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Abstract
Liming agricultural fields is necessary for counteracting soil acidity and is one of the oldest 
operations in soil fertility management. However, the best management practice for liming 
in Germany only insufficiently considers within-field soil variability. Thus, a site-specific 
variable rate liming strategy was developed and tested on nine agricultural fields in a qua-
ternary landscape of north-east Germany. It is based on the use of a proximal soil sensing 
module using potentiometric, geoelectric and optical sensors that have been found to be 
proxies for soil pH, texture and soil organic matter (SOM), which are the most relevant 
lime requirement (LR) affecting soil parameters. These were compared to laboratory LR 
analysis of reference soil samples using the soil’s base neutralizing capacity (BNC). Sensor 
data fusion utilizing stepwise multi-variate linear regression (MLR) analysis was used to 
predict BNC-based LR  (LRBNC) for each field. The MLR models achieved high adjusted 
 R2 values between 0.70 and 0.91 and low RMSE values from 65 to 204 kg  CaCO3  ha−1. In 
comparison to univariate modeling, MLR models improved prediction by 3 to 27% with 
9% improvement on average. The relative importance of covariates in the field-specific pre-
diction models were quantified by computing standardized regression coefficients (SRC). 
The importance of covariates varied between fields, which emphasizes the necessity of a 
field-specific calibration of proximal sensor data. However, soil pH was the most important 
parameter for LR determination of the soils studied. Geostatistical semivariance analysis 
revealed differences between fields in the spatial variability of  LRBNC. The sill-to-range 
ratio (SRR) was used to quantify and compare spatial  LRBNC variability of the nine test 
fields. Finally, high resolution LR maps were generated. The BNC-based LR method also 
produces negative LR values for soil samples with pH values above which lime is required. 
Hence, the LR maps additionally provide an estimate on the quantity of chemically acidify-
ing fertilizers that can be applied to obtain an optimal soil pH value.
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Introduction

An optimal range in soil pH is one of the fundamental prerequisites for successful agri-
cultural crop production. However, under humid climates of Central Europe, soils tend to 
acidify as basic cations, in particular  Ca2+ and  Mg2+, are continuously replaced by  H+ and 
 Al3+ ion from the exchange sites of soil colloids (European Commission, 2012). This natu-
ral soil genetic process is accelerated by human activity, including the deposition of nitric 
and sulphuric acids through precipitation, the  H+ released through bacterial nitrification 
of ammonium-based fertilizers, animal manures and residue/green manure decomposi-
tion and the removal of base nutrients by harvesting the cultivated crops (Brady & Weil, 
2008; Kerschberger & Marks, 2007). Since soil pH affects many key determinants for plant 
growth, acidification needs to be regularly compensated by lime application in soils with-
out carbonate buffering capacity in order to prevent yield loss and replenish soil fertility 
(Goulding, 2016).

To determine the lime requirement (LR) of an agricultural soil, its soil acidity and the 
quantity of bases that must be applied to replace reserve acidity on clay and organic mat-
ter, resulting in raising soil pH from acidic to neutral, needs to be determined. As soils are 
buffered systems that resist changes in pH, the measurement of pH alone, active acidity, is 
not sufficient to determine soil LR (Godsey et al., 2007). In contrast, the quantity of bases 
needed to replace the reserve acidity and increase the pH value to an optimum value to 
best support a particular crop rotation can be directly quantified by determining the base 
neutralizing capacity (BNC) of the soil (Blume et al., 2016; Vogel et al., 2020). The BNC 
is measured in the laboratory by discontinuous titration adding increasing concentrations 
of a basic solution (e.g. Ca(OH)2) to a soil sample. After a defined equilibration time, the 
pH increase of the solution is measured potentiometrically to determine the amount of acid 
neutralized. From the resulting titration curve, the quantity of lime required to obtain a 
desired target pH value can be determined.

When a site-specific liming strategy is to be developed, LR data at a very fine spatial 
resolution are needed to account for within-field spatial soil variability. However, the cost 
of laboratory analysis for a sufficiently dense soil sampling grid necessary to define site-
specific lime rates is prohibitive, hence either insufficient samples are collected to identify 
lime rates to specific areas, or a whole-field approach is used, resulting in inadequate lime 
recommendations to optimize field pH and might result in a waste of resources. Conse-
quently, alternative strategies for LR determination for precision agriculture application are 
necessary.

A few studies have demonstrated the potential of using proximal soil sensors to derive 
lime prescription maps. Viscarra Rossel and McBratney (1997) and Viscarra Rossel et al. 
(2005) reported the results of using a prototype on-the-go soil pH and lime requirement 
measurement system that consists of a soil sampling and sieving mechanism, a soil analyti-
cal component using a pH ISFET (ion sensitive field effect transistor) in order to measure 
soil pH changes in combination with data collection and measurement algorithms. Based 
on the work of Adamchuk et al. (1999), Lund et al. (2005) developed an automated soil 
sampling system for on-the-go measurement of soil pH integrated on the Veris Mobile 
Sensor Platform (MSP; Veris technologies; Salinas, KS, USA) and combined with an 
apparent electrical conductivity (ECa) sensor and near-infrared spectroscopy (NIRS) to 
generate soil pH and lime requirement maps. Kuang et  al. (2014) utilized an on-the-go 
visible and near-infrared (visNIR) spectroscopy sensor to map the within-field variation 
of organic carbon, pH and clay content for LR determination. Von Cossel et  al. (2019) 
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deployed low-input sensor-based soil mapping of electromagnetic induction (EMI) (EM38 
MK I; Geonics, Canada) in combination with in situ and ex situ pH measurements to deter-
mine the soil’s LR. Bönecke et al. (2020) applied an on-the-go multi-sensor approach using 
the Veris Mobile Sensor Platform and the Geophilus Electricus (Geophilus GmbH, Ger-
many) proximal soil sensing system (Lück and Rühlmann, 2013). By combining the sensor 
data with reference analyses of soil characteristics that are well-correlated with soil acidity 
and soil pH buffer capacity, high-resolution soil maps of pH, texture and soil organic mat-
ter (SOM) were generated. These were utilized to develop site-specific LR maps based on 
the standard liming algorithm of the Association of German Agricultural Investigation and 
Research Institutions (VDLUFA; von Wulfen et al., 2008).

