Barreda, & Gutiérrez, 2015; Körner, 2003) 

than to water availability (Hagedorn et al., 2014). Our high-elevation 
site type has three sites with trees that were older than 150 years 
during our selected drought period and older than the trees at any 
other site examined in our analysis. Besides, the mean annual tem-
perature at four out of six high-elevation sites was <7.0°C which is 
almost 2°C cooler than at any other site examined in our analysis. 
Trees in our high-elevation sites are perhaps well adapted to such 
low mean annual temperature and thus short growing season, con-
firming the findings of other studies conducted in southern Europe 
(Peñuelas, Hunt, Ogaya, & Jump, 2008) and in southwestern United 
States (Adams & Kolb, 2004). It is also important to mention that our 
drought intensity index may not fully capture the absolute water bal-
ance differences between drought and nondrought years because of 
the elevational differences between the sites and climate stations 

F I G U R E  5   Tree growth resistance (a), recovery (b), and 
resilience (c) to the most extreme drought during 1980–2011 with 
95% confidence intervals. Note. Average pre-drought growth 
(ring width indices) was quantified from tree growth during the 10 
consecutive years prior to drought excluding the years considered 
as pre-drought period for quantifying the three indices (resistance, 
recovery, and resilience). HELP, high-elevation sites with low 
productivity; LEHP, low-elevation sites with high productivity; 
MELP, mid-elevation sites with low productivity. See statistics for 
the fitted line in Tables 1 and 2

F I G U R E  6   Drought severity (measure by the SPEI [Standardized 
Precipitation and Evapotranspiration Index]) (a) and drought 
frequency (measured by the number of droughts that occurred 
within 10 years preceding extreme drought) (b) during and prior to 
the examined extreme drought, respectively. Error bars represent 
the mean ± standard error (n = 30). Letters on top of the bars show 
the results (a < b < c) of the post hoc Tukey multiple comparison 
test with a threshold <0.05 for statistical significance. HELP, high-
elevation sites with low productivity; LEHP, low-elevation sites with 
high productivity; MELP, mid-elevation sites with low productivity
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(Table S4), which may partly explain the lack of growth differences 
between drought and nondrought years for our high-elevation sites.

4.3 | Temporal change in tree growth resilience to 
extreme droughts

Although Scots pine is a relatively drought-tolerant species, our re-
sults showed a decreased growth recovery and resilience to extreme 
drought at mid-elevation and lower productivity sites. This is largely 
consistent with the patterns reported by Serra-Maluquer et al. (2018) 
in three pine species (including Scots pine) growing in NE Spain. In our 
case, this result likely reflects the higher frequency and severity of 
droughts events prior to the extreme drought occurring in 2000–2011 
than prior to the extreme drought occurring in 1980–1999 (Figure 6). 
Moreover, trees became older and larger over time. A larger tree car-
ries higher nonphotosynthetic biomass, which requires a greater in-
vestment for defense and maintenance (Ryan & Yoder, 1997; Scholz, 
Phillips, Bucci, & Goldstein, 2011) and increasing tree height may in-
crease hydraulic constraints and xylem cavitation risks under drought 
(Olson et al., 2018). This reduced tree resilience over time may chal-
lenge the physiological potential for acclimation to more intensive 
and frequent drought events that we expect in the future (Dai, 2012). 
The decreased tree growth resilience at MELP sites may indicate that 
drought hardening (i.e., physiological processes by which a tree be-
comes more acclimate to drought conditions; Villar-Salvador, Peñuelas, 
& Jacobs, 2013) is not very important and does not allow trees to ac-
climate to frequent and prolonged drought events irrespective of their 
drought experiences.

In contrast to MELP sites, tree growth recovery and resilience to 
extreme droughts increased at LEHP sites during the recent period 
(i.e., 2000–2011) compared to the previous period (i.e., 1980–1999). 
Although drought severity and drought frequency did not change 
significantly at LEHP sites over these two periods (Figure  6), the 
duration of the extreme drought was longer in 1980–1999 than in 
2000–2011. For example, seven sites of the LEHP site type expe-
rienced a 2 year long drought during 1980–1999, while none of the 
droughts occurring during 2000–2011 was longer than 1 year at that 
site type (Table S6).

4.4 | Factors affecting tree growth resilience to 
extreme drought

Several studies conducted at local to global scales provided un-
derstanding on tree, site, and drought-related variables influenc-
ing tree-level resilience to extreme drought (e.g., Gao et al., 2018; 
Gazol et  al.,  2017, 2018; Sánchez-Salguero et  al.,  2018; Taeger, 
Zang, Liesebach, Schneck, & Menzel, 2013; Vitali et al., 2017; Zang 
et al., 2014). To our knowledge, however, none of these studies com-
pared explicitly the model performances with and without interac-
tion effects among all these variables.

