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Podsumowanie 

 

Tytuł:  Semantyczna segmentacja martwych drzew (Picea abies) z wykorzystaniem uczenia 

głębokiego 

 

Powierzchnia pokryta lasami i drzewami jest ważnym wskaźnikiem stanu środowiska 

naturalnego. Lasy borykają się z wieloma trudnościami, które powodują ich zanikanie. 

Możliwe jest śledzenie stresu fizjologicznego wywołanego przez bodźce biotyczne lub 

abiotyczne w lasach. Obecnie jednym z głównych problemów jest duża liczba martwych 

drzew, które bezpośrednio uszkadzają sąsiednie drzewa. W przypadku dokładnego 

przeglądu dotkniętego obszaru i liczby uszkodzonych drzew można szybko zarejestrować 

i włączyć do planowania działań w zakresie gospodarki leśnej. Martwe drzewa mogą być 

odpowiednio identyfikowane przy użyciu metod teledetekcji (RS) i sztucznej inteligencji 

(AI). W ramach AI opracowano szereg algorytmów segmentacji obrazów, które mogą 

klasyfikować martwe drzewa z danych RS, takich jak obrazy z bezzałogowych statków 

powietrznych (UAV). Jeden z algorytmów uczenia maszynowego (ML), Deep Learning 

(DL), staje się coraz bardziej popularny ze względu na wyjątkową wydajność segmentacji 

obrazu i różne metody przetwarzania obrazu. Z tej perspektywy, niniejsze badania mają 

na celu wykorzystanie jednego z modeli DL, sieci U, do segmentacji martwych świerków 

(Picea abies) na ortofotomapach UAV. Sieć została wytrenowana przy użyciu kilku 

eksperymentów jako testów wstępnych poprzez zmianę rozmiaru piksela, funkcji straty, 

liczby parametrów, itp. W rezultacie, semantyczna segmentacja obrazu z wykorzystaniem 

architektury sieci U oraz połączenie odpowiedniej strategii treningowej do wykrywania 

martwych świerków na ortofotomapach UAV zakończyły się sukcesem. Jednakże model 

predykcyjny wykazał niewielkie niedopasowanie, które można naprawić poprzez dodanie 

większej ilości zestawów danych treningowych i modyfikację architektury sieci U. 

Mimo, że skonstruowany model i dostępne dane zostały wykorzystane do stworzenia 

bardzo efektywnego wizualnego wyjaśnienia klasyfikacji. 

Słowa kluczowe: Semantyczna segmentacja, Deep learning, U-net, teledetekcja, UAV, 

martwe drzewa. 
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Summary 

 

Title:  Semantic segmentation of dead trees (Picea abies) using deep learning 

 

The area covered with forests and trees is an important indicator of the state of the 

environment. There are multiple difficulties that forests face which cause them to decline. 

It is possible to track the physiological stress caused by biotic or abiotic stimuli in forests. 

At present, one of the major problems is the large number of dead trees that directly 

damage neighbouring trees. If a thorough overview of the affected area and the number 

of damaged trees can be quickly recorded and incorporated into the planning of forest 

management measures. Dead trees can be identified appropriately using Remote Sensing 

(RS) and Artificial Intelligence (AI) approaches. AI has developed a number of image 

segmentation algorithms that can classify dead trees from RS data, such as unmanned 

aerial vehicles (UAVs) images. One of the Machine Learning (ML) algorithm, Deep 

Learning (DL), is becoming increasingly popular due to its outstanding image 

segmentation performance and various image processing methods. From this perspective, 

this research aims to utilize one of the DL models, U-net, to segment the dead spruce 

(Picea abies) trees in the UAV orthophotos. The network was trained using several 

experiments as preliminary tests by altering the pixel size, loss functions, the number of 

parameters, etc. As an outcome, the semantic image segmentation using U-net 

architecture and the combination of an appropriate training strategy for dead spruce tree 

detection on UAV orthophotos were successful. However, the prediction model revealed 

a minor overfitting, which may be fixed by adding more training data sets and modifying 

the U-net architecture. Even though the constructed model and the available data were 

used to produce a very effective visual explanation of the classification.  

 

Keywords: Semantic segmentation, Deep learning, U-net, Remote sensing, UAV, Dead 

trees. 
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Zusammenfassung 

Titel:  Semantische Segmentierung von abgestorbenen Bäumen (Picea abies) mittels Deep 

Learning 

Die mit Wäldern und Bäumen bewachsene Fläche ist ein wichtiger Indikator für den 

Zustand der Umwelt. Die Wälder sind mit zahlreichen Schwierigkeiten konfrontiert, die 

zu ihrem Rückgang führen. Es ist möglich, den durch biotische oder abiotische Reize 

verursachten physiologischen Stress in den Wäldern zu verfolgen. Eines der größten 

Probleme ist derzeit die große Zahl abgestorbener Bäume, die die Nachbarbäume direkt 

schädigen. Wenn ein gründlicher Überblick über die betroffene Fläche und die Anzahl 

der geschädigten Bäume schnell erfasst und in die Planung von 

Waldbewirtschaftungsmaßnahmen einbezogen werden kann. Abgestorbene Bäume 

können mit Hilfe der Fernerkundung (RS) und der Künstlichen Intelligenz (KI) in 

geeigneter Weise identifiziert werden. Die KI hat eine Reihe von 

Bildsegmentierungsalgorithmen entwickelt, die abgestorbene Bäume anhand von RS-

Daten, wie z. B. Bildern von unbemannten Luftfahrzeugen (UAVs), klassifizieren 

können. Einer der Algorithmen des maschinellen Lernens (ML), Deep Learning (DL), 

erfreut sich aufgrund seiner hervorragenden Bildsegmentierungsleistung und 

verschiedener Bildverarbeitungsmethoden zunehmender Beliebtheit. Aus dieser 

Perspektive zielt diese Forschung darauf ab, eines der DL-Modelle, das U-Netz, zu 

verwenden, um die abgestorbenen Fichten (Picea abies) in den UAV-Orthofotos zu 

segmentieren. Das Netz wurde in mehreren Experimenten als Vorversuch trainiert, wobei 

die Pixelgröße, die Verlustfunktionen, die Anzahl der Parameter usw. verändert wurden. 

