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Climate change challenges forest vitality both directly by increasing drought and heat
periods and indirectly, e.g., by creating favorable conditions for mass outbreaks of
phyllophagous insects. The large forests dominated by Scots pine (Pinus sylvestris
L.) that cover the lowland regions in northeast Germany have already been affected
regularly by cyclic mass propagations of defoliating insect species in the past with
climate projections implying an even more advantageous environment for devastating
outbreaks in the future. To improve predictive and responsive capacities we have
investigated a wide range of ecological parameters to identify those most strongly
related to past outbreak waves of three central species. In total, we analyzed
3,748 variables covering stand and neighborhood properties, site quality, and climatic
conditions for an area of roughly 750,000 ha of pine forests in the period 2002–
2016. To reflect sensitivity against varying climate, we computed “floating windows”
in relation to critical phenological phases of the respective insects. The parameters
with the highest explanatory power resulted from the variable importance measures
of the Random Forest (RF) methodology and have been evaluated by a 10-fold cross-
validation process. Our findings closely reflect the known specific gradation patterns and
show that relative variable importance varies with species. While Lymantria monacha L.
feeding was mainly dependent on the surroundings of the respective stand, Diprion
pini L. proved to be almost exclusively susceptible to climatic effects in its population
dynamics. Dendrolimus pini L. exhibited a mixed pattern of variable importance involving
both climatic and forest structure parameters. In many cases the obtained statistical
results support well-known ecological cause-effect relations and long-term population
change dynamics. The RF delivered very high levels of sensitivity and specificity in
the developed classifications and proved to be an excellent tool to handle the large
amounts of data utilized for this study. While the presented classification approach may
already support a better prognosis of the amplitude during the outbreak culmination, the
obtained (most important) variables are proposed as preferable covariates for modeling
population dynamics of the investigated insect species.

Keywords: ecological modeling, Random Forest, mass outbreak, Pinus sylvestris, Lymantria monacha,
Dendrolimus pini, Diprion pini
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INTRODUCTION

Climate change is challenging forest management strategies
around the globe (Kirilenko and Sedjo, 2007; Lindner et al., 2014).
In addition to the expected detrimental effects of increasing heat
and drought on major physiological processes of forest trees
(Allen et al., 2015), the potential stimulation of mass outbreaks of
thermophilic forest pest insects is threatening sustainable forest
management (De Lucia et al., 2008; Jactel et al., 2012).

The federal state of Brandenburg, Germany, has been prone
to severe damages in Scots pine (Pinus sylvestris L.) stands by
defoliating forest pest insects for a long time (Figure 1). Around
75% of the forest area in Brandenburg (ca. 1,000,000 ha) is
dominated by Scots pine which, particularly in even-aged pure
stands, provides favorable feeding conditions for phytophagous
pine pest insects (PPIs). Due to the frequent occurrence of mass
outbreaks (Gräber et al., 2012), the forest protection service
responsible for the Brandenburg area has been operating a
comprehensive monitoring program for individual pest insects
tracking their population dynamics since the beginning of the
1930s. Experience has shown that mortality sharply increases if
needle losses due to feeding by PPI exceed a threshold of 90%
(Wenk and Möller, 2013). In cases of defoliation prognosis of this
dimension, selective insecticides are applied to prevent the total
loss of the affected forests and their functions. Massive feeding
damage causes major disruptions of ecosystem relations, which
in turn may lead to long-term changes of forest structure (Otto,
1994).

Three of the most important PPI more or less regularly
infesting large forest areas in northeast Germany are nun
moth (Lymantria monacha L., “Lym”), pine-tree lappet moth
(Dendrolimus pini L., “Den”), and pine saw fly (Diprion pini L.
“Dip”). Specific monitoring and counteractive algorithms have
been set up in reaction to their different biology and outbreak
behavior (Böhme and Haffelder, 1999; Hielscher and Engelmann,
2012; Möller et al., 2017). While Den and Dip are feeding
exclusively on Pinus sylvestris, Lym is a polyphagous species. Its
larvae may develop, in addition to most conifer species, on many
deciduous trees and shrubs. In the northeast German lowlands,
however, destructive mass attacks tend to be limited to pine
stands (Häußler et al., 2000; Hielscher and Engelmann, 2012).

Comparing the historical outbreaks of pine pests in the
northeast German lowlands, Gräber et al. (2012) describe a
relatively uniform frequency (8–12 years) of Lym gradations,
while mass outbreaks of Den have increased in frequency with
climate change. Dip shows a great irregularity in the timing of
gradations over the observed period 1920–2013. Ray et al. (2016)
and Schafellner and Möller (2018) described the preference of
Den for warm and dry late summer months and classified this
species as a climate-change winner. For Dip the observation of a
new unexpected and strong mass outbreak in northeast Germany
in 2016 was the reason to investigate the causal relations between
weather and population development in detail (Möller et al.,
2017).

In Brandenburg, 11 mass propagations have been documented
for Lym between 1922 and 2010 (Gräber et al., 2012). The life
cycle of the species in the region starts with the larvae developing

in their eggs already in early fall. They hibernate in this form at
the base of the tree trunks and hatch after warm periods in April
or May (Schwenke, 1978). Significant needle feeding starts with
the L2/3 stage (= second and third larval development stage) and
lasts until pupation in June. A few weeks later the imagines appear
and begin to mate; the females deposit their eggs immediately
afterward, usually in coarse bark fissures in the lower part of the
tree trunks. Warm and dry conditions, for example during the
mating period, promote individual and population development
(Zwölfer, 1935; Häußler et al., 2000).

The pine lappet moth has also been a potential threat to
Scots pine forests in the region for a long time (Schwenke,
1978). The species is more dependent on climatic triggers in the
timing of mass outbreaks than Lym, their frequency has increased
throughout the past decades (Gräber et al., 2012; Schafellner and
Möller, 2018). The first instar larvae hatch in late summer from
eggs usually deposited at needles and twigs in the pine crowns
and start to feed until the first frost events force them to climb
down and enter hibernation in the upper layers of the forest soil.
In early spring the L3/4 instars return to the crowns and resume
feeding. Pupation occurs from June to July; the adults emerge
shortly afterward and mate with each female laying up to 300 eggs
(Schwenke, 1978; Möller et al., 2007). High population densities
during mass outbreaks lead to extreme defoliation covering the
complete age range of the host trees with heavy feeding even
of juvenile plants. Additionally, caterpillars tend to consume
all green parts of the host including buds and needle sheaths
(Weckwerth, 1952; Möller and Engelmann, 2008; Schafellner and
Möller, 2018).

The life cycle of Dip is very complex and may change
from univoltine to bivoltine patterns in Brandenburg. Large-
scale defoliation events are usually coupled with bivoltine years
with the second generation feeding in fall. Massive damage and
widespread tree mortality may occur in these years because the
first generation larvae feed on needles from the previous year
and the second generation on current year needles. A detailed
description of the biology and of the frequency and consequences
of mass outbreaks is provided by Möller et al. (2017). Among the
three selected PPI, Dip seems to show the largest dependency on
climatic factors with warm and dry summer periods contributing
significantly to mass outbreak probability (Geri, 1988; Möller
et al., 2017).