Most of these methods rely on specifically calibrated transfer functions of the sensor 
data with laboratory measurements of soil properties that affect soil acidity, pH buffer 
capacity to determine soil LR. The main drawback of this approach is their indirect estima-
tion of the LR via soil acidity affecting soil properties, necessitating their cost and time-
consuming determination through laboratory analyses. To overcome this problem, a more 
straightforward method might be preferable which directly determines the LR through use 
of multiple sensor data. Determining the soil BNC is such a direct LR method that deter-
mines the effect of lime addition on the pH, individually for each soil sample in order to 
determine LR from a resulting titration curve (Vogel et al., 2020).

The objective of this study was to develop a site-specific variable rate LR procedure that 
is based on the soil’s BNC in combination with multi-sensor platform soil mapping. Spe-
cific objectives were: (i) to assess the quality of a multi-sensor-based prediction of  LRBNC, 
(ii) to determine the sensor or sensor combination(s) most sensitive to describe the  LRBNC, 
(iii) to quantify the within-field spatial variability of  LRBNC and (iv) to generate high-reso-
lution  LRBNC maps of the test fields.

Materials and methods

Site description

Nine agricultural fields were selected on three farms in a quaternary landscape of northeast 
Germany. They show field sizes between 20 and 76 ha (Table 1). The study area is part 
of the Northeast German Plain which belongs to the broader geomorphological region of 
the North European Plain (Fig.  1). It was largely formed by the Pleistocene glaciations 
of the terrestrial Scandinavian ice sheets as well as by subsequent periglacial and inter-
glacial Holocene geomorphic processes. In the study area, the present-day landforms and 
soils were particularly shaped by the advances of the Weichselian (115–12  ka) and the 
preceding Saalian glacial belt (150–130 ka; Krbetschek et al. 2008). Climatically, the study 
area is situated in a transitional zone between oceanic climate of Western and continental 
climate of Eastern Europe. Due to a relatively low altitudinal range of the land surface 
of ~ 0 to 200 m above sea level, regional climatic differences are small. Thus, following 
the Koeppen–Geiger Climate Classification System, the climate of the study region is clas-
sified as temperate oceanic with an increasing influence of continental circulations. The 
mean annual air temperature is ~ 9 °C. The coldest and warmest months in a year are Janu-
ary and July with mean temperatures of -1 and 18 °C, respectively. With a mean annual 
total precipitation of less than 550 mm, it is one of the driest regions in Germany.
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The three farms are located in the east (Komturei Lietzen, KL, Lat: 52.483766, Long: 
14.333079); Landwirtschaft Petra Philipp, PP, Lat: 52.376035, Long: 14.461919) and in 
the north (Gut Wilmersdorf, GW, Lat: 53.110092, Long: 13.909461) of the federal state 
of Brandenburg (Northeast Germany). They are mainly located in the Pleistocene young 
morainic landscape of the Weichselian glaciation as well as in the Holocene river valley of 
the Oderbruch showing high within-field soil variability. In accordance with the German 
soil classification system KA5 (Eckelmann et al., 2005), soil textures range from pure sand 
(class: Ss) to loamy clay (class: Tl) showing a dominance of sand and loam (classes: Sl, Su, 
St, Ls). Even though the development of soil acidity in most of these soils require regular 
lime amendment, in some soils, the pH is greater than 7 due to the presence of surface soil 
carbonates embedded as part of the glacial till and landscape position. The crop rotation of 
all fields is cereal-dominated.

Proximal sensor mapping

In 2017 and 2018, nine fields were mapped using the Mobile Sensor Platform (MSP) 
developed and manufactured by Veris Technologies™ (Salinas, KS, USA). It is currently 
the only multi-sensor system commercially available for obtaining simultaneous potentio-
metric, geoelectric and optical measurements (Fig. 2, Bönecke et al., 2020):

 i. Potentiometry:
   On-the-go potentiometric measurements (Fig. 2b) are performed by two ion selec-

tive antimony electrodes on naturally moist soil samples. While driving across the 
field, a sampler shank is lowered into the soil and a soil core flows through the sampler 
trough. Next, the soil sampler is raised out of the soil and presses the sample against 
the two electrodes for two separate measurements. Then, the arithmetic mean of the 
two voltage measurements is recorded. After measurement, the sampler shank lowers 
back into the soil to replace the old soil core at the back end of the sampler trough 
when the new sample enters from its front end. Meanwhile, the electrodes are cleaned 
with water by two spray nozzles and the device is ready for the next measurement 
process. During field operation, the measurements are georeferenced by differential 
global navigation satellite system (GNSS) co-ordinates that are recorded when the 
sampler shank is raised out of the soil. The conversion of voltage into a pH value is 
realized by a preceding calibration with pH 4 and pH 7 standard solutions (Schirrmann 
et al., 2011). Depending on the measuring time required for the sensor, pH values are 
recorded every 10 to 12 s (Lund et al., 2005; Fig. 3a).