Das Ergebnis war, dass die semantische Bildsegmentierung unter Verwendung der U-

Netz-Architektur und die Kombination einer geeigneten Trainingsstrategie für die 

Erkennung abgestorbener Fichten auf UAV-Orthofotos erfolgreich waren. Das 

Vorhersagemodell wies jedoch eine geringfügige Überanpassung auf, die durch 

Hinzufügen weiterer Trainingsdatensätze und Änderung der U-Netz-Architektur behoben 

werden kann. Obwohl das konstruierte Modell und die verfügbaren Daten verwendet 

wurden, um eine sehr effektive visuelle Erklärung der Klassifizierung zu erstellen. 

Schlüsselwörter: Semantische Segmentierung, Deep Learning, U-Netz, Fernerkundung, 

UAV, tote Bäume. 
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I. INTRODUCTION 

 

Forests are an important resource and cover about one-third of the earth’s surface (Keenan 

et al. 2015). According to Trumbore, Brando, and Hartmann (2015) all living things rely 

on forests to provide products and amenities for society including timber, paper, 

firewood, wildlife habitat, carbon storage, and recreational services. Forests provide 

wildlife habitat and livelihoods for people, protect watersheds, prevent soil erosion, and 

mitigate climate change (Trumbore et al. 2015). Forests face many threats and stressors, 

including deforestation (Ferrer Velasco et al. 2020), drought (Süßel and Brüggemann 

2021), climate change (Prietzel et al. 2020), air pollution (Rathmann et al. 2020), bark 

beetle disturbance, mortality from a forest fire and unsustainable management (Foley et 

al. 2005). 

Forest management is crucial for ensuring the efficiency that can meet the earth’s 

population requirements. The development of new sensors and policies provides 

opportunities to expand traditional practices by combining remotely-sensed data products 

to deliver improved statistics on the condition of forests (Estoque et al. 2021). Since the 

initiation of earth-observation satellites, which are appropriate for monitoring the 

vegetation, researchers have used images to quantify the spatial extent of insect eruptions 

and mortality of the tree at regional and landscape scales using fine resolution images   

approximately 30m (Bright et al. 2020). Recently, researchers have introduced the usage 

of high-resolution (≤5 m) satellite imagery and images collected from Unmanned Aerial 

Vehicles (UAVs) for monitoring tree health (Schiefer et al. 2020). As an Artificial 

Intelligence (AI) tool for analyzing RGB images, Deep Learning (DL) has become 

increasingly powerful. Recently, DL techniques have been used to detect trees (Chadwick 

et al. 2020; Ocer et al. 2020), categorize tree species (Egli and Höpke 2020; Kentsch et 

al. 2020; Tran et al. 2020), and detect forest disturbances such as insect infestations or 

wildfires (Safonova et al. 2019). Diez et al. (2021) mentions that the research field of DL, 

which is a part of machine learning, has proliferated in recent years. DL can produce 

proficient observations on every single tree in hundreds or thousands of hectares(Diez et 

al. 2021) 

There are many problems that affect the health of the forest. One of the reasons is the 

negative influence of neighboring dead trees near healthy trees (Ciesla and Donaubauer 

1994). The primary goal of this study was to use DL to identify those dead trees. In the 
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detection of dead trees, segmentation plays an important role in various applications and 

presents a challenging problem for computer vision (Minaee et al. 2021; Yuan et al. 

2020). Several algorithms have been developed to segment images using AI (Niazi, 

Parwani, and Gurcan 2019). Many of the aforementioned scholars believe that DL is 

becoming increasingly popular for image segmentation. It has developed many image 

processing techniques and achieved exceptional results in image segmentation (Mazza et 

al. 2019; Wagner et al. 2019). Image segmentation is based on constructing neural 

networks with many hidden layers and is commonly known as DL models (Chen et al. 

2018; Krizhevsky, Sutskever, and Hinton 2017). DL models are intensively used to 

identify forest dead trees because it provides greater accuracy than conventional methods 

(Kattenborn et al. 2020). 

1. Scope of the thesis 
 

Germany is one of the most densely forested countries in Europe and a one-third of land  

is covered by forest (Welle, Sturm, and Bohr 2018). In this study the area called Haselberg 

near Prötzel (Figure 1) is belongs to Brandenburg state. The study area has been managed 

by the Eberswalde University for Sustainable Development (HNE) since 2019. In January 

2020, during a forest inspection which was done by bachelors’ students in the HNE, it 

was found that the forest had many dead trees. Spruce (Picea Abies) was the most affected 

tree species. One of the biggest problems at present is the large number of dead trees 

directly damaging neighboring trees. If a detailed assessment of the affected area and the 

number of damaged trees can be immediately recorded and included in the planning of 

forest management measures. In forest management, several approaches can determine 

the forest’s condition. The main objective of this research is to identify dead trees in 

forests using UAV orthophotos. To summarize, this master's thesis presents semantic 

segmentation of dead trees (Picea abies) using DL with the UAV orthophotos. 