Our results showed that the top-ranked model (according to 
Akaike weights) for all the three resilience indices (resistance, re-
covery, and resilience) included interaction effects between tree 
and drought-related variables (Table  1). This means that the im-
pact of drought on tree-level resilience is not independent, but 
rather dependent on how the trees were growing (i.e., magnitude 
and variability of growth) during the predrought period and on the 
type of site they were growing at. In addition to drought severity, 
which was usually found to significantly affect tree-level resilience 
at various spatial scales variables (Gazol et  al.,  2017, 2018; Zang 
et al., 2014), we also considered drought duration and drought fre-
quency as explanatory variables as suggested by Gao et al. (2018). 
We indeed found a significant negative effect of drought frequency 
on tree resistance (Table 2), suggesting that trees that experienced 
more frequent droughts were less resistant to extreme droughts. 
Therefore, trees that display higher variability in growth are not 
only sensitive to extreme drought but also to frequent drought oc-
currence as for example, shown by Seidel et al. (2016) for different 
Scots pine provenances. Higher aboveground biomass growth can 
be related to lower or at least nonproportional biomass allocation 
to roots (Gessler et al., 2017) and might consequently increase tree-
level sensitivity to upcoming drought periods (Martínez-Vilalta, 
López, Loepfe, & Lloret, 2012). Long or repeated droughts may re-
duce the number of living branches and, because of needle multi-
year life span, the leaf area per branch (Galiano, Martínez-Vilalta, 
& Lloret, 2011; Vennetier et al., 2013). This holds back short-term 
tree leaf area recovery and may drive tree growth to very low lev-
els during and after drought. Although a reduced leaf area limits 
water stress during and after droughts and may favor resilience, it 
also hampers carbohydrate reserves buildup and may lead to car-
bon starvation. Accordingly, higher growth variability may be re-
lated to a higher vulnerability to the upcoming stresses (Cailleret 
et  al.,  2019; DeSoto et  al.,  2020; McDowell et  al.,  2008; Ogle, 
Whitham, & Cobb, 2000). For instance, Ogle et al., (2000) noticed 
a 1.5 times higher growth variability in dead pinyon pine trees rel-
ative to surviving ones in drought years preceding mortality across 
forests of southwestern United States.

Although the predrought growth of Scots pine had a strong 
relationship with resistance, it had no-relationship with recovery. 
This lack of relationship between predrought growth and recov-
ery resulted in a relatively weak relationship (although statistically 
significant) between predrought growth and resilience (Figure  5), 
because the resilience is mathematically related to both resistance 
and recovery (Lloret et al., 2011), and in the context of our study, 
recovery was more closely related to resilience than the relation-
ship between resistance and resilience (Figure S3). Scots pine trees 
growing at MELP sites displayed lower resistance but higher recov-
ery than trees growing at LEHP and HELP sites (Table 2; Figure 5), 
suggesting different growth strategies exercised by trees from dif-
ferent sites to cope with drought (Sánchez-Salguero et al., 2018). 
However, resistance and recovery are relative indices and do not 
allow comparison across trees in terms of their absolute growth 
performances. Although resistance and recovery hold a negative 
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mathematical relationship (Lloret et  al.,  2011), they provide use-
ful insights on disentangling trees that tried to remain firm during 
drought years (i.e., higher resistance and lower recovery) from trees 
that tried to conform drought impact (i.e., lower resistance and 
higher recovery; Gazol et al., 2017). These two different strategies 
to extreme droughts by trees from high productivity and low pro-
ductivity sites are also reported by other local (Vitali et al., 2017; 
Zang et al., 2014) and global-scale studies (Gazol et al., 2017). For 
instance, a multispecies comparison across Spain found higher 
resistance for species dominating mesic sites than for species 
from more xeric sites, which presented a higher recovery (Gazol 
et al., 2018). At our LEHP, Scots pine trees were on average taller 
and larger than MELP sites (Table S2). These larger trees in mesic 
sites most likely developed larger crowns, which might be able to 
still provide sufficient photosynthates to sustain growth during the 
drought period. Alternatively, these larger trees had sufficient re-
serves to compensate for the drought-induced reduction in pho-
tosynthesis. Both mechanisms would result in a higher resistance 
compared to trees in lower productivity sites (Martínez-Vilalta 
et  al.,  2009). However, taller trees associated with larger crowns 
and concomitantly greater water demand can be more vulnerable 
to drought-induced hydraulic failure (McDowell et al., 2008; Olson 
et al., 2018) and the required postdrought investment of assimilates 
for restoring their hydraulic system could slow down their recovery 
process (Brodribb, Bowman, Nichols, Delzon, & Burlett, 2010).

In this analysis, we considered tree, site, and drought level 
variables and their interactions, but available data did not allow to 
quantify the effects of forest stand-level variables including tree-
to-tree competition (Serra-Maluquer et  al.,  2018), site conditions 
including soil and topography (Vennetier, Ripert, & Rathgeber, 2018; 
Zalloni, Battipaglia, Cherubini, Saurer, & De Micco,  2019), species 
mixtures (Pretzsch, Schütze, & Uhl, 2013), trees neighborhood com-
position (Grossiord, 2019), and stand stocking (Bottero et al., 2017; 
D'Amato, Bradford, Fraver, & Palik,  2013), which will be the sub-
ject of subsequent analyses. Moreover, we did not include possible 
subspecies variation due to local evolutionary adaptation induced 
by drought-related selection (Hampe & Petit,  2005). We detected 
large tree-level variability within and across sites, and a larger pro-
portion of the variance of our models was explained by the random 
effects (i.e., trees nested within sites) than by the fixed effect vari-
ables (Table 1). Therefore, these points need to be considered when 
interpreting our results.

To conclude, we show that tree radial growth responses of Scots 
pine to extreme drought depend on site condition, tree growth prior 
to drought, and the number of droughts that a tree experienced 
within the 10  years before the selected drought. Our study iden-
tified a reduced tree growth resilience to extreme drought in Scots 
pine trees growing at mid-elevation and low productivity sites likely 
driven by the more frequent and severe drought events that occurred 
at those sites in recent years. We show that the assessment of tree 
growth responses in terms of resistance, recovery, and resilience 
to extreme drought using radial growth data is challenging along 
large ecological and biogeographical gradients, since a multitude of 

location-specific tree-, site-, and drought-related factors and their 
interactions drive tree growth performances.
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