Scientific analyses and practical experience have shown
that population dynamics of the PPI are partly characterized
by cyclic patterns leading to mass gradations of a more
or less stable frequency (Schwenke, 1978; Altenkirch et al.,
2002). On the other hand, the exact timing, the extent, and
the consecutive damage of outbreaks are shaped by abiotic
factors, mainly weather conditions (Möller et al., 2017). The
latter influence population dynamics directly (as favorable or
disadvantageous environments) and indirectly by affecting the
host plant (Sierpiñska, 1998; Breda et al., 2006). These indirect
effects – together with the gradation history of the respective
forest stands – shape the predisposition of trees and forests
toward mass outbreaks. The complexity of these relationships
is further aggravated by climate change processes which affect
both the physiological composition and predisposition of the
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FIGURE 1 | The federal state of Brandenburg is located in the Northeast of Germany (A). The 40,005 forest compartments (FC) in the state are shown in gray
shading (B). FC affected by PPI defoliation are filled with the color code of nun moth (Lym = red), pine-tree lappet (Den = yellow), and pine saw fly (Dip = blue).
Outbreaks of more than one species in identical FC are indicated by divergent shading (e.g., orange colors show FC affected by Lym and Den).

forests and the population dynamics of the PPI (Jactel et al.,
2012).

Against this background, there is an increasing need to
explore the causal relationships of forest pest insects’ population
dynamics to environmental drivers in order to enhance the
existing monitoring programs, to reduce insecticide treatments
to a minimum and to develop forest management strategies
accounting for biotic risk prognosis. Furthermore, the climate
sensitivity of individual pest species needs to be contrasted to the
forest development at landscape level which in turn affects the
forests’ predisposition and their quality as source of feeding and
breeding ground for these insect species and their antagonists.

This study aims to determine the most important influencing
factors controlling mass outbreaks of nun moth, pine-tree lappet
moth, and pine saw fly in Scots pine forest ecosystems. For
this purpose, we applied the “Random Forest” approach (RF;
Breiman, 2001) to an extensive database covering the forests
in the federal state of Brandenburg. Focusing on the variable
importance measures of the RF methodology, we performed a
variable selection procedure highlighting the most explanatory
variables representing climatic conditions (clim_), site properties
(site_), forest stand structure (stand_), and forest landscape
description (forest_). The variable selection process, hence,
provides a set of covariates most suited for modeling future
feeding hot spots under consideration of stand development and
climate change.

We hypothesize that (a) the PPI are sensitive to independent
climatic triggers and temporal periods within the year relating
to their particular biology. Furthermore, we propose that (b) the
preferences to particular stand structures vary for the three PPI
due to their specific adaptation to ecological (sub-) niches of pine
forest ecosystems. Based on the relevant literature and practical

experiences we assume that (c) PPI share a common preference
for warm climate and that (d) a higher tree species diversity of
the habitat is counteracting severe mass outbreaks due to the
limiting effects exerted by the higher abundance of predators and
parasitoids in such conditions.

MATERIALS AND METHODS

The database of this study was built as a comprehensive set
of ecological variables available for almost the total forest
area in Brandenburg for the years 2002–2016. This area is
subdivided into “forest compartments” (FCs), which is the
basic administrative unit of forest services in Germany. In
Brandenburg, the forest area is organized into a total number of
40,005 FC (reference year 2014). The ecological variables of these
plots were computed for different statistical metrics, weighting
factors and temporal aggregates. We generated a total of 3,748
variables in a first step and condensed our analysis to a few
variables of largely independent information at the end of the
study. All analysis steps have been performed in “R” (R Core
Team, 2014) and we used the ‘randomForest’ package (Liaw and
Wiener, 2002) stressing the most important variables of PPI mass
outbreaks.

Defoliation Assessment
Based on forest damage assessments of the years 2002–2016,
the forest protection service of Brandenburg provided feeding
statistics of the PPI for all FC affected by defoliation during
this period. The spatial distribution of the historical defoliation
areas is shown in Figure 1B. The forest area of Brandenburg is
displayed by gray shading. Around 75% of all FC feature Scots
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FIGURE 2 | Number of forest compartments (FC) affected by defoliation by Lym, Den, and Dip in Brandenburg from 2002 to 2016.

pine as the leading tree species. This amounted to an area of
approximately 750,000 ha of potential feeding ground for the
PPI. Defoliation damages were concentrated in the South of
Brandenburg except for feeding events of Lym in 2003 and of Dip
in 2005.

The terrestrial forest damage assessment in Brandenburg
includes the area and the relative intensity of defoliation and
the involved species of PPI. Feeding activities are documented
by the local foresters who are in charge of 15,000 ha forest area
on average, so defoliation events of low feeding intensity might
have been missed. Another source of inaccuracy is introduced
by airborne pesticide applications (PAs). Since PAs are restricted
to FC predicted by the state forest protection service to become
completely defoliated based on the related monitoring data and
the specific regional population dynamics, we considered those
FC as representing total defoliation. In Figure 2, the population
dynamics of the three studied PPI is illustrated by the number of
FC affected by defoliation over time.

Influencing Factors
We gathered an extensive and diverse set of potential influencing
factors partitioned into climatic conditions (clim_), site
properties (site_), stand description (stand_), and the forest
structure within a circular buffer zone of 1,000 ha (forest_). In
respect to these variable groups we computed various temporal
compositions of climatic parameters and different aggregates
of the forest characteristics based on their spatial abundance.
We thus obtained a total number of 3,748 variables. A tabular
description including an encoding scheme for the different
variable groups is presented in the Supplementary Tables 1–4.
The variable coding always starts with the acronym of the
variable group and the accessed parameter, followed by further
specification of computation routine. Important variables,
however, have been expressed verbally within this article.

Climatic Conditions (clim_)
The German Meteorological Service (DWD) provides daily
measurements of various climate parameters across a
comprehensive network of weather stations in Germany.
Köhler et al. (2015) made use of these data in a regionalization
approach providing 100 m × 100 m grids of relevant climate
data used in this study (Supplementary Table 1). Information on
potential evapotranspiration was modeled according to Penman–
Monteith (see Allen et al., 1998). Except for the precipitation
data, all parameters were simulated using a generalized additive
model (GAM; Wood and Augustin, 2002). Precipitation data
were regionalized using an ordinary Kriging approach (Bivand
et al., 2013).

According to the respective grid built by the center points of all
FC, daily climate data were summarized to temporal aggregates of
all available climatic parameters (Supplementary Table 1, second
position). Furthermore, our investigation includes intervals
attached to varying phenological dates rather than being fixed
to a specific day of the year (DOY). In consequence, we
estimated the beginning and end of crucial life stages of the
respective populations. In addition, we tested conventional
climatic windows such as annual and monthly aggregates and
averages.

Based on the close temporal synchrony between host
development and insect phenology we used the modeled day of
bud burst (BBT) for P. sylvestris according to the phenological
models developed by Menzel (2003) as an indicator of the specific
climatic conditions in a given year. Annual dates of BBT usually
vary between DOY 118 and 128 which translates to April 28
and May 8, respectively. In addition, we included periods related
to the annual dates of BBT plus 90 days (BBT+90 = FLY),
which translates to a range between July 27 and August 6,
as physiologically important time windows for pupation. This
period is particularly relevant for Dip because the species
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FIGURE 3 | Construction of temporal variables of the selected climatic parameters. In this exemplary case, the variable with the acronym “tmax_fly_m3p3_sum”
represents the sum of daily maximum temperatures in a period beginning 3 weeks prior to and terminating 3 weeks after the day of year (DOY) 90 days after
modeled bud burst (BBT) of P. sylvestris. The potential temporal range of variables is shown as weekly rectangles; the chosen time window is shaded in gray.

may switch into a bivoltine lifecycle with wasp hatching and
swarming occurring in the weeks around FLY (Möller et al.,
2017).