The specific objectives of this research have been narrowed down as follows: 

1. To perform semantic segmentation of dead trees (Picea abies) using DL 

with the UAV-orthophotos. 

2. To predict UAV orthophotos with different resolutions from the developed 

model. 
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2. Study Area 
 

 The study area is on the western edge of Prötzel on the hills of the Steinberg, which 

Bussemer (2005) argues probably belongs to the Frankfurt glacial margin. This small 

chambered, lowland landscape on the watershed between Berlin and Eberswalde consists 

of various glacial sediment types with a predominantly sandy character (Bussemer 2005). 

It is located in Brandenburg’s federal state with 52.724430 North and 14.003200 East, is 

closely related to the highly urbanized German capital Berlin (Ihinegbu and Ogunwumi 

2022) (Figure 1). 

 

3. Limitation and Assumptions 
 

The major limitation to achieving the research objectives is the available data. Ideally, 

this research would produce a DL model that detects dead spruce trees with 95% 

accuracy. However, there was not enough data currently available at different spatial 

resolutions and locations to accomplish this goal. The lack of data also means that very 

few aerial datasets are available for training the DL model. Moreover, this research is 

developing a model to predict dead trees only using the discoloration and shapes of the 

crown or leaves. 

Figure 1: Study area 
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II. REVIEW OF THE LITERATURE 

 

This chapter provides a technical overview of information on the forest health and dead 

trees, Remote Sensing (RS), and semantic segmentation. This will be accomplished by 

reviewing forest health classes, RS datasets, AI and their application to the image 

classification problem, and a convolutional neural network (CNN) variant known as the 

U-Net. This section will also explore metrics, loss functions, and their role in final 

segmentation results. 

1. Factors to identify forest health 
 

Forest health depends on conditions of  individual  trees; which is a  significant factor in 

forest management (Safe’i et al. 2021). Many factors indicate the health of the trees 

including among others vegetation, crown condition, defoliation, discoloration (Morelan 

1994). In this research, the vitality range is determined based on needle loss and 

percentage of discoloration, as shown in Table 1 and Figure 2 (Innes 1990). 

Table 1: Classification of forest damage based on needle loss and chlorosis(Innes 1990; 

Uhlmann et al. 1989) 

 

 

 

 

 

 

 

Damage Class Vitality Needle loss (%) Discoloration (%) 

0 Healthy 0-10 0-25 

1 Slight damage 11-25 0-10% of needles  

2 Moderate damage 26-60 26-60% of needles   

3 Severe damage 61-99 61-99% of needles   

4 Dying 100 Dead trees 

Figure 2:Defoliation types in spruce, a. none; b. small window; c. 

large window; d. top only; e. uniform; f. peripheral; g. bottom-up 

(Innes 1990) 
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2. Remote sensing in Forestry 
 

To identify the forest health, RS data are widely used (Lausch et al. 2017). RS consists of 

observing electromagnetic radiation that is emitted or reflected from distant objects and 

captured by some kind of sensors (Kennedy et al. 2009). The use of aerial imagery for 

forestry applications has been around for decades, including mapping cover types, 

detecting damage to trees, and stand delineation (Cielsa 2000). To assess forests and 

analyze the effects of various stressors on forests, a system that uses terrestrial in situ 

observations and remote sensing technologies is critical (McDowell et al. 2015; Trumbore 

et al. 2015; Wingfield et al. 2015).Monitoring forest health can be done with several RS 

applications (Pause et al. 2016). In addition, one of the  DL methods, namely semantic 

segmentation, is used to detect dead trees based on RS data, especially from satellite and 

UAV data (Jiang, Yao, and Heurich 2019). 

2.1 Satellite data  

 

Several large data archives (e.g., Landsat) have made RS data archives available to the 

public in recent years which has led to greater development of RS technologies and 

applications (Wulder et al. 2012). It also includes entire space missions developed for the 

public (e.g., the European Space Agency’s (ESA) Sentinel missions) (Majasalmi and 

Rautiainen 2016) and the development of open-source tools for the processing of RS data. 

It is expected that these developments will lead to a tremendous push in the use of 

satellites to understand forest health (Wulder and Coops 2014). 

2.2 UAV data  

 

 UAVs have proven to be a useful source of data for many forest management 

situations(Dash et al. 2016). In recent years there have been a rising number of studies 

looking at how UAVs can be used for forest monitoring in a wide range of applications 

including surveying forests (Goodbody et al. 2017; Miller et al. 2017; Puliti et al. 2017), 

Providing information on silvicultural practice(Watt et al. 2017), monitoring of forest 

health(Cardil, Vepakomma, and Brotons 2017; Michez et al. 2016), and natural hazard 

events such as forest fires(Cruz et al. 2016; Yuan, Liu, and Zhang 2017), wind 

damage(Mokroš et al. 2017), and harvesting operations.  
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3. Artificial intelligence 

 

It is necessary to understand AI in order to solve environmental conditions (Yi 2020). AI 

is about developing intelligent machines from large amounts of data that learn from 

experience and perform human-like tasks (Duan, Edwards, and Dwivedi 2019). This 

covers both ML and DL, as well as applications that use algorithms to perform intelligent 

tasks. 