 ii. Optical reflectance:
   Soil reflectance has been studied since the 1970s as an effective means for estimat-

ing the SOM content of the soil (Sudduth & Hummel, 1993). In the present study, 
the Veris OpticMapper was used (Fig. 2c). It is a dual-wavelength on-the-go optical 
sensor measuring differences in the diffuse light reflectance of the soil. It consists of 
a single photodiode and two light sources (red LED, wavelength: 660 nm; NIR LED, 
wavelength: 940 nm). In its forward face to the direction of movement, the OpticMap-
per positions a coulter to cut crop residues while the optical module is mounted on 
the bottom of a furrow ‘shoe’ between two side wheels that set the sensing depth. The 
wear plate is pressed against the bottom of the furrow approximately 40 mm below 
the soil surface with a consistent pressure to provide a self-cleaning function. The 
modulated light is passed through a sapphire window onto the soil. The photodiode 
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then receives the modulated reflected light and converts it into a voltage, which is 
further processed and logged. The optical data and GNSS co-ordinates are recorded 
at a rate of 1 Hz (Kweon & Maxton, 2013; Fig. 3C, D).

 iii. Geoelectrics:
   The apparent electrical resistivity (ERa) was measured at a rate of 1 Hz with a 

galvanic coupled resistivity instrument using six parallel rolling coulter electrodes 
(Fig. 2a, 3b). ERa values are internally converted into apparent electric conductivity 
(ECa) output. The electrode configuration provides readings over two depths with 
median depths of exploration of 0.12 (ECa shallow) and 0.37 m (ECa deep; Gebbers 
et al., 2009). This enables the identification of significant soil textural and/or soil 
moisture changes between soil horizons. Since pH and OpticMapper measurements are 
carried out in the topsoil, only ECa shallow readings were used in the present study.

LR based on base neutralizing capacity  (LRBNC)

The soil sampling sites for BNC laboratory analysis were taken in accordance with the pro-
cedure proposed by Bönecke et al. (2020), considering that the targeted samples: (i) cover 

Fig. 1  Locations of BNC sampling sites on the studied fields (A: GW32; B: GW6; C: KL41 [left], 42 
[right]; D: KL6; E: KL60; F: GW21; G: PP1401 [left], 1392 [right]). Note the two different scales, Projec-
tion: UTM ETRS89 33 N; Aerial Photographs: Google | DigitalGlobe; Bing Maps, Microsoft
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the entire range of sensor data (feature space), (ii) are spatially representative, and (iii) 
are well distributed throughout the area of investigation. The sample size per field varies 
between 10 (KL41) and 35 (PP1392).

A total of 164 soil samples (Fig. 1) were analyzed for base neutralizing capacity (BNC). 
The BNC is defined as the amount of soil acidity that is neutralized by a base in a given 
time interval to a certain pH value (Meiwes et al., 1984). To directly determine the LR of 

Fig. 2  A Mobile Sensor Platform (MSP) developed and manufactured by Veris Technologies™ (Salinas, 
KS, USA) with ECa instrument (1), B soil pH Manager (water tank (2), soil sampler (3) with sample (4), 
pH electrodes (5), and cleaning nozzles (6), and C OpticMapper with and optical module (7) in between the 
ECa coulter electrodes (photos: Torsten Schubert)
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the soils studied based on their base neutralizing capacity  (LCBNC), the protocol of Meiwes 
et al (1984) was followed (Utermann et al., 2000).

In detail, the protocol included the following steps: The soil samples were air-dried and 
passed through a 2 mm sieve. Then, 150 g of each sample was divided into six subsamples 
of 25 g. One of these subsamples served as a control and was mixed with 50 ml deionized 
water, while the other subsamples were mixed with 25 ml of 2 N  CaCl2 and 25 ml of 8 N 
NaOH solutions of five concentrations. This yielded six concentration levels of Ca(OH)2 
added to the soil: 0, 0.25, 0.5, 1.25, 2.5 and 5  mmolc (25 g soil)−1. By adding  Ca2+ and 
 Na+ ions to the soil solution  H+ and  Al3+ ions are desorbed from the surface of soil col-
loids and neutralized by  OH− ions (Meiwes et al., 1984). After 18 h of mechanical shaking, 
pH values were measured with a glass electrode (WTW SenTix® 81, Xylem Analytics, 
Weilheim, Germany) in the supernatant solution. For quantification of the buffering, the 
pH values and their corresponding concentrations of Ca(OH)2 added were displayed in a 
scatterplot and a titration curve was fitted to the six points. Based on the model, the amount 

Fig. 3  Veris sensor data of test field GW6 showing (A) pH, (B) ECa [mS   m−1], (C) OpticMapper Red 
[dimensionless], and (D) Optic Mapper Infrared [dimensionless]
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of Ca(OH)2 in  mmolc (25 g soil)−1 to achieve a target pH of 6.5 was derived and converted 
to kg  CaCO3 (ha*dm)−1 by multiplying by 2,000 (Meiwes et  al, 1984; Utermann et  al., 
2000). Because fertilization guidelines for the United Kingdom (Defra, 2010) and most 
other countries advise farmers to maintain a soil pH of 6.5 for cropped land (Goulding, 
2016), this was chosen as the target pH value. Of course, choosing a pH of 6.5 does not 
reflect the fact that arable crops differ in their sensitivity to soil acidity.