In relation to the phenological dates of BBT and FLY, we
created factors for periods of at least 1 week covering all possible
combinations of weeks before and after the respective dates,
starting 28 days before and ending 28 days after BBT and FLY
(see Figure 3 for a visual example).

Site Properties (site_)
Similarly to the climate data, the “DSS-RiskMan” project
provided regionalized raster data of basic site properties in
100 m × 100 m grids. Covariates for the regionalization process
originated from geological and edaphic maps, a digital elevation
model, long-term climate data, and information about the
present forest types (Riek and Russ, 2014; Russ, 2015). Digital soil
mapping (e.g., McBratney et al., 2003) was applied providing soil
types and soil properties for the usage of appropriate pedotransfer
functions (Renger et al., 2009).

Basic soil characteristics were introduced into the analyses
as nutrient supply (nv_), actual field capacity (afc_), and plant
available soil water (aws_). The latter parameter represents for the
present forest type and the specific rooting depth. Furthermore,
the long-term evapotranspiration rate (pet_) of the site has
been computed according to Penman–Monteith model (see Allen
et al., 1998) and a 30-year average of the respective climatic input
variables. Considering the present forest type and the degree of
stocking resulted in the long-term actual evapotranspiration rate
(aet_) (Supplementary Table 2).

Stand Description (stand_)
Based on the state forestry inventory, each forest stand in
Brandenburg should be gauged in a regular 5–10 years rotation
by the angle-count sampling method. Basic stand information
about, e.g., basal area and timber stock separated by tree species
and stand layer are gathered in the Brandenburg forest database
“DSW2” which is updated annually with data covering forest
growth, forest management activities, and calamity events.

Unfortunately, the support of the “DSW2” database has
been suspended by non-governmental forest owners since 2007.
Hence, as of 2008, for around 73% of the forest stands in
Brandenburg (i.e., the share of non-state owned forests) data are
available only for mean age, diameter, height, and site index of

the present tree species and layers. For these stands, we used
yield-table references for pure forest stands in Brandenburg to
estimate basal area (m2 ha−1) and standing timber volume (m3

ha−1). If information about stand density was missing, estimates
of the basic stand parameters had to be assigned to fully stocked
stands (stand density index = 1.0) introducing a not-quantifiable
bias about the actual basal areas and forest stocks. This data
completion was nonetheless necessary to target mass outbreak
events of PPI on landscape level in consideration of the spatial
correlation between feeding events and forest properties.

An additional step of data homogenization was necessary
because this study focused on the level of the FC and not on
the individual forest stands. Since the FC may contain up to
20 smaller management units and forest stands (Figure 4A), we
had to aggregate individual stand data into a unique “average”
description of the FC (stand_). All considered stand parameters
have been weighted by the relative contribution of all forest
stands within the FC. Stand parameters and weighting factors are
probably biased due to differences in coverage and quality of the
forest inventory data. We nevertheless suggest that the general
distribution and abundance of forest characteristics within the
FC can be preserved and that important influencing factors of
PPI rather depend on the forest area properties on a larger scale
rather than on detailed single stand properties.

In order to reduce the loss of information within the
aggregation process, all stand_ variables were calculated for
different tree types (angiosperms and gymnosperms) and tree
species (pine and oak) additionally. We also computed the
relative proportion of the forest area stocked by different mixture
types, tree layers, and age classes. Two additional diversity indices
(Shannon and Weaver, 1949; Simpson, 1949) were included
which focus on the relative abundance of the respective tree
species.

The aggregation of the forest inventory data resulted in
910 variables comprising the arithmetic means and standard
deviations of classical stand parameters as well as forest area
proportions and forest mixture types at the FC level. The
encoding of the considered stand_ variables can be found in
Supplementary Tables 3, 4.

Forest Structure (forest_)
In order to provide additional information about the neighboring
forest stands and the surrounding of the individual FC, the
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FIGURE 4 | Example of a FC (No. 8) subdivided into sub-compartments (a, b), sub-areas (1–5, 1–2) and management units which may contain several forest stands
(A). Individual stand properties are averaged to describe the “stand_” properties of each FC. (B) Forest compartment (yellow) with buffer circle of 1,000 ha (blue)
analyzed to derive the forest_ properties.

computation routines developed for stand_ variables were
adapted for circular buffer zone covering approximately 1,000 ha
(Figure 4B). Each FC intersecting a circle with 1,784 m radius
around the center of the focus FC was included in the calculation
of respective forest_ variables. Except for the separation for pine
and oak stands, Supplementary Tables 3, 4 have been applied
accordingly. The pre-processing resulted in 560 forest_ variables
summarizing the forest inventory data of several hundred stands
for one buffer zone.

Variable Importance
In order to detect the most explanatory variables on the
presence of a defoliation event, we applied the RF approach
for classification problems introduced by Breiman (2001). Its
integrated variable importance measure provides a ranking of
the variables according to their explanatory power (see Calle
and Urrea, 2011). In fact, the RF has been stated to be the best
classifier in comparison to a total number of 179 classifiers tested
for “Average Accuracy” and “Friedman Ranking” (Fernández-
Delgado et al., 2014).

We used the ‘tuneRF’ function implemented in the
‘randomForest’ package (Liaw and Wiener, 2002) for
determination of the optimal number of predictors used
for the random variable selection in the construction of the
individual decision trees. Our default setting comprised of 1,000
decision trees. All RF were trained by a balanced training data
set (see Chen et al., 2004). The validation on the classification
performance, however, has been carried out by a 10-fold cross-
validation (see Rodríguez et al., 2010) for classification of the
entire data set (40,005 observations per year).

In a first step, we studied the variable importance of the
individual variable groups and to eliminate non-important

and highly correlated variables from the groups. Therefore we
constructed three RF according to the three variable groups
clim_, stand_, and forest_ (RFclim, RFstand, RFforest). The site_
variables were considered in a later step. After computation
of the average “mean decrease Gini” (MDG) based on the
10-fold cross-validation process (RF trained with 90% of the
database and tested against the remaining 10%), we excluded
variables of small importance as detected by falling below the
standard deviation of the average MDG. We also excluded highly
correlated variables (Spearman’s rho > 0.9) in an iterative way
keeping only the top-ranked variable. This was done although (as
shown by Genuer et al., 2010) the relative importance between
two variable groups could be preserved and important variables
could be distinguished reliably from noise even for a high number
of correlated variables. In our case, the applied pre-selection
of important and “poorly” correlated variables should preserve
the most important variables regardless of redundant data as
introduced by variable generation.

In a second step, we analyzed the variable importance for
mixed variable groups by means of an additional RF (RFall) based
on the reduced variable sets and the site_ variables. All previous
steps of cross-validation, ranking, and variable elimination were
repeated accordingly. This step was performed in order to further
distinguish between the variable importance of different variable
groups.

As an alternative approach we further eliminated highly
correlated variables and condensed the available information to
a small set of influencing factors of PPI. This was done in order
to obtain a reduced variable set for both interpretation and
prediction issues. Therefore, we applied the variable elimination
process described by Genuer et al. (2015) on the same data as
for RFall. In contrast to the former approach, we here included
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the geographic coordinates (x = easting, y = northing; UTM
ETRS89) of the FC in order to account for the spatial distribution
of the feeding plots. Ordered by rank according to “mean
decrease accuracy” (MDA), the algorithm inserted the variables
step-wise into a nested model for classification. Variables are
thus kept or eliminated from the nested model according to a
threshold of the minimum error gain relating to the “out-of-
bag” error (OOB). The threshold was calculated by the mean
of the first-order differentiated OOB errors (see Genuer et al.,
2015). Using the ‘VSURF’ package (Genuer et al., 2015), we
provided an additional variable selection suggested for prediction
(RFVSURF).