3.1 Machine Learning 

 

The field of ML is described as one that enables computer systems to automatically 

improve their performance over time. Although specialized learning methods now exist, 

scientists strive to create more broadly applicable systems with more powerful learning 

capabilities (Alzubi, Nayyar, and Kumar 2018; Mitchell 1997). The application of ML 

teaches computers how to handle data more effectively. The whole purpose of machine 

learning is to learn from the data (Batta 2020).  

3.2 Deep learning 

 

DL is a branch of ML that helps to expand the scope of ML techniques by learning 

multiple recursive layers of data representation. The depth of the model is made up of 

more than one recursive layer opposed to standard ML techniques. DL must be used in 

combination with neural networks to learn the many different features and representations 

of the data (Pouyanfar et al. 2018). DL enables computer models consisting of multiple 

processing layers to learn data representations with multiple levels of abstraction. These 

methods have improved state of the art image classification, speech ,visual and object 

recognition, and many other areas such as drug discovery and genomics (Lecun, Bengio, 

and Hinton 2015). 

 

4. Neural networks 

 

Neural networks consist of layers stacked on top of each other. Each layer filters the input 

data to learn a final representation useful for a particular purpose (Bashivan et al. 2016). 
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There are four components to training a neural network: 

• Input data 

• Layers 

• Loss function 

• Optimizer 

In a neural network, an input layer passes the data, usually in the form of a 

multidimensional vector, to the input layer, which passes it on to the hidden layers 

(O’Shea and Nash 2015). Yi (2020) states that layers are the fundamental data structure 

of a neural network. He also states that each layer processes inputs and outputs in data 

containers called tensors, and that layers also have values called weights. First, to train a 

neural network is to calculate the correct values for these weights (Yi 2020). Then the  

loss functions are used to control the error between the output of the algorithms and the 

specified target value(Christoffersen and Jacobs 2004; Vassallo, Krishnamurthy, and 

Fernando 2020). Lastly the optimizer uses the desired results as a feedback signal. The 

optimizer uses a Backpropagation algorithm to change the weights of the network layers 

(Zhang et al. 2007). 

4.1 Convolutional Neural Networks 

 

CNNs are similar to traditional Artificial Neural Networks (ANNs) in that they consist of 

neurons that optimize themselves through learning (Indolia et al. 2018). CNNs are 

Figure 3:An artificial neural network (ANN) diagram. (Vassallo, Krishnamurthy, and 

Fernando 2020) 
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commonly implemented for image analysis because they have particular characteristics 

that make it simpler to recognize patterns within images. CNN assumes that the input 

consists of images and that the weights and biases of the neurons can be learned (Sahiner 

et al. 1996; Yadav and Jadhav 2019). Each neuron receives an input and performs an 

operation, and the only notable difference between CNNs and traditional ANNs is that 

CNNs are mainly used in the field of pattern recognition in images. This allows us to 

encode image-specific features into the architecture, making the network more suitable 

for image-oriented tasks - while further reducing the parameters required to build the 

model(Alom et al. 2019; O’Shea and Nash 2015). 

 

 

4.1.1 Convolution 

 

The purpose of the convolution layer is to extract patterns found in local regions of the 

input images that are quite common in natural images. Convolution is a process that 

creates a new function from two functions of a real-valued argument. Assume that the 

input position function x(a) is based on the age of the measurement a, the output estimate 

function s(t) is based on time t, the weighting function w(a) favors the most recent 

measurements, and the input position function x(a) is based on time t. With these 

specifically defined functions from(Goodfellow, Bengio, and Courville 2016), the general 

formula for convolution is. 

 𝑠(𝑡) = ∫ 𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑑𝑎 

Figure 4:The overall architecture of the CNN (Alom et al. 2019) 

(1) 
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In CNNs, the weighting function w(a) is known as the kernel, the output s(t) is known as 

the feature map, and the function x(a) is known as the input (Baskin et al. 2018; 

Goodfellow et al. 2016). 

 

4.1.2 Max-Pooling 

 

The max-pooling and average-pooling methods are two popular methods used by CNNs 

due to their computational efficiency. For example, the Average-Pooling method is used 

in(Jarrett et al. 2009), which achieves excellent image classification accuracy on the 

Caltech101 dataset. In (Krizhevsky, Sutskever, and Hinton. 2012), the max-pooling 

method is successfully applied to train a deep “convnet” for the ImageNet competition. 

Although these two types of pooling operators can work very well on some datasets, it is 

still unknown which one is more suitable for solving a new problem. In other words, 

choosing the pooling operator is a kind of empiricism. However, the average-pooling and 

max-pooling operators each have their own disadvantages. The other items in the pooling 

zone are ignored when using max-pooling, which only considers the maximum element. 

Sometimes, this produces an unacceptable outcome(Yu et al. 2014).In this thesis, max 

pooling was used as a pooling operator. 

 

Figure 5: Visual representation of an image convolution with an input image of size 7 × 7 

and a filter core of size 3 × 3(Baskin et al. 2018) 
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4.2  Semantic Segmentation 

 

Semantic segmentation is an image classification technique in which each pixel of an 

image is provided a corresponding class label (Fu and Mui 1981). It has abundant 

applications in computer vision and AI, which include autonomous driving, robot 

navigation, industrial inspection, and remote sensing; in cognitive sciences and computer 

science - detection of conspicuous objects; in agricultural sciences; in fashion - 

categorization of clothing. In medical sciences - analysis of medical images, etc. Previous 

approaches to semantic segmentation include textonforest, random-forest-based 

classifiers, and others. DL techniques enable precise and much faster segmentation 

(Artacho and Savakis 2019; Lateef and Ruichek 2019). Segmentation in aerial imagery is 

often performed with Fully Convolutional Networks (FCNs) and U-nets. 