Standard laboratory analyses of soils studied

To provide a general field-wise characterization of the soils studied, the following labora-
tory analyses where carried out on oven-dried (75 °C) and sieved (< 2 mm) soil samples:

 i. The soil pH value was measured in 10 g of soil and 25 ml of 0.01 M  CaCl2 solution 
following DIN ISO 10390. The pH was measured with a glass electrode after a reac-
tion time of 60 min.

 ii. The particle size distribution of the fraction < 2 mm was determined according to the 
German standard in soil science (DIN ISO 11277) by wet sieving and sedimentation 
after removal of organic matter with hydrogen peroxide  (H2O2) and dispersal with 
0.2 N sodium pyrophosphate  (Na4P2O7).

 iii. Soil organic carbon (SOC) was analyzed by elementary analysis using the dry com-
bustion method (DIN ISO 10694) after removing inorganic carbon with hydrochloric 
acid. Finally, the amount of SOC was converted into SOM following Eq. 1 (Peverill 
et al., 1999) assuming that SOM contains approximately 58% of organic carbon:

Titration curve fitting and sensor‑based prediction of  LRBNC

All data were processed with the free software environment for statistical computing 
and graphics R (version 3.6.1) (R Core Team, 2018). To fit a BNC curve to the six titra-
tion points, non-linear regression modeling was conducted using the nls function. The 
sensor-based prediction of  LRBNC was done using a stepwise multi-variate linear regres-
sion (MLR) analysis with forward selection (R package ‘caret’; Kuhn, 2020). It iteratively 
adds the most contributive independent variables to the predictive model until the model 
improvement is no longer statistically significant. This aims at finding the combination 
of variables, which achieve the best model performance minimizing the prediction error 
(Bruce & Bruce, 2017; James et al., 2014). The MLR models are of the type:

where z represents the dependent variable, x1, x2, …, xn the ancillary data measured at the 
same site, b0, b1, b2, …, bn the n + 1 regression coefficients, and ε the random error. In 
order to assess the explanatory power of each regression model, the adjusted coefficient 
of determination of the linear regression between predicted and measured values (adj-R2) 
was determined, considering the number of covariates in the model. Moreover, the average 
prediction error (RMSE) was calculated in a tenfold cross-validation dividing the dataset 
into k folds, using k – 1 folds for training and one fold for validation and repeating that pro-
cedure k times, each having a different fold for validation.

(1)SOM
[

%
]

= SOC
[

%
]

⋅ 1.72

(2)z = b0 + b1x1 + b2x2 +…+ bnxn + �
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Since some of the sensor data may be correlated, prior to the modeling, the independent 
variables were tested for interdependencies. If two variables received a Pearson’s R greater 
than 0.5, one was predicted from the other using a univariate linear regression (ULR) 
model. Then the residuals (e) of that model were calculated following Eq. 3:

where y is the observed value and ŷ the predicted value. The residuals were then utilized as 
an uncorrelated substitute for one of the correlated independent variables. By that proce-
dure, only the information content that is unique for each independent variable is included 
in the MLR analysis.

To gain an increased understanding of the relationships between the independent varia-
bles and the dependent variable as well as to identify the features of the multivariate sensor 
data having the greatest effect on the model performance of  LRBNC, a sensitivity test was 
carried out by computing standardized regression coefficients (SRC). Before conducting 
the stepwise MLR analysis, the sensor data were standardized by subtracting the sample 
mean from the original values and dividing by the sample standard deviation in order to 
remove the influence of different units and to place all covariates on the same scale. By that 
procedure, the SRC of the best performing MLR model are a direct measure of sensitivity, 
i.e. indicative of the magnitude of influence of a single sensor datum on the  LRBNC model 
as a whole (Hamby, 1994; Saltelli et al., 1993).

Generation of LR maps and analysis of spatial variability of  LRBNC

The point-based sensor data were interpolated using the geostatistical method of ordinary 
block kriging (R package ‘gstat’; Pebesma, 2004) with robust variogram estimation, out-
lier elimination and weighted least squares approximation. For a more detailed descrip-
tion of the applied interpolation method, the reader is referred to Boenecke et al. (2020). 
For regionalization of the stepwise MLR analysis, the best performing MLR models were 
finally applied to the raster-based sensor data using a GIS-based raster calculator in order 
to generate  LRBNC maps of the nine study fields.

The spatial variability of BNC-based lime requirement  (LRBNC) for the nine test fields 
was quantified by semivariance analysis (Deutsch & Journel, 1998; Goovaerts, 1997; Web-
ster & Oliver, 2007). The semivariogram can provide information about the maximum of 
semivariance (sill parameter) as well as the range of spatial autocorrelation (range parame-
ter; Webster & Oliver, 2007). Additionally, the nugget parameter summarizes the measure-
ment error and sample micro-variability. For semivariogram modeling, firstly, the method 
of moments (Webster & Oliver, 2007) was used to obtain the empirical semivariogram, 
which relates the average squared differences between observed values to their respective 
distance class (lag interval). Secondly, a theoretical semivariogram model was fitted to the 
empirical semivariogram using robust estimates to prevent effects from extreme outliers 
(Cressie, 1993). For variogram fitting, weighted least squares approximation (fit method 
7 in gstat) as well as localized cut-offs were used at distances when a first local maximum 
was reached or the model first flattened out. From the parameters of the empirical semi-
variogram, insights into the spatial variability of  LRBNC can be gained. The sill parameter 
refers to the magnitude of variability. The range parameter, on the other hand, defines the 
spatial context in which variability is expressed, where smaller ranges indicate small-scale 
distribution patterns. Taking into consideration the interdependence between sill and range, 
a high spatial variability is characterized by a high sill and low range value. Hence, the 

(3)e = y − ŷ



137Precision Agriculture (2022) 23:127–149 

1 3

sill-to-range ratio (SRR) can be used in order to quantify spatial variability of  LRBNC at the 
scale of soil sensing utilized in the operation.