RESULTS

The figures documenting the importance of the analyzed
parameters use different colors for each of the studied pest insects
(Lym = red, Den = yellow, Dip = blue). The encoding of the
variable names can be found in the supplementary material and
is also verbally expressed throughout the following passages. We
compared the performance of the RF approaches on different
variable selections and obtained the most important variables
classifying non-defoliated (y = 0) and defoliated (y = 1) FC.

The five RF approaches strongly differed in the number of
variables used (nvar) but showed a generally high hit ratio of the
defoliation observations (TNR) with at least 70% and an even
higher hit ratio of the non-defoliation observations (TPR) with
at least 86% (Table 1). RFVSURF applied only a small number of
variables and obtained a very high TNR of at least 94%. This is
partly due to the slightly different methodology behind RFVSURF
which uses MDA as importance measure minimizing the loss of
accuracy in the variable elimination process.

In the case of RFclim, observations of non-defoliated FC
(ny = 0) were limited to FC that experienced defoliation by
the particular PPI at least once within the observation period,
whereas the other RF approaches considered observations of all
FC. Thus, RFclim referred to a different data set focusing on the
temporal occurrence of defoliation in relation to the respective
climatic conditions rather than on the spatial distribution of
the defoliation events. The statistical results were not directly
comparable with the other RF approaches. Furthermore, RFclim
used by far the highest number of variables. This first step of
analysis has been performed to (a) preselect the most important
time windows and climatic drivers (Supplementary Table 1), and
(b) to identify the best explaining structural variables based on
different weightings and spatial aggregations of forest inventory
data (Supplementary Tables 3, 4).

The 10-fold cross-validation process obtained a generally high
performance of the applied RF classification. The last column of
Table 1 shows the OOB calculated within the training procedure
of the RF, whereas TPR and TNR of the classification resulted
from the prediction on the entire forest area in Brandenburg. The
poorest results were obtained for classifications based on stand
variables exceeding an OOB of 10%. Except for RFclim focusing on
the temporal occurrence of defoliation events and a reduced set of
observations (see above), the lowest error rates were observed for

TABLE 1 | Input data and statistical output according to the five different RF
approaches investigating the variable importance toward the feeding events of
three PPI.

PPI ny =0 ny = 1 nvar TPR TNR OOB

RFclim Lym 70269 8443 2264 98% 80% 3.80%

Den 49501 4428 2264 99% 89% 1.60%

Dip 8527 797 2264 96% 98% 3.60%

RFstand Lym 515854 7642 910 86% 79% 14.00%

Den 517636 2800 910 87% 82% 13.10%

Dip 519664 772 910 89% 70% 11.50%

RFforest Lym 515854 7642 560 92% 93% 8.20%

Den 520647 2849 560 93% 94% 7.20%

Dip 522690 806 560 96% 92% 3.60%

RFall Lym 502663 7896 195 95% 97% 5.00%

Den 506484 4075 182 97% 98% 3.00%

Dip 510727 768 192 99% 98% 1.40%

RFVSURF Lym 502663 7896 29 97% 94% 5.60%

Den 506484 4075 14 99% 96% 3.60%

Dip 510727 768 8 99% 96% 3.60%

The number of observations of non-defoliated FC (ny = 0) and defoliated FC (ny = 1)
for the particular PPI may vary due to the occurrence (and exclusion) of missing
values depending on the variable selection. The number of variables processed
(nvar) varied between RF approaches. The particular model accuracy is shown by
the true positive rate (TPR), the true negative rate (TNR), and the out-of-bag error
(OOB).

the combined variable set excluding highly correlated variables
within one group (RFall). Both TPR and TNR showed the best
results for Dip with 99% and 98% and the poorest results for Lym
with 95% and 97%, respectively.

The variable importance of the first four RF approaches was
determined by the arithmetic mean of the variable ranks based
on the MDG measures of the 10-fold cross-validation process. To
better illustrate the most important variables, we present only the
top-30 ranked variables of RFall (Figure 5). Similar illustrations
showing the results for the different variable groups including
highly correlated variables can be found in the Supplementary
Figures 1–3.

The most important variables of the three PPI originated from
the variable groups clim_ and forest_ (Figure 5). For Dip, 29 of
30 variables originated from clim_. In contrast, the top ranked
variables for Lym and Den originated from the forest_ group
followed by clim_ variables. The stand_ variables never occurred
within the top 30. One site_ variable, the mean long-term
potential evapotranspiration per FC (site_pet_mean), appeared
at rank 30 in the results for Lym. For all three PPI the standard
deviation of the ranking increased with lower ranks.

According to Figure 5, the top three variables of Lym were
expressed by the mean diameter and height of all forest stands
within 1,000 ha exclusively calculated for the upper layer of
the forest stands, and the Shannon index calculated by the
relative tree species composition. For Den, the top three were
the Shannon index, the relative site factor of gymnosperms,
and the standardized Shannon index within 1,000 ha. In the
case of Dip the three most important factors were the standard
deviation of the sun duration in August, the average minimum
temperature of the first week of the flight period, and the standard
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FIGURE 5 | Top 30 ranks of the RFall variables based on MDG. The three figures show the arithmetic mean and the standard deviation over the individual rankings
within the 10-fold cross-validation process. Note that the data set of RFall was cleansed of variables of low importance or high correlation (see the Section “Variable
Importance”).

deviation of daily maximum temperatures 1 week before BBT of
pine.

For a fully automatic variable selection, we additionally
applied the VSURF algorithm (see above, Genuer et al., 2015).
The final models of this approach (RFVSURF) contained 29
variables suitable for predictions of Lym classification, 14
variables for Den, and 8 variables for Dip (Table 2).

The inclusion of the x–y-coordinates of the individual FC into
our analyses exhibited a high predictive power of the latitude
(see Figure 1B) and, respectively, a high variable importance
(Table 2). Thus, the coordinates seem to be important variables
for prediction purposes and, in turn, for the variable selection
process of RFVSURF . In contrast to variable importance based
on MDG (Figure 5), the VSURF algorithms predominantly
selected variables from clim_ for all PPI. Furthermore, there
is an obvious shift in the ranking of (VSURF-) MDA variable
importance compared to the MDG measure of RFall (e.g., for
Dip, clim_tmax_pm05_sd switched from seventh to first rank; see
Figure 5 and Table 2).

The analyses produced the simplest RFVSURF model for Dip.
The selected climatic variables are predominantly expressed by

standard deviation (_sd) or maximum measures (_max). Almost
twice the number of variables entered the RFVSURF model for
Den. The Shannon index was the sole variable of the forest_
variable group. The sum of the maximum temperature 3 weeks
before and 3 weeks after flight date appeared as second-ranked
variable for Den. All other variables originated from the group
derived from the number of sun hours. Standard deviations of
sun_ within the current year appeared at third rank, whereas
the following ranks were taken up by climate aggregates of
the previous year. Similar to Lym, the y-coordinate was the
most important variable predicting defoliation of Den. The next
important variables for Lym were the arithmetic mean and the
median of the height of the upper layer of all forest stands within
1,000 ha. The first three climate variables of Lym expressed the
standard deviation of previous-year climate data. The climate
conditions of the current year were represented by the sum of
the vapor pressure of the first week after BBT. Another important
forest_ variable was the frequency of pure (monospecific) stands
within 1,000 ha.