Figure 6: Toy example illustrating the drawbacks of max pooling and average pooling (Yu et 

al. 2014) 
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Figure 7: An application of semantic segmentation (Artacho and Savakis 2019) 

 

4.3 Fully Convolutional Networks 

 

A CNN-based variant, known as FCN, represents one of the most significant 

developments in image segmentation (Maraci et al. 2020). The fully associated layers at 

the end of the traditional CNN into conversion layers by the FCN. This results in a 

network that computes a nonlinear filter for the output vectors of each layer. Thus, the 

final network can process an input of any size and provide an output with the correct 

spatial dimensions(Sharma, Patel, and Bishnu 2017). Therefore, the classification 

network can output a graph of the selected object class. An effective machine for dense 

end-to-end learning is created by further modifying the framework by adding layers and 

a spatial loss (Long, Shelhamer, and Darrell 2015). 

Figure 8: An illustration of FCN (Sharma, Patel, and Bishnu 2017) 
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4.4  U-Nets 

 

The U-net architecture is a variation of an FCN, most commonly used for the task of 

semantic segmentation. The original U-Net architecture was developed by (Ronneberger, 

Fischer, and Brox 2015) to perform image segmentation and localization for biomedical 

purposes. It has been used to classify different regions of microscopic histology slides 

into different cell structures. The U-net architecture responds to shapes and textures in 

small regions and at different scales, resulting in a pixel-by-pixel analysis of the input 

images. A U-net variant is shown in the demonstration by (Zhang, Liu, and Wang 2018) 

for delineating roads in high-resolution satellite imagery. According to Ronneberger et 

al. (2015), U-networks can be trained with much less training data (within their specific 

problem domain) than some other approaches seem to require. 

 

 

 

4.5 Evaluation Metrics 

 

To estimate the effectiveness of different network topologies for semantic segmentation, 

an appropriate metric that accurately describes the network’s ability to recognize a class 

is required. In this study, initial experiments were conducted and various metrics were 

used to verify the working of the model. 

 The simplest method for evaluating the overall accuracy of image classification is to 

examine pixel accuracy. It is done by calculating the percentage of pixels in a test image 

Figure 9: The U-Net diagram (Ronneberger et al. 2015) 
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that were correctly detected (Congalton 1991). There are numerous terms that are often 

used along with the description of accuracy: true positive (TP), true negative (TN), false 

negative (FN), and false positive (FP) (Zhu, Zeng, and Wang 2010). 

Accuracy: measures how many observations, both positive and negative, were correctly 

classified. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Another way of calculating accuracy is the F1Score: Measures the harmonic mean 

between Recall and Precision (Alfonso Francia et al. 2020) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

The Jaccard index is an alternative performance metric that is employed to combat the 

unreliable measurement of accuracy of the prior method. The Intersection over Union 

(IoU) is another name for this metric. The similarity between the predicted region and the 

actual region for an object in a sequence of images is calculated using this metric. 

      𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

|𝐴 ∪ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
 

 

 

 

 

 

 

 

(2) 

(3) 

(4) 

(5) 

(6) 

Figure 10: Visual representation of the Jaccard index, where A is the 

ground data and B is the output prediction for a single class (Yi 2020) 
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4.6 Loss Functions for Segmentation 

 

There are several loss functions for this segmentation task that are comparable to the 

evaluation measures used to more accurately assess the effectiveness of a model. In this 

research, several loss functions were used to determine the best function for this problem 

solution, which are explained below. 

 In binary cross entropy (BCE), each projected probability is scored against the actual 

class outcome, which can be either 0 or 1. Then the score is determined by reducing the 

probabilities according to how far they are from the expected value. More specifically, 

how close or how far the value is from the actual value. 

 

 𝐵𝐶𝐸 = ∑ 𝑤(𝑥)log (𝑝ℓ(𝑥)(𝑥))

𝑥∈Ω

 

 

 Another loss function is the Jaccard’s loss function or IoU. The calculation of IoU in (6) 

assumes that the output prediction mask consists of 1s and 0s. However, the actual output 

of neural networks consists of a set of probabilities that represent the probability with 

which the network predicts that a pixel belongs to a certain class. 

       𝐼𝑜𝑈 =
|𝑇 ∗ 𝑃|

|𝑇 + 𝑃 − (𝑇 ∗ 𝑃)|
=

𝐼

𝑈
 

where T is the truth data for an image and P is the prediction mask of the same image. 

 

One of the other loss function used by (Reder et al. 2022) for a semantic segmentation of 

windthrown trees is F1CrossEntropyLoss. The loss function "BCE", which is suitable for 

binary classification tasks, was modified by adding the difference between the F1Score 

and 1 to better represent the training success. 

 

𝐹1𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 = (1 − 𝐹1𝑆𝑐𝑜𝑟𝑒) + 𝐵𝐶𝐸 

 

 

 

(7) 

(8) 

(9) 



23 
 

III. MATERIALS AND METHODS 

 

The following chapter describes the data collection, creation of the training dataset, the 

alterations to the U-Net architecture, and the training, evaluation, and testing of the 

models. 