Results and discussion

Field‑wise soil characterization regarding acidity and lime requirement (LR)

The spatial statistics regarding the most relevant LR affecting soil properties as well as 
of the BNC parameters of the nine fields are shown in Tables 1, 2 and 3, respectively. 
The pH of the soils have median values between 5.9 and 6.6 indicating only little to 
no LR. However, minimum and maximum pH values of 3.8 to 5.3 and 6.7 to 7.3 show 
that a high within-field soil variability exists and, thus, demonstrate that the median pH 
value of a field alone is rather insufficient to serve as an indicator for LR determination. 
SOM contents are rather low throughout the study region having minima of 0.8 to 1.1%, 
maxima of 1.7 to 5.6% and median values of 1.2 to 2.8%. This situation is typical for the 
geologically young, sandy, non-stagnic soils in Brandenburg. The dominating soil tex-
ture classes (following the German Soil Texture Classification System KA5; Eckelmann 
et al., 2005) reveal high soil heterogeneities on the investigated fields even though sandy 
textures prevail showing loamy sands (Sl), silty sands (Su), clayey sands (St) and clayey 
sandy loams (Lts). However, also sections of pure sand (Ss) and loamy clay (Tl) exist 
which results in a very differentiated soil acidity and LR.

From the BNC analysis, it can be seen that the target pH increase after the addition of 
increasing amounts of Ca(OH)2 can be described as an exponential growth curve where 
the pH value reaches a threshold value when the quantity of lime tends to infinity. It has 
the form:

where α, β and γ are the regression coefficients of the exponential function. For a gen-
eral description of the BNC data and the soil’s pH buffer capacity (pHBC), the reader is 
referred to Vogel et al. (2020). The field-wise characterization of the BNC reveals that the 
total pH increase over all base additions (δpHtotal) strongly varies between the fields hav-
ing minima of 2.5 (KL60) to 5.1 (KL41) and maxima of 6.2 (PP1392) to 7.6 (KL60) pH 
units. This is caused by different acidity and pHBC characteristics of the investigated soils. 
The range of δpHtotal per field, on the other hand, is a function of within-field variability 
of pHBC, showing a minimum of 0.9 pH units for KL41 and a maximum of 5.1 pH units 
for KL60. That means that KL41 is much more homogeneous in terms of pHBC and soil 
acidity than KL60, as corresponding to the pronounced variability of soil texture and SOM 
of KL60 (StdDev in Tab. 1). The BNC-based lime requirement  (LRBNC) to reach the target 
pH value of 6.5 ranges between -1,117 (KL60) and 1,484 kg  CaCO3  ha−1 (KL60) which 
illustrates that large sections of the investigated fields, showing negative  LRBNC values, do 
not require any lime fertilization. However, negative and positive  LRBNC values occur on 
the same field underpinning the necessity of site-specific pH management for yield optimi-
zation. In accordance with the pHBC, the spatial variability of  LRBNC is lowest for KL41 
showing a within-field range of only 436 kg  CaCO3  ha−1 and highest for KL60 having a 
range of 2601 kg  CaCO3  ha−1. Comparing these findings with the standard soil characteri-
zation regarding the most relevant LR affecting soil properties, it is noticeable that KL60, 
which is situated in the valley of the River Oder, also shows the highest ranges of pH (2.4 

(4)pHtarget = � − � ⋅ �Ca(OH)2
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units), sand (67%) and SOM content (4%) of all investigated fields. In contrast, for KL41 
the ranges of values are lowest with only 1.6 units for pH and 19% for sand and among the 
lowest with 1.1% for SOM (Table 1).

Since  LRBNC also defines negative LR values, it provides useful information on the 
magnitude of soil acidification necessary when a soil has a too high pH value. On that 
basis, the farmer is enabled to evaluate if these sections of the fields are simply left out of 
lime treatment or if a treatment with physiologically or chemically acidic fertilizers may 
be reasonable to increase soil productivity. However, apart from PP1392, all investigated 
fields rather require lime fertilization than active acidification.

Sensor‑based prediction of  LRBNC

Prior to the MLR modeling, the independent variables were tested for interdependencies 
(Table  4). Highest correlations were detected for OpticMapper Infrared (OM-IR) and 
OpticMapper Red (OM-Red). Of minor importance was the correlation between shallow 
apparent electrical conductivity (EC-sh) and OM-IR as well as between pH and OM-IR.

The best performing multi-variate linear regression (MLR) models for  LRBNC predic-
tion and their figures of merit are described in Table 5 and Fig. 4. All models received very 
high to high adjusted  R2 (adj-R2) values between 0.70 and 0.91 and low RMSE values of 
65 to 234  kg  CaCO3  ha−1. This demonstrates that  LRBNC can be successfully predicted 
with the present approach and the proximal sensor technique used. By comparison, an 
‘on-the-go’ soil pH and lime requirement measurement system based on a pH ISFET (ion 
sensitive field effect transistor) sensor tested by Viscarra Rossel et al. (2005), achieved an 
accuracy of estimated LRs of about 600 kg  ha−1. Lund et al. (2005) received an RMSE of 
643 kg  ha−1 for a 20 ha field in Kansas (USA) using sensor pH, ECa and NIRS data and a 
locally weighted partial least squares regression analysis.