In order to highlight the most influential climate variables
for the three PPI we compared the top ranked variables
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TABLE 2 | Variable selection of the three PPI based on the VSURF algorithm
(RFVSURF) and variable ranks according to the MDA importance measure.

Rank Lym Den Dip

1 site_ycoo site_ycoo clim_tmax_
pm05_sd

2 forest_hei_all_ul
_ba_median

clim_tmax_fly
_m3p3_sum

clim_
sun_m08_sd

3 forest_hei_all_ul
_ba_mean

clim_sun_yr_sd clim_sun
_m02_max

4 clim_tmax_pm09_sd clim_sun_pm05
_mean

site_ycoo

5 clim_pet_pbbt
_p3_sd

clim_sun
_pm07_max

clim_
vp_m07_max

6 clim_vp_
pm04_sd

clim_sun_pm04_max clim_tmin_fly
_m3p3_mean

7 clim_vp_bbt_p1_sum clim_sun_pyr_sd clim_
tmin_m09_sum

8 forest_freq_mix1 forest_div_sw_i clim_tmin
_pm06_max

9 clim_sun_
pm07_max

clim_sun_pm04_sum

10 clim_tmax_pm01_sd clim_sun_pm04_mean

11 clim_sun_m04_max clim_sun_pgs_max

12 clim_vp_m04_sd clim_sun_m06_max

13 clim_tmean_pm01_sd site_xcoo

14 clim_vp_pm02_sd clim_sun_m02_mean

15 clim_tmean_pgs_min

16 clim_sun_gs_sd

17 clim_rain_bbt_m1_mean

18 forest_dbh_all
_al_aa_mean

19 clim_rain_m10_sd

20 clim_sun_pgs_sd

21 clim_tmin_pm04_sd

22 clim_vp_pfly_m1p1_sd

23 clim_sun_pyr_sd

24 clim_sun_m04_sd

25 clim_sun_m09_mean

26 site_pet_mean

27 clim_sun_m09_sd

28 clim_vp_pbbt_p2_mean

29 clim_rain_m02_max

achieved for prediction (RFVSURF) and interpretation (RFclim).
The latter approach considered only climate data of FC that
had experienced at least one defoliation event within the last
15 years. We thus suppose that the RFclim variable importance
was predominantly driven by variables contrasting the individual
years rather than reflecting the spatial distribution of the FC.

As an example for this approach, Figure 6 shows an
annual boxplot representation of the three most important
climate variables of Lym (see Table 2 and Supplementary
Figure 1). Similar figures for Den and Dip can be found in the
Supplementary Figures 4, 5. Note that the supplementary figures
of variable ranking contain highly correlated variables, which
were not considered for the selection of the top-ranked variables
(see the Section “Variable Importance”).

Except for the first ranked RFclim variable, the most important
climate variables of Lym referred to previous-year climatic
conditions (Supplementary Figure 1). RFVSURF variables were
expressed by the standard deviation (Table 2), whereas RFclim
showed measures of the arithmetic mean in the first and third
ranked variables. In mass-outbreak years (gray bars), the selected
variables frequently showed higher values compared to the mean
level of all years (Figure 6). The outbreak years are marked
by high mean sun duration in the first 2 weeks of the flight
period of the actual year (RFclim first variable) and high mean
vapor pressure in the first 3 weeks after BBT in the previous
year (RFclim third variable). The second variable represents a
high standard deviation of the maximum temperature of previous
January. In RFVSURF , the top three variables of Lym outbreak
years are characterized by a high standard deviation of maximum
temperature of previous September, potential evapotranspiration
3 weeks after BBT of the previous year, and vapor pressure in
previous April.

Summarizing the results of Den and Dip (Supplementary
Figures 4, 5), we obtained a much clearer separation of mass
outbreak years from the other years for the top three climate
variables for Dip than for Den. In RFVSURF , the top three
variables of Den outbreak years were related to a high (maximum)
temperature sum 3 weeks before and after FLY, a low deviation
of the sun duration in the previous year, and a low mean of
the sun duration in May of the previous year. In RFclim, the top
three variables are characterized by high means of the maximum
temperature in the first week of the flight period and of the
vapor pressure 3 weeks before and 3 weeks after previous FLY,
and by a low maximum of the daily sun duration in previous
July. In RFVSURF , the top three variables of Dip outbreak years
showed a low standard deviation of the maximum temperature
of previous May, a high standard deviation of the sun duration
in August, and a low maximum of the sun duration in February.
In RFclim, the top three variables are related to a high sum of the
potential evapotranspiration in the 2 weeks after previous FLY,
a low maximum of the minimum temperature of previous June,
and a low sum of the minimum temperature in the first week after
FLY.

The top ranked forest_ variables allowed a clear differentiation
of defoliated FC. In the example of Den (Figure 7), we observed
a maximum value of the Shannon evenness of 0.6 for the
defoliated FC (Figure 7A). The highest density of defoliated FC
was reached for values from 0.16 to 0.18, whereas the distribution
of Brandenburg showed highest densities of FC between 0.26
and 0.64. In accordance with a comparably low diversity and
evenness, defoliated FC also showed a high proportion of
gymnosperm forest stands with a minimum of 0.6. The most
frequent mean-dbh classes in the defoliated FC were significantly
lower than in the total of all FC (Figure 7B).

Similar relations could be found for Lym and Dip showing
clearly different peaks for the respective variable classes of RFforest
(Supplementary Figures 6, 7). We obtained a comparable value
range of the respective forest_ variables, e.g., for basal-area
weighted mean diameter of the upper layer within 1,000 ha
(Supplementary Figures 6A, 7A). For all PPI, defoliated FC were
characterized by rather small tree dimensions associated with a
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FIGURE 6 | Boxplot representation of the annual distribution of the top three climate variables for Lym as suggested by RFVSURF (Left) and RFclim (Right). Mass
outbreak years are indicated by gray background coloring.

stand age between 40 and 70 years, a low diversity as indicated by
a low Shannon index or Shannon evenness, and a high proportion
of gymnosperms, i.e., Scots pine stands.

Although no stand_ variables were observed among the most
important variables for classification of PPI mass outbreaks
(Figure 5), a comparable differentiation of the defoliated FC from
the distribution of all FC in Brandenburg was registered. As an
example the mean number of tree species per hectare was lower
(Figure 8A) and mean relative site index of pine stands was
higher (Figure 8B) for PPI defoliated FC compared to the total
of all FC in the state.

DISCUSSION

Random Forest Variable Selection
We obtained a great performance of the RF algorithms handling
huge databases of different PPIs. The settings for the RF and the

applied methods proved to have a high accuracy in classification
(Table 1). Even the sharply reduced sets of predictor variables
selected by the VSURF algorithm (RFVSURF) obtained remarkably
high rates of correct prediction (TNR) for more than 90% of
the forest compartments defoliated by the three investigated
PPI species. TNR results comparable to RFVSURF were found
for RFforest and RFall using around 500 and 200 variables,
respectively, whereas classification by RFstand was somewhat
poorer.

The achieved high model accuracy is a result of large
amounts of information representing manifold causal relations,
but also of the constitution of the analyzed databases. Due to
the characteristic spatial distribution of the defoliation events
in Brandenburg, the RF algorithms search for variables that
optimally separate defoliation hotspots from other regions. We
started our analysis with a set of climatic variables that consider
varying time windows from two subsequent years, so various data
patterns are provided to describe both the observation period
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FIGURE 7 | Example of two important forest_ variables for Den represented by the density distribution of the mean Shannon evenness (A) and the mean basal-area
weighted stand diameter at breast height of all upper forest layers within the 1,000 ha buffer zone (B). Black bars show the distributions for all FC in Brandenburg,
yellow bars show the distributions for defoliated FC only.

of 15 years (Figure 2) and the spatial distribution (Figure 1B).
Therefore, variable importance measures may identify a random
data pattern rather than causal relationships to produce the most
appropriate classification of the analyzed information.