1. Workflow 

 

The workflow depicted in Figure 11 comprises four sections: Data collection, Input data, 

Preparation of data set, and Training and evaluation of the neural networks (Section 2-6). 

For a detailed description of the network architecture used, see Figure 18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Workflow diagram 
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2. Data collection 
 

The dead tree classification was conducted using ground truthing and UAV datasets. The 

following sections describe the data collection procedure in detail. 

2.1 In situ data 

 

As an initial inventory, the reference data for the tree species analysis was gathered in the 

Prötzel forest in January 2020 with bachelor students from HNE. It found nine different 

species of trees in this forest, with spruce being the species with the highest percentage 

of dead trees. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The spruce (Picea abies) was found to be the highest dead tree after the initial data 

collection. Therefore, a separate survey was conducted during the first week of October 

2021 to determine the number of dead trees by their vitality classes based on crown 

condition(Innes 1990). The vitality of spruce trees was classified into five classes from 0 

to 4. During the surveys, the information was recorded in the form of height, DBH 

(Diameter Breast Height), GPS points, and vitality classes (Uhlmann et al. 1989). 

Figure 12: Number of trees with species in Prötzel based on 2020 forest inventory data. 
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Figure 13: Vitality classes of spruce in Prötzel based on forest inventory data 2021. 

 

From Figure 12 and 13, the total number of spruce trees is 247, and 159 trees belong to 

dead trees. 

2.2 UAV based Orthophotos 

 

The forest area was captured on July 21, 2021, using a DJI Phantom 4 RTK quadcopter 

with an RTK controller. The university also conducted other flights in March 24, 2022 

using a DJI Phantom 4 RTK with a different spatial resolution as a general seasonal flight. 

This research also used these data to evaluate and predict the model. The specifications 

of the two UAV orthophotos are shown in the Table 2. 

 

Table 2: Details on the UAV data used in the study 

Specifications 

 

DJI Phantom 4 RTK  DJI Phantom 4 RTK 

Acquisition date 

 

21-06-2021 24-03-2022 

Spatial resolution 

 

1.73 cm 3.45 cm 
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3. Input data 
 

3.1 UAV-Orthophotos 

 

The raw images were imported into Agisoft Meta shape, which is a photogrammetry 

pipeline tool. A digital surface model (DSM), digital terrain model (DTM), crown height 

model (CHM), and the point cloud were created. The point cloud was used to create the 

orthomosaic. The 2021 orthomosaic was used to train the model, and the 2022 

orthomosaic was used to verify the final model prediction with different resolutions. The 

use of orthomosaics rather than UAV raw data is recommended since geo-referenced 

images allow for the precise position and subsequent quantification of the detected trees. 

3.2 Dead trees points 

 

Due to the GPS correction, the spruce tree points were not geo-referenced on the trees. 

The first step was to make geo-referenced points with the UAV orthophoto. This was 

done using the vertex tool option in the toggle editing in QGIS 3.26.0-Buenos Aires. The 

dead tree 141 tree tops visible in the 2021 UAV orthomosaic were then applied for initial 

labeling. 

 

(a)                                                                         (b) 

 

 

 

 

Figure 14: Points (a)before and (b)after the geo-reference 
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4. Data Preparation 

 

The following section describes the preparation of the data sets used for training and 

evaluation. The different types of preparation strategies are described, and these processes 

were performed using QGIS, R, and Python programming languages. 

 

4.1 Initial Labelling 

 

All 141 dead trees were manually outlined by digitizing polygons. Due to the crown’s 

form, this process was particularly challenging. It was very difficult to detect the edges 

of the crown. The specific labeling is utilized to produce the mask. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Example data sets after labelling 
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4.2 Cropping and masking 

 

After labeling, the polygons were cropped and masked. For this purpose, the center of 

each polygon was selected, and from that point, squared image tiles with the side length 

of 12 m were clipped, which consists of 685 x 685 pixels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Data augmentation 

 

Data augmentation techniques in data analysis involve adding slightly modified copies of 

existing data or creating entirely new synthetic data from existing data(Shorten and 

Khoshgoftaar 2019). Rather than using the 141 samples used for training and validation, 

a data augmentation procedure was utilized to build slightly different copies for each tree 

canopy in order to produce more training datasets that typically represent the properties 

of dead tree canopies. For this purpose, a library called albumentation was used. In 

albumentation the original tree crowns were augmented in six different ways. 

Figure 16: Two sample data sets after cropping and masking 
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5. Preliminary Experiments 
 

In the initial phase, many experiments were conducted which is necessary to obtain the 

working model. These experiments helped to determine the best working model for dead 

spruce detection. The experiment first tried to train the model with segmentation models, 

which are neural network libraries for image segmentation based on the Keras 

(TensorFlow) framework using different image sizes of 128 × 128, 256 × 256, and 512 × 

512. The loss function was modified using all the types of loss functions listed in Table 

3. Unfortunately, these experiments did not give good results in dead tree segmentation 

with this dataset. 

The next model used was from the original U-Net research paper (Ronneberger et al. 

2015), modifying the same as used in the models above. In both cases, 987 datasets were 

used. The best results were obtained in these models are shown in the final results. The 

loss function used was BCE and accuracy as a metric with 512 × 512 input size.  

 

Figure 17: Diagram of the augmentation process of a sample training dataset 
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Table 3: The preliminary experiments with the parameters used. (Bolded are the best) 

 

6. Training and Evaluation 

This section includes detailed information about the training datasets, modified network 

architecture, hardware and software used, and other training and evaluation methods. 