It is striking that the best performing models for the nine study sites show a rather dif-
ferent combination of independent variables. The only concordance of the MLR models 
is the premier importance of the pH value for determining  LRBNC. For two fields (GW6, 
KL42), the best predictive model was based solely on the pH value. In two cases, two 
covariates were used, i.e. pH plus EC-sh (KL41), pH plus OM-IR (PP1401), and pH plus 
the ratio between OM-IR and OM-Red (ratio_OM-IR_OM-Red; KL60). A model of three 
covariates performed best at three fields using pH plus EC-sh and ratio_OM-IR_OM-Red 
(PP1392), pH plus the residuals of OM-IR and OM-Red (res_OM-IR_OM-Red) and the 
residuals of EC-sh and OM-IR (res_EC-sh_OM-IR; GW21) as well as OM-IR plus pH and 
EC-sh (GW32). One MLR model contained four covariates, i.e. pH, EC-sh, res_OM-IR_
OM-Red and the residuals of pH and OM-IR (res_pH_OM-IR; GW32). Finally, a model 
of five independent variables performed best at KL6 including res_OM-IR_OM-Red, pH, 
ratio_OM-IR_OM-Red, OM-IR and EC-sh.

The high sensitivity and partly exclusivity of pH in the determination of  LRBNC is in 
contrast with findings of Viscarra Rossel and McBratney (2001) who predicted LR as a 
function of pH, SOM, clay content and exchangeable Al in south-eastern Australia. They 
state that soil pH and exchangeable Al explained only moderate proportions of the varia-
tion in LRs. Hence, these properties alone do not provide accurate estimates of a soil’s lime 
requirement.

Considering the generally large effect of the pH value to successfully model  LRBNC, it 
could be argued that pH mapping alone could be sufficient in predicting  LRBNC of a field. 
To evaluate that, univariate linear regression (ULR) models were also developed between 
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 LRBNC and the sensor data. Their performance is illustrated in Fig. 5 demonstrating that 
in eight out of nine fields  LRBNC correlates best with the sensor pH value receiving an  R2 
between 0.59 and 0.87 and a mean of 0.72. By contrast, the univariate correlations with 

Table 2  Descriptive statistics of BNC analysis of reference soil samples I

Whereas  pH0 represents the initial pH value measured in deionized water,  pH0.25,  pH0.5,  pH1.25,  pH2.5 and 
 pH5 are the pH values after addition of respective amounts of Ca(OH)2  [mmolc (25 g soil)−1] and δpHtotal 
represents the total pH increase over all base additions
Min minimum, Max maximum, SD standard deviation, n number of samples analysed

GW6
(n = 15)

GW21
(n = 15)

GW32
(n = 15)

KL6
(n = 20)

KL41
(n = 10)

KL42
(n = 15)

KL60
(n = 14)

PP1392
(n = 35)

PP1401
(n = 25)

pH0 Min 4.66 4.90 4.78 5.72 6.16 5.22 4.51 5.95 5.24
Max 7.99 7.71 7.80 7.41 7.04 7.29 7.24 7.55 7.25
Median 6.55 6.05 6.58 6.23 6.66 6.83 6.73 7.03 6.66
Mean 6.37 6.47 6.51 6.39 6.61 6.57 6.53 6.90 6.51
SD 1.00 0.95 0.91 0.46 0.34 0.56 0.79 0.45 0.59

pH0.25 Min 5.84 6.35 5.82 6.31 6.92 6.55 5.57 6.72 6.11
Max 9.18 9.20 8.92 8.03 7.85 8.68 8.00 8.80 7.81
Median 7.36 6.97 7.13 6.95 7.45 7.40 7.16 7.79 7.18
Mean 7.25 7.56 7.37 7.04 7.39 7.47 7.02 7.70 7.11
SD 1.08 1.03 0.98 0.44 0.32 0.55 0.74 0.49 0.49

pH0.5 Min 6.74 7.04 6.95 6.87 7.69 7.28 6.12 7.28 6.60
Max 10.16 10.16 9.87 9.29 8.98 9.87 8.67 9.84 8.81
Median 8.29 7.76 7.89 7.66 8.27 8.13 7.50 8.40 7.83
Mean 8.12 8.38 8.34 7.74 8.27 8.32 7.49 8.39 7.76
SD 1.18 1.16 1.08 0.55 0.42 0.69 0.85 0.57 0.59

pH1.25 Min 7.58 8.90 8.80 8.10 9.44 9.50 7.03 8.86 8.51
Max 11.51 11.38 11.15 10.51 10.87 11.26 10.79 11.51 10.67
Median 9.57 9.66 9.84 9.51 10.30 10.29 8.58 10.28 9.84
Mean 9.68 10.05 10.03 9.56 10.21 10.33 8.63 10.25 9.61
SD 1.13 0.83 0.75 0.58 0.51 0.48 1.09 0.56 0.60

pH2.5 Min 10.18 11.04 11.20 10.22 11.34 11.39 8.19 10.67 10.48
Max 11.89 11.93 11.77 11.68 11.82 11.90 11.91 12.00 11.73
Median 11.57 11.45 11.47 11.26 11.59 11.65 9.90 11.57 11.25
Mean 11.38 11.51 11.46 11.21 11.62 11.65 9.95 11.49 11.19
SD 0.50 0.28 0.15 0.39 0.16 0.15 1.18 0.30 0.33

pH5 Min 11.60 12.01 11.98 11.92 12.10 12.08 9.14 11.55 11.80
Max 12.34 12.32 12.19 12.25 12.21 12.25 12.32 12.30 12.25
Median 12.15 12.14 12.14 12.11 12.16 12.18 11.43 12.16 12.08
Mean 12.10 12.16 12.12 12.09 12.15 12.18 11.10 12.13 12.07
SD 0.20 0.09 0.07 0.09 0.04 0.05 1.00 0.15 0.12

δpHtotal Min 4.35 4.56 4.37 4.62 5.10 4.94 2.49 4.11 4.72
Max 7.45 7.24 7.38 6.25 5.98 6.89 7.59 6.21 6.83
Median 5.60 6.03 5.56 5.88 5.53 5.35 4.62 5.15 5.36
Mean 5.72 5.69 5.61 5.71 5.54 5.62 4.57 5.22 5.56
SD 1.00 0.95 0.95 0.47 0.34 0.55 1.24 0.51 0.61
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the ECa and OM data were much lower (EC-sh:  R2, 0[Min]…0.31[Mean]…0.68[Max]; 
OM-IR:  R2, 0…0.27…0.76; OM-Red:  R2, 0…0.16…0.53).