Nevertheless, the extension of the analysis to a huge number
of variables may firstly help to characterize past defoliation of
mass outbreaks and is secondly essential for providing promising
variable sets which describe reliable ecological relationships.
Floating time windows, in particular, may provide hints on
critical periods of the year that impact the development of
mass outbreaks and feeding intensity (Möller et al., 2017).
Furthermore, the identified climatic factors may impact the
population dynamic on pest insects either directly (Netherer
and Schopf, 2010) or via the physiological response of the host
plant (Lindner et al., 2014). In addition, important climatic
variables may represent both critical phases in the population
dynamics of the species’ natural antagonists and physiologically
important periods according to particular biological needs
(Chaves et al., 2003). Archaux and Wolters (2006) described
the general impact of summer drought on forest biodiversity
with decreased ecosystem productivity and increased mortality.
The response to these extreme conditions depends on mobility,
reproductive rate, or resistance mechanisms of the respective
species. The consequences of climate change for the mostly host-
specific natural antagonists of Den, Lym, and Dip are still largely
unknown.

A critical remark has to be made on data availability:
During the analyzed time covering 15 years of spatially
referenced data we observed only two or three mass outbreaks,
respectively (Figure 2). Depending on the pest species, mass
outbreaks covered 1–3 years of defoliation in up to 2,000

forest compartments per year (Figure 2). The population
dynamics of most forest pest insects follows a more or less
fixed pattern for mass propagation with wave-shaped climax
phases covering several years (Schwenke, 1978; Baltensweiler
and Rubli, 1999; Hlásny et al., 2016). For example, mass
outbreak periods of Lym occurred about every 10 years in
Brandenburg. In the later years of these gradation cycles, the
effect of the specific climatic triggers might become blurred
by the effects of the initial population size in the previous
year, even more so if feeding intensity is neglected as an
influencing factor. In our analysis, we considered all defoliation
classes as dichotomous “on-off” cases and thus accessed the
maximal number of observations available. An exclusive focus on
total defoliation (needle loss > 90%) events or the observation
of specific phases of the population dynamic might further
promote the identification of factors that trigger the onset
of an outbreak cycle. In fact, the highest impact of the
climatic conditions should be found before or during the first
(“progradation”) phase of mass outbreaks directly preceding
a steep increase in population size. This narrowed approach,
however, would be constrained by a severe reduction in data
availability.

Data quality heavily depends on the origin of the particular
parameters. The reliability of the regionalized environmental
data (clim_ and site_) is limited by the uncertainties of the
particular model application (Russ and Riek, 2011; Köhler et al.,
2015). The core data used for stand_ and forest_ characterization,
in contrast, originated from forest inventory data with a re-
sampling rotation of 10 years that are corrected by annual
harvest and mortality data provided by the local forest managers.
Information from this background introduces an additional
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FIGURE 8 | Distributions of two important stand_ variables shown as boxplots of (A) the relative number of tree species per hectare and (B) the mean relative site
index of pine stands within a FC. The baseline shows all data (BB) whereas PPI boxplots were calculated for FC defoliated by Lym, Den, and Dip, respectively.

level of uncertainty due to the potential subjective errors and
temporally incoherent observation standards.

Since this study aimed to provide the most important
explanatory variables for PPI defoliation inherent in the database,
we computed different metrics of spatial and temporal data
subsets for each set of parameters. While clim_ variables
primarily explain the temporal appearance of PPI mass
outbreaks, stand_ and forest_ variables should have a high impact
on the spatial distribution of defoliation hotspots. Top variables
of both variable groups clearly differentiated the continuum of
forests attacked by PPI and the forest population of the whole
study area (Figures 7, 8). On the landscape level, however, forest_
variables have proved to be most influential for classification and
substituted stand_ variables in both variable selection approaches
RFall and RFVSURF (Figure 5 and Table 2).

We suggest that both compared variable importance measures
(MDG and MDA) reliably select the variables that best represent
the spatial distribution of PPI feeding events. The particular
realizations of these variables deliver detailed information on
the insects’ ecological niche and, in turn, on the most likely
feeding hotspots. However, the importance of clim_ variables
largely depends on the particular setting of the RF, and the

MDA measure might be misleading in some cases. In fact, the
selection of standard deviation and maximum or minimum
values (Table 2) may lead to the best representation of the pattern
within the examined database without plausible biological links
to the population dynamics of PPI. We also suppose that the
consideration of climate data from all forest stands in the RF
setting (RFall and RFVSURF) introduces additional noise to the
temporal trend due to the spatial pattern of the climate data from
specific years. Therefore, we suggest the application of RFclim to
interpret climatic triggers and crucial periods of the year. Despite
of manifold uncertainties and shortcomings in the observation
data and methodological details we are nevertheless confident
about the quality of the primary sets of influencing factors for the
three PPI. The selection of the climate variables, however, has to
be evaluated by the years to come which will test the robustness
of the respective parameters.

Finally, we were able to analyze a huge data set by different
approaches using the RF algorithms implemented in “R” and
obtained a reliable variable selection. We suggest that the quality
of the variable importance measure might be restricted rather by
the sample size and the timeframe available than by technical
issues. Nevertheless, some methodological issues resulting from
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a high number of correlated variables (see Genuer et al., 2010)
and strongly unbalanced data (see Chen et al., 2004) have to be
considered. We recommend to spend more effort on database
management providing continuous information on the predictive
variables and to use the RF algorithms to detect changes in
the data patterns as well as in the importance of ecological
variables.

Ecological Relevance of Identified
Classification Variables
The results achieved by the RF analyses are closely consistent
with the known species-specific gradation patterns and their
changes in the recent past. If a species exhibits a strong
temporal regularity in the frequency of mass outbreaks, a
tight dependence between population dynamics and the stand
conditions (which remain more or less constant over a long
time) has to be assumed. Consequently, the irregularity of mass
outbreak patterns increases with a rising importance of climatic
variables. Our findings indeed revealed a strong dependency of
Dip mass outbreaks on climatic drivers (Figure 5 and Table 2)
which complies with the importance of the bivoltine lifecycle
of Dip in Brandenburg and its close coupling to the climatic
conditions of the current and the previous year (Möller et al.,
2017). In contrast, Lym showed a higher variable importance
for parameters of the forest_ variable group and a rather strong
temporal regularity of outbreak events (Gräber et al., 2012).

Outbreak patterns and practical experiences have influenced
the monitoring methods in forestry for a long time (e.g.,
Schwerdtfeger, 1934, 1981; Wellenstein, 1942; Sierpiñska, 1998;
Häußler et al., 2000). The results of our investigations can help
to further improve the forecast of timing and intensity of mass
outbreaks and to adapt the respective methods to a changing
environment. A reliable prognosis of the amplitude during the
outbreak culmination, i.e., the infestation area and the intensity of
needle loss to be expected, in dependence on the floating climatic
windows could provide important essentials for evaluating and
enhancing the current monitoring methods.