6.1 Training Datasets 

The total number of images and masks after image augmentation was 987. The datasets 

were 685 × 685 pixels and were resized to 512 × 512 pixels in the Cv2 library. 80% of the 

datasets were split to training size and 20% to testing and validation using train_test_split 

in sklearn.model_selection. 

6.2 Model Architecture 

 

The U-Net architecture presented by (Ronneberger et al. 2015)was selected for the 

semantic segmentation of the UAV images and adapted to the specific requirements 

(Figure 18). The adapted U-net architecture consists of a contracting branch (encoder) 

and an expanding branch (decoder), distributed over 5 layers. The input layer has a size 

of 512 × 512 pixels and 3 feature layers, one for each RGB channel. Each layer in the 

encoder contains two convolutional layers with a kernel size of 3 × 3 pixels and a max-

pooling layer with a pool size of 2 × 2 pixels and a stride of 2 pixels. Each contraction 

step to the next layer doubles the number of features (16, 32, 64, 128, 256) and decreases 

their resolution to 256 × 256, 128 × 128......32 × 32. The decoder mirrors the encoder, but 

the max-pooling layer is replaced by a 2 × 2 convolutional layer that halves the number 

Model  Training 

datasets 

Input size Loss function Metrics 

  128 × 128 

 

  

Segmentation 

models 

987 256 × 256   

  512 × 512 

 

 

BCE, IoU, 

F1CrossEntropyLoss 

 

Jaccard, F1Score, 

Accuracy 

  128 × 128 

 

  

U-net  987 256 × 256   

  512 × 512   
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of features and samples up the layer’s resolution, inverting the operation in the contracting 

branch, followed by a concatenation with the corresponding layer. 

 

Figure 18: U-net architecture with a decoding and encoding branch that uses skipping connections 

between the relevant levels. The number of features and the size of the input (left) and output 

(right) are shown below the layers, respectively 

 

The hidden layers contain rectified linear units (Relu) to avoid disappearing gradient 

problems (Lau and Lim 2019). In the output layer, the Relu activation function was used 

to determine the probability that a pixel represents a tree crown (Safonova et al. 2019) .In 

total, the network consists of 1,97676 trainable and 0 untrainable parameters. The ADAM 

optimizer was adapted to fit the model, as this optimizer is designed to handle large 

datasets with multiple features and has no memory requirements(Kingma and Ba 2014). 

The loss function BCE, appropriate for binary classification applications, was chosen 

with the accuracy metrics. Callbacks were introduced to reduce learning when the loss 

was stable for 2 epochs to avoid learning plateaus and to terminate learning early when 

loss did not improve for 4 epochs. 
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6.3 Training stage 

 

Proper initialization of model weights is critical to training success, as poorly initialized 

models are unlikely to converge, even with a sophisticated optimizer(Le, Jaitly, and 

Hinton 2015). This is especially important when only a few training examples are 

available. One approach to overcoming this problem is to use pre-trained networks and 

to apply transfer learning from them. In this study, the initial training was performed with 

the original datasets containing 141 images and corresponding masks. However, since the 

datasets were very small, the augmentation datasets were trained with 900 datasets, so the 

pre-trained network approach was not adopted based on the results in the augmented 

training datasets. 

6.4 Evaluation 

 

To evaluate the classification performance, the accuracy of the pixels was checked, and 

the randomly selected tiles were also visualized and interpreted. In addition, the 

orthomosaics were predicted using the sliding window prediction. 

6.5 Sliding window prediction 

 

To make predictions for full orthomosaics, a grid with a side length of 20 meters was 

designed. To make predictions for certain tiles, the grid and a sliding window were 

utilized. A complete orthomosaic was then integrated using these predictions together. 

This made it possible to predict both training and testing orthomosaics. 

 

6.6 Software and Hardware Environment 

 

The operating system used was Ubuntu 18.04.5, and the hardware configurations 

consisted of an Intel Xeon 5218R with 64 GB of RAM, an NVIDIA Quadro RTX 5000 

with 16 GB of VRAM, and CUDA driver version 11.4 and R version 4.0.4. For the 

implementation, the DL frameworks Keras 2.3.0 and TensorFlow GPU 2.8 were used. 
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IV. RESULTS AND DISCUSSION 

 

In the sections below, the results and discussion of the training and classification of the 

test data set are presented and evaluated. 

1 Preliminary Experiments 

 

In the preliminary experiments there were two results to predict the dead spruce trees. 

which were F1CrossEntropyLoss and the BCE, it is shown in the Figure 19 and 20. From 

these two, the result with BCE loss model was selected for this research. According to 

Chicco and Jurman (2020) an F1Score of less than 0.50 is considered as bad performance. 

Therefore, F1CrossEntropyLoss model can be ignored and BCE results was considered 

in further testing and predictions. In BCE, there was a minute difference between the loss 

curves for training and validation. Also, the training accuracy was 0.77. Even though the 

validation accuracy remains the same. 

 

2 Training 

 

The training time with BCE per epoch was 2 min 31 s for the training dataset, and it 

took almost 24 minutes to complete 20 epochs. The training and validation loss curves 

are plotted in Figure 20. 