There are two important reasons for the good performance of the sensor pH com-
pared to the other sensor data. One reason is that, even though the sensor output is volt-
age, the pH sensor very directly assesses the soil pH value due to the selectivity of the 
antimony electrode (Lund et al., 2005). The relationship between potentiometric reading 
and pH value is well established and thus the sensor-based pH measurement can be 
regarded as reliable (Subirats et al., 2015). The second reason is that apparent electric 
conductivity and optical reflectance, on the other hand, can rather be considered integra-
tive soil parameters, which are affected by a variety of soil characteristics, in particular 
soil moisture (Corwin & Lesch, 2003; Lück et al., 2009). Compared to the pH electrode, 
EC readings and optical reflection data are less selective. Thus, the correlation with soil 
texture and SOM, respectively, which in this study are among the key determinants for 
lime requirement, can sometimes be low. This is in line with findings by Corwin and 
Lesch (2003) and Sudduth et al. (2005). Moreover, another possible reason for the poor 
score of the OpticMapper data is the above mentioned low SOM contents of the fields 
studied showing a maximum range of 4.8% and standard deviation of 1.4%. Notwith-
standing, the potential of the OpticMapper in determining  LRBNC was demonstrated at 
GW21 where OM-IR and OM-Red obtained an  R2 of 0.76 and 0.53, respectively and 
where res_OM-IR_OM-Red ranked highest in the best performing MLR model.

Comparing  R2 of the ULR and adj-R2 of the MLR models, it can be seen that the appli-
cation of MLR increased the performance of the  LRBNC models by 3 to 27% with a mean 
value at 9%. As a consequence, multi-variate sensor data fusion considerably increased 
model performance compared to the univariate predictions. This is in accordance with 
Lund et al. (2005) stating for one test field that the LR model improved by 31% when a 
multi-sensor (pH, ECa, NIRS) instead of a single-sensor (pH) approach is applied.

Table 4  Intercorrelation between soil sensor readings illustrated by Pearsson’s R

OM-IR vs. OM-Red EC-sh vs. OM-IR pH vs. OM-IR pH vs. EC-sh

GW6 0.90 0.40 0.23 0.44

GW21 0.74 0.53 0.22 0.47

GW32 0.82 0.55 0.66 0.45

KL6 0.93 0.38 0.00 0.14

KL41 0.99 0.46 0.24 0.06

KL42 0.91 0.69 0.00 0.11

KL60 0.95 0.32 0.27 0.22

PP1392 0.25 0.50 0.41 0.25

PP1401 0.71 0.48 0.01 0.03
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The different influence of the covariates in the prediction models shows that model per-
formance is field dependent. This emphasizes the necessity of a field-wise calibration of 
the sensor data and complicates the development of cross-field calibration models. This 
corresponds to findings of Schirrmann et al. (2012) from the same geographical region.

Regionalization of sensor‑based  LRBNC maps

The best performing multi-variate calibration models were applied to generate high resolu-
tion  LRBNC maps of the nine fields of investigation (Fig. 6). The  LRBNC can be categorized 
into three different soil acidity or LR domains: (i) sections with too low pH values that 
need to be treated with lime (blue colors), (ii) sections that show LRs near zero that are 
characterized by a pH at the optimum (grey), and (iii) sections where the pH is too high 
and needs to be lowered to reach the optimum pH of 6.5 and, thus, received negative LRs 
(red colors).

From the within-field spatial patterns of  LRBNC (Fig. 6) and the results of the semivari-
ance analysis (Table 6), it can be seen that the test fields show a more or less high spatial 
variability in LR. The magnitude of variability (sill parameter), i.e. the range of values of 
lime and/or acid requirement, is lowest for KL42 and highest for KL60. In contrast, the 
spatial context of autocorrelation (range parameter), i.e. the distance in which the vari-
ability occurs, is smallest for GW6 (70 m) and largest for 382 m (PP1401). Since a high 
spatial variability depends on both high sill and low range parameters, the sill-to-range 
ratio (SRR) can be used in order to quantify spatial variability of  LRBNC. SRR is highest at 

Table 5  Results of the stepwise regression analysis with forward selection in order to predict  LRBNC

nvar number of variables, RMSE Root Mean Square Error, adj. R2 adjusted  R2; #1…#5: independent vari-
ables used in the MLR ranked after their sensitivity, pH pH value, EC-sh shallow apparent electric con-
ductivity, OM-IR OpticMapper Infrared, ratio_OM-IR_OM-Red ratio between OpticMapper Infrared 
and OpticMapper Red, res_OM-IR_OM-Red residuals of OpticMapper Infrared and OpticMapper Red, 
res_EC-sh_OM-IR residuals of shallow apparent electric conductivity and OpticMapper Infrared, res_pH_
OM-IR residuals of pH and OpticMapper Infrared