The obtained results on critical climatic factors correspond
closely both with findings published by forest entomologists
more than 100 years ago (e.g., Altum, 1881; Zwölfer, 1935) and
with observations made by forest practitioners. A comparison
of the found important climatic windows with the individual
development of the species shows that there are a number of
biologically plausible explanations for the statistical outcome.
The three investigated pine pest species share a common
preference for middle-aged, poorly structured pine forests. The
successful development of mass gradations, however, depends
on different critical climatic phases of the year relating to their
specific life cycles.

Lymantria monacha
In accordance with other forest moths, it is widely accepted that
Lym is highly sensitive toward temperature and prefers warm
conditions. Vanhanen et al. (2007) suggested a northward shift
of the range of Lym in the future triggered by warming climate
conditions. Our study revealed some important climatic windows
which strongly influence the development of this species.

The amplitude of an outbreak’s culmination in terms of
feeding damage depends heavily on the conditions in the
initial phase of the outbreak. Increased sunshine hours during
September of the previous year (clim_tmax_pm09_sd) have a
positive effect on the severity of feeding. Zwölfer (1935), for
example, observed high mortality rates in Lym eggs if they
cannot finish their embryonal development in autumn due
to detrimental weather. The egg stage shows three phases.
The first phase is the highly temperature-dependent embryonic
development of 2 up to 6 weeks following oviposition. The
second phase is a hereditary development dormancy lasting for
another 10 weeks; the third and last phase is winter rest due to
low temperatures (Schwenke, 1978). Our findings emphasize the
importance of the second phase for the survival of the young larva
hibernating inside the egg.

The dominant influence of temperature on egg and larval
development is further confirmed by the high rank of variation
in average temperatures in January of the previous year
(clim_tmean_pm01_sd). Winter conditions determine an insect’s
energy balance in a fundamental way. Temperature is an
essential factor for egg and larvae metabolism even if other
factors such as ambient moisture, nutrition status, or biotic
opponents may also heavily influence dormancy regulation
(Müller, 1992). A low mortality pressure on the parent
generation caused by conditions favorable for the development
during winter dormancy, for example, increases population
density which in turn could lead to a mass outbreak in
the next year (Wellenstein, 1942). The importance of vapor
pressure in April of the previous year (clim_vp_pm04_sd)
is related to the fact that intense drought periods can lead
to raised egg mortality caused by desiccation (Wellenstein,
1942). This is one reason why egg vitality in winter should be
investigated to further specify the forecast of feeding damage by
Lym.

The effects of forest structure on the occurrence of mass
outbreaks and defoliation were most significant for Lym as
compared to Den and Dip. The largest and most severe Lym
gradations commonly occur in pure conifer stands (Altum, 1881;
Schwenke, 1978) with the highest proportion of defoliated pine
stands located in forests with a dbh range of 20–24 cm for the
dominant trees (Supplementary Figure 6). Similar results were
found at the level of the individual forest compartments (stand_
variables) but are not shown here due to a lower explanatory
power of this variable group compared to the forest_ variables.
The high rank of the variable forest_div_sw_e, the standardized
Shannon-Weaver index averaged over the 1,000-ha buffer area,
proves that increasing tree species diversity reduces the risk of
mass outbreaks. Experiences from forestry practice and from the
monitoring system also show that Lym outbreaks often start in
large areas covered by pure pine stands, which are inherently poor
in structure and productivity (Figures 7A,B).

In Brandenburg, Lym has been characterized as the most
important PPI responsible for widespreading defoliation of pine
forests in the past (Gräber et al., 2012). Obviously, warm and
dry conditions promote mass outbreaks of Lym as shown by
the huge number of defoliated FC in 2003 (Figure 2). Once a
mass gradation has successfully begun, however, high population
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densities seem to uncouple infestation from climate and severe
defoliation can be expected in the following year. The large
proportion of pure pine stands in Brandenburg represents
favorable stand conditions for Lym supporting the observed
temporal regularity of mass outbreaks. While stand structures
alter with time and may be improved by forest management
activities that increase the number of mixed and deciduous
forest stands, climate change may again raise the biotic risk
of defoliation. In addition, Lym might be quite adaptable to
changes in the forest structure due to its polyphagous nature.
Thus, future feeding events should be analyzed for changes in the
feeding preferences of Lym and characterization of forest stands’
predisposition.

Dendrolimus pini
The pine-tree lappet moth’s feeding preferences for middle-aged
pure pine stands are similar to those of the nun moth as shown
by the variable ranking of the forest_ variables (Figures 5, 8B).
In fact, mass outbreaks of Den frequently follow the observed
outbreaks of Lym (Figure 2) in almost the same infestation
areas (see Figure 1B, where orange-colored FC indicate Den
and Lim outbreaks in identical FC with yellow representing
Den and red color representing Lim). Thus, Den is a harmful
forest pest in Brandenburg feeding on already weakened pine
stands. Furthermore, the heavy defoliation of juvenile plants
associated with this species may lead to the decline of the entire
forest. Similar to Lym, the pine-tree lappet moth prefers warm
conditions suggesting an increasing risk of defoliation in the
future.

The duration of sunshine during May of the previous
year (Figure 5: clim_sun_pm_05_mean), for instance, is
highly relevant for the classification of Den feeding events.
More sunshine is related to higher temperature and less
precipitation. Under these conditions the feeding intensity of
the poikilothermic caterpillars increases, and a better vitality of
the larvae can be assumed. The pupae stage will be reached
earlier and the probability that larval parasitoids find their host
is reduced. Additionally, faster growth increases the possibility
that eggs of Tachinidae will slip off during host molting before
penetration (Herting, 1960). Some Tachinid species lay their eggs
on pine needles and after hatching the egg larvae must “wait”
for host caterpillars. It can also be expected that hot and dry
conditions shorten the life span of the parasitoids’ eggs and
especially the egg larvae. In consequence, a sunny May promotes
both a high vitality of Den and a reduced biological control by
parasitoids.

Warm and dry conditions in late summer during the flight,
copulation, and egg deposition phase as reflected by the variable
clim_tmax_fly_m2p2_mean (Figure 5) further promote a high
population density of Den (Weckwerth, 1952; Majunke, 2000; Ray
et al., 2016). Sunshine during September (clim_sun_pm_09_sd)
is positive for the development of the thermophilic egg larvae
that represent the most sensitive development stage of the insect’s
life cycle. Because the development of Den starts in one summer
and ends after overwintering as caterpillar in the next one,
it is biologically plausible that data of the previous year are
statistically important for classifying population dynamics.

The effect of maximal temperature in October (Figure 5:
clim_tmax_m10_sum) is also coherent with individual
development requirements: During the last feeding period
before hibernation the feeding intensity of the caterpillars
is predominantly controlled by temperature. The amount of
energy reserves deposited as storage proteins and lipid bodies
(Levenbook, 1985) determines individual fitness (Kätzel and
Möller, 1993) and is crucially important for survival during
winter and the power to climb up the tree in spring.

The identification of sunshine duration in February (Figure 5:
clim_sun_m02-mean) as a significant climatic window is quite
interesting. The caterpillars of Den hibernate as L3 or L4 in
the soil layer, and soil temperature determines the start of
their climbing up the tree at the end of winter. At 1◦C the
caterpillars start to leave the soil, while at 6◦C this process
is culminating (Schwenke, 1978). In pine stands, the influence
of sunshine on soil temperature is high because reflection and
diffusion of incoming radiation by the crowns are comparably
weak (Larcher, 1987). Leaving the soil earlier under favorable
climatic conditions can significantly increase the survival rate for
caterpillars because their overwintering in the soil is associated
with numerous risks. These comprise natural enemies such as
wild boar, mice, and entomophagous fungi, but also soil moisture
promoting mortality by bacteria or fungi. Altum (1881) wrote
that warm southeastern winds and low air humidity promote the
process of ending hibernation. This knowledge is used in forest
protection practice to start monitoring the climbing animals by
estimating the number of larvae per crown at the right moment.
This approach has proved to be an effective method to forecast
Den feeding risks.