Figure 20: BCE results 

Figure 19: F1CrossEntropyLoss results 
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Results were visually interpreted to demonstrate that, regardless of the dataset used, the 

trained network were capable of detecting minute regions of the dead tree canopy. The 

minute regions of the crowns were not previously labelled because they were smaller than 

the area being used to label the dead trees. In this context, the presence of leafless crowns 

of other trees in the winter season could also pose a challenge for image classification, as 

shown in the prediction of the winter orthomosaic in Figures 24. Therefore, samples from 

other areas with dead trees should be included as they become available in future work. 

2.1 Evaluation 

 

After the training process completed, the trained model was used to classify some of the 

test data sets, predicted test data set as shown in the Figure 21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Predicted samples of the test data set; left: Tree mask; centre: test samples; right: 

Predicted result. In some parts of the image, yellow leaves and the ground were detected as pixels 

of dead trees (a). Smaller parts of the tree tops that were not masked because they were difficult to 

label were also detected (b). Both effects resulted in lower accuracy. 

 

(a) 

(b) 
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2.2 Prediction  

 

 The trained model was used to obtain predictions for the entire orthomosaics. Figure 22-

23 shows an area of the same site used for model training. To make the prediction of the 

orthomosaics, the model was fed individually cropped images that were selected with a 

grid as described in Section 6.5. The images output from the model were then combined 

into a mosaic to produce the fully predicted mosaic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(b) 

Figure 22: Prediction and orthomosaic of the training dataset. Wrong 

predictions (a) Predictions with low accuracy (b) 
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The labelled 147 dead spruce trees were detected in the entire orthomosaic prediction 

results shown in Figure 25, although 15 detected trees were not clearly segmented. In 

addition, a few other dead tree species were predicted.  

 

3 Testing 

 

The second objective of the thesis was to use the model for predicting a UAV-orthophoto 

with different resolution to verify the performance of the model. The UAV images were 

predicted using sliding window prediction, and the results are shown in Figures 25 - 26. 

In these predictions, it was clear that the model predicted the dead tree pixels with their 

(a) 

(b) 

(b) 

(a) 

Figure 23: Prediction and orthomosaic of the training dataset. Wrong 

predictions (a) Predictions with low accuracy (b) 
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shapes, although it is not accurate because the model was trained with different 

resolutions of the dataset. In this test UAV orthophoto, the predictions seem to be difficult 

to quantify the number of dead trees because of the prediction accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSION 

 

This research was started with a comprehensive concept of forest management. There are 

many problems that forests face nowadays, such as bark beetle infestation, water 

shortage, etc. One of the main problems that affect the health of the forest is dead trees 

near healthy trees, which can then fall down or be attacked by insects. These problems 

greatly affect the health of forests, which is obviously a reason for climate change and 

global warming. Therefore, a proper management strategy should be in place to quantify 

the number of dead trees. There are a number of methods to segment the dead trees. 

Figure 24: Prediction and orthomosaic of the testing dataset 
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Currently, there are a number of technologies that can be applied to classify dead trees. 

In this technology-based approach, a combination of RS data and AI can bring a better 

solution. In this study, RS UAV data and DL model U-Net were used to perform semantic 

segmentation of UAV orthophotos to classify dead spruce trees. The results reveal that 

the semantic image segmentation using U-net architecture and the combination of a 

suitable training method for dead spruce tree detection on UAV orthophotos are effective. 

The network was trained using several experiments as preliminary tests by altering the 

pixel size, the number of parameters, etc. As a result, the U-net was trained using BCE as 

the loss function, 512 × 512 pixels, and accuracy as the metric. However, the model (BCE) 

used for prediction showed a slight overfitting, which can be resolved by using more 

training data sets and adjusting the U-net architecture. Even though a very good visual 

explanation of the classification results was achieved by using the BCE model with the 

available data. 

Future Work 

 

Additional modifications are necessary to achieve the suggested model’s full 

classification performance. Residual layers are intended to improve training effectiveness 

due to the computational expenses associated with higher input layer precision (Romera 

et al. 2018). A self-calibrated convolution is also being investigated for implementation. 

The proposed architecture is included in the mask prediction branch of a mask R-CNN 

with the end goal of instance segmentation of the dead and subsequent quantification of 

the number of trees detected (Thompson et al. 2020).  

Another point to consider is creation of an artificial training dataset with numerous 

canopies based on an augmentation technique where dead trees are randomly replaced to 

different backgrounds. In order to improve generalization capacity without encouraging 

overfitting, it is also being examined whether random deletion may be used in conjunction 

with augmentation (O’Gara and McGuinness 2019). Generative Adversarial 

Networks(GANs) are a very promising method for training a model with synthetic 

images, which can also be utilized (Frid-Adar et al. 2018).In addition, the training dataset 

can be used at different resolutions. Additionally, as the environment changes with the 

seasons, such as in the ground vegetation and the fallen tree leaves, efforts are required 

to include training samples from several seasons in the training dataset 
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VII. APPENDICES 

 

1. Repository Link 

 

https://github.com/muhammedsinan1997/Semantic_Segmentation_of_dead_trees .This 

is the link to the repository to get the codes used in this master thesis. 

 

2. Prediction results of whole orthomosaics 

 

 

 

Figure 25: Complete Prediction and orthomosaic of the training dataset 

https://github.com/muhammedsinan1997/Semantic_Segmentation_of_dead_trees


50 
 

 

 

 

 

Figure 26: Complete Prediction and orthomosaic of the testing dataset 
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3. Photographs from the data collection 

 

 

 

 

Figure 27: Ground data collection 
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Figure 28: UAV data collection 
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