Field nvar RMSE
[kg  CaCO3  ha−1]

adj
R2

Variable importance ranking from sensitivity analysis

#1 #2 #3 #4 #5

GW6 1 169.6 0.76 pH – – – –
GW21 3 77.47 0.91 pH res_OM-IR_

OM-Red
res_EC-sh_

OM-IR
– –

GW32 3 234.3 0.80 OM-IR pH EC-sh – –
KL6 5 120.3 0.86 res_

OM-IR_
OM-Red

pH ratio_OM-IR_
OM-Red

OM-IR EC-sh

KL41 2 65.18 0.75 pH EC-sh – – –
KL42 1 102.6 0.70 pH – – – –
KL60 2 203.8 0.90 pH ratio_OM-IR_

OM-Red
– – –

PP1392 3 134.3 0.70 pH EC-sh ratio_OM-IR_
OM-Red

– –

PP1401 2 163.2 0.72 pH OM-IR – – –
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KL60 showing the highest spatial variability, which corresponds to the earlier stated high 
variability of LR-affecting soil properties. For KL60, high LR variability mainly derives 
from the highest sill value of all test sites whereas the range is rather high (rank 8). Inter-
mediate SRRs were obtained for GW6, GW21, GW32 and KL6. Low values show PP1401 
and PP1392 mainly due to high range values whereas KL41 and KL42 have the lowest 
SRRs and spatial LR variability of the nine test sites. As a consequence, site-specific vari-
able rate lime fertilization is recommended for most of the test fields in order to increase 
soil fertility and optimize agricultural productivity. Especially at KL41 and KL42, where 
 LRBNC is relatively homogeneously low, the designation of rather large sub-plots for sin-
gle-rate lime applications can be justified.

The raster histograms in Fig. 7 show the field-wise quantification of spatial distribution 
of the three above mentioned LR domains. Three fields (GW6, GW21, GW32) have their 
areal maximum in domain one showing high soil acidity that needs to be managed by lime 
fertilization. Four fields (KL6, KL41, KL42, PP1401) are dominated by LR domain two 
that have an optimal pH and need no lime application and two fields (KL60, PP1392) have 

Fig. 4  Correlations between measured and MLR-predicted  LRBNC for A GW6, B GW21, C GW32, D KL6, 
E KL41, F KL42, G KL60, H PP1392, and I PP1401
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the strongest areal share in LR domain three showing too high pH values where liming 
should be omitted. In contrast, for these areas, it could be thought about using fertilizers 
that, as a result of physiological or chemical reactions, acidify the soil.

Conclusions

Spatially varying lime requirements (LR) within nine agricultural fields in northeast Ger-
many were successfully predicted using base neutralizing capacity (BNC) data from lab-
oratory and proximal multi-sensor mappings. Compared to the current best management 
practices in LR determination, this direct approach has potential to reduce the time and cost 
of laboratory analyses with a simultaneous increase in the spatial resolution of LR data. 
The best performing models from stepwise multi-variate linear regression (MLR) analysis 
received high adjusted  R2 between 0.70 and 0.91 and low RMSE values ranging from 65 to 
204 kg  CaCO3  ha−1. Sensor data fusion increased the model performance by 3 to 27% with 
a mean at 9%. High resolution  LRBNC maps of the nine fields were produced.  LRBNC could 
be categorized into three different soil acidity or LR domains: (i) areas of lower than opti-
mal pH values that need lime treatment, (ii) areas that have a pH at the optimum at which 
no lime is necessary, and (iii) areas with pH values greater than 7 where liming should be 
omitted and an estimate of the quantity of chemically acidifying fertilizers to reduce pH are 
provided. Within-field variability in LR was quantified using the sill-to-range ratio from 
semivariance analysis for the sensing density imposed on the fields. In seven out of nine 
prediction models, the sensor pH value was the most important predictor variable. Thus, 
it might be cost-efficient just to use a pH sensor for determining LR if soil characteristics 

Fig. 5  R2 of univariate linear regression models between sensor data and  LRBNC (EC-sh: shallow apparent 
electric conductivity; OM-IR: OpticMapper Infrared; OM-Red: OpticMapper Red)
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were similar within a region of fields. However, results and conclusion apply only for this 
soil-scape. In order to validate these findings for other regions, additional BNC studies 
should be carried out in different soil-scapes.

Fig. 6  Field-wise regionalized  LRBNC maps of A GW6, B GW21, C GW32, D KL6, E KL41 (left), KL42 
(right), F KL60, G PP1401 (left), PP1392 (right). Note the two different scales, Projection: UTM ETRS89 
33 N; Aerial Photographs: Google | DigitalGlobe; Bing Maps, Microsoft (Color figure online)
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Table 6  Semivariogramm parameters of  LRBNC of the test fields and ranking of within-field  LRBNC vari-
ability

Field Model Nugget Sill Range [m] Cutoff [m] Sill-to-range 
ratio (SRR)

Ranking of 
 LRBNC vari-
ability

KL60 Circular 0 295,213 370 300 799 1
GW6 Circular 0 36,742 70 100 524 2
GW21 Circular 0 29,925 74 100 406 3
GW32 Circular 0 36,980 107 150 346 4
KL6 Circular 0 24,676 89 150 277 5
PP1401 Circular 0 75,609 382 400 198 6
PP1392 Circular 0 53,051 355 400 149 7
KL41 Circular 0 11,951 246 250 49 8
KL42 Circular 0 4855 144 200 34 9

Fig. 7  Field-wise raster histograms of regionalized  LRBNC for A GW6, B GW21, C GW32, D KL6, E 
KL41, F KL42, G KL60, H PP1392, and I PP1401



147Precision Agriculture (2022) 23:127–149 

1 3

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
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