Diprion pini
In Brandenburg, mass outbreaks of Dip including widespreading
defoliation events in the past were coupled to a bivoltine
life cycle and second generation larvae feeding on needles
(Möller et al., 2017). Since a successful development of two
generations within 1 year depends on different critical phases
for the respective development stages, mass outbreaks were
predominatly controlled by climatic drivers. In contrast to Lym
and Den, massive defoliation by Dip could almost exclusively
be explained by climate variables (Figure 5 and Table 2). We
also observed a slightly higher variance of the forest_ parameters
(e.g., the mean diameter of the upper stand layer) for FC
defoliated by Dip in comparison to Lym and Den (Figure 7B and
Supplementrary Figures 6, 7). We thus suggest that if the climatic
conditions favor a change to bivoltine reproduction, the quality
of the host needles might be less important and Dip may affect a
broader range of forest structures.

The monophaguous Dip is restricted to pine forests and
population density is influenced by the quality of the feeding
and breeding ground, even if forest_ and stand_ variables in
our study have only minor explanatory power. For example, and
also based on RF methods, Blomqvist et al. (2016) found lichen
and lingonberry coverages to be the best predictors for cocoon
mortality of Dip in Finland. Coverage densities were negatively
correlated with mean defoliation intensity. Unfortunately, our
data did not include detailed information on the herb layer. We
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nevertheless have to assume that the sensitivity to climatic drivers
and the dependency on optimal forest structures in Finland differ
from those in our study area because the life cycle of Dip in
Finland even in outbreak years is predominantly univoltine (Geri,
1988). In northeast Germany these years are related to bivoltine
phases, a situation that occurs rarely and is difficult to predict
(Möller et al., 2017).

The prediction of this change from univoltine to bivoltine
reproduction cycles might be the key to more reliable risk
assessments for Dip mass outbreaks and severe defoliation.
Shifts of the life cycle are probably related to a changing
hierarchy of influential factors which should be considered in
both model development and application. Flexible, phenology-
oriented climatic “windows” can support the prognoses of critical
development stages of Dip and of the risk of second generation
feeding. In a previous study, we showed that recent mass outbreak
events of Dip in Brandenburg were related to comparably low
temperatures during the flight season, scarce precipitation in
the period of BBT, a low variance of the mean temperature of
the previous-year growing season and high evapotranspiration
during the flight period of the previous year (Möller et al., 2017).
Except for the precipitation variable, our results correspond to
these findings (Supplementary Table 1). Deviating from the data
set used in Möller et al. (2017), our analyses considered the
complete forest area of Brandenburg. This might explain why
precipitation data with their naturally high temporal and spatial
variability were less influential here.

As a current example, the massive outbreak in 2016 in
southern Brandenburg demonstrated the high risk potential of
Dip if favorable climatic conditions are met. Therefore, we need
to further investigate those climatic phases that are of crucial
importance for the shift into the bivoltine life cycle of Dip. The
results should be applied to the existing monitoring programs
supplementing the risk assessment by count data.

Forest Protection
Many findings presented for the individual species are important
arguments for management strategies that increase tree-species
richness in forests. More and wider differentiated habitats for
phytophagous species lead to better conditions for predatory
zoophagous species and support an increased diversity in
parasitoids as natural antagonists of insect pests like Lym, Den,
and Dip (Kratochwil and Schwabe, 2001). A range of studies show
the positive effect of deciduous trees in conversed pine forests as
detectable in lower infestation by phytophagous insect pests (e.g.,
Hunter, 2001; Schulz and Dreger, 2003; Jäkel and Roth, 2004). As
an example, Rös et al. (2004) found that population densities of
the pine beauty moth Panolis flammea were strongly influenced
by the proximity of deciduous forests, presumably due to the
benefits for parasitoids such as tachinids.

In addition to the importance of climatic triggers of PPI
outbreaks, we could show that the quality of the feeding ground
and the structural forest properties clearly determine the spatial
distribution of PPI feeding events. We successfully implemented
the large body of information provided by forest inventories into
our analyses and derived detailed risk assessments on the level of
the individual forest compartment. Thus, we want to emphasize

the importance of continuous forest inventory programs and
the required collaboration of forest management and forest
protection services.

The large areas of poorly structured pine stands of young to
middle age, in particular in the South of Brandenburg, provide
optimal conditions for PPI. In fact, common preferences of the
individual PPI for forests with comparable stand structures may
lead to parallel and/or sequential feeding in subsequent years
which further elevates the risk for devastating defoliation. We
thus need to forecast the development of these stands by forest
growth simulations if we want to predict future feeding hotspots.
Moreover, we observed a stronger predictive influence of forest
properties of the neighborhood compared to the properties of the
individual stands. Therefore, the predisposition of a FC toward
the biotic risk of PPI may be altered by improving the structural
features of the surrounding forest area, e.g., by increasing the
proportion of mixed stands. Consequently, a higher number of
tree species within one FC (Figure 8A) is linked to a reduction of
the share of pure pine stands in the total forest area.

In agreement with findings from literature, pine stands at
less productive sites as indicated by a higher relative site index
have been most prone to defoliation by PPI (Figure 8B).
Unfortunately, these stands are less suited for forest conversion
and active enhancement of forest structural and species diversity
due to their limited nutrient and water supply. The significant
impact of the conditions in a larger buffer area, however, may
help to promote individual FC by forest conversion activities
at landscape level decreasing the overall predisposition for PPI
feeding.

CONCLUSION

This study provides a novel method analyzing a huge set of
environmental data with regard to their influence on mass
outbreak and defoliation events of PPIs. We have outlined the
most promising environmental parameters for modeling the
risk of mass outbreaks of Lym, Den, and Dip in Brandenburg.
Hence, other research groups might benefit from our findings in
the variable selection and modeling processes when performing
risk assessments of PPIs on independent data sets. Our analysis
showed both the high impact of the climatic conditions in
particular for pest species with irregular mass outbreak patterns
(e.g., Dip) and the importance of stand structures for the
predisposition to defoliation by insects with relatively constant
outbreak cycles (e.g., Lym). Furthermore, we could demonstrate
a successful combination of detailed forest inventory data for
large areas, regionalized climatic conditions, and site properties
supporting forest protection issues and prognosis of future risk
levels. The increasing availability of geo-referenced forest data
in combination with novel data mining techniques can enhance
our knowledge of forest pest insects’ population dynamics on
landscape level and risk management, respectively.

We showed that (a) the PPI are sensitive to independent
climatic triggers and temporal periods within the year relating
to their species specific biology. The investigated PPI exhibited
preferences to particular stand structures and specific adaptations
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to ecological (sub-) niches of pine forest ecosystems. However,
mass outbreaks of all three PPI concentrated on low structured,
young to mid-aged pine forests on rather poor sites. Therefore, we
could not fully validate hypothesis (b) because there was no clear
differentiation between the general forest types required by the
individual species for successful mass outbreaks; all three insect
species obviously prefer pure pine stands of lower dimensions.
Furthermore, we demonstrated that PPI share (c) a common
preference for warm climate and that (d) a higher tree species
diversity of the habitat is counteracting severe mass outbreaks
due to the limiting effects exerted by the higher abundance of
predators and parasitoids under these conditions.
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