TY - JOUR A1 - Ziche, Daniel A1 - Riek, Winfried A1 - Russ, Alexander A1 - Hentschel, Rainer A1 - Martin, Jan T1 - Water Budgets of Managed Forests in Northeast Germany under Climate Change - Results from a Model Study on Forest Monitoring Sites JF - Applied Sciences N2 - To develop measures to reduce the vulnerability of forests to drought, it is necessary to estimate specific water balances in sites and to estimate their development with climate change scenarios. We quantified the water balance of seven forest monitoring sites in northeast Germany for the historical time period 1961–2019, and for climate change projections for the time period 2010–2100. We used the LWF-BROOK90 hydrological model forced with historical data, and bias-adjusted data from two models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) downscaled with regional climate models under the representative concentration pathways (RCPs) 2.6 and 8.5. Site-specific monitoring data were used to give a realistic model input and to calibrate and validate the model. The results revealed significant trends (evapotranspiration, dry days (actual/potential transpiration < 0.7)) toward drier conditions within the historical time period and demonstrate the extreme conditions of 2018 and 2019. Under RCP8.5, both models simulate an increase in evapotranspiration and dry days. The response of precipitation to climate change is ambiguous, with increasing precipitation with one model. Under RCP2.6, both models do not reveal an increase in drought in 2071–2100 compared to 1990–2019. The current temperature increase fits RCP8.5 simulations, suggesting that this scenario is more realistic than RCP2.6 KW - evapotranspiration KW - soil moisture KW - drought KW - CMIP5 KW - RCP KW - LWF-BROOK90 KW - ICP Forest KW - soil hydrological model Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:eb1-opus-2470 SN - 2076-3417 VL - 11 IS - 5 PB - MDPI ER - TY - JOUR A1 - Russ, Alexander A1 - Riek, Winfried A1 - Wessolek, Gerd T1 - Three-Dimensional Mapping of Forest Soil Carbon Stocks Using SCORPAN Modelling and Relative Depth Gradients in the North-Eastern Lowlands of Germany JF - Applied Sciences N2 - To cope with the challenges in forest management that are contemporarily caused by climate change, data on current chemical and physical soil properties are more and more necessary. For this purpose, we present a further amalgam of depth functions and SCORPAN modelling to provide data at arbitrary depth layers. In this concept, regionalisation is split up into the modelling of plot totals and the estimation of vertical distributions. The intended benefits by splitting up are: consistency between estimates on plot level and depth layer level, avoidance of artificial depth gradients, straightforward interpretation of covariates in the sense of pedogenetic processes, and circumnavigation of the propagation of uncertainties associated with separation between horizons during field sampling. The methodology was tailored to the circumstances within the north-eastern lowlands and the utilisation of current inventory data of the National Forest Soil Inventory (NFSI) in Brandenburg (Germany). Using the regionalisation of soil organic carbon (SOC) as an example, the application is demonstrated and discussed in detail. The depth to groundwater table and terrain parameters related to the catchment area were the main factors in SOC storage. The use of kriging did not improve the model performance. The relative depth gradients of SOC were especially distinguished by tree species composition and stand age. We suppose that interesting fields of application may be found in scenario-based modelling of SOC and when SOC serves as a basis for hydrological modelling. KW - depth functions KW - SCORPAN modelling KW - soil forming factors; KW - forest soils KW - soil organic carbon KW - regionalisation KW - north-eastern lowlands KW - forest site mapping KW - Brandenburg Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:eb1-opus-3427 SN - 2076-3417 VL - 11 IS - 2 PB - MDPI ER - TY - JOUR A1 - Riek, Winfried A1 - Russ, Alexander A1 - Marx, Marc T1 - Concentrations of Inorganic and Organic Pollutants in Forest Soils as an Archive of Anthropogenic Inputs in the State of Brandenburg, Germany JF - Applied Sciences N2 - An important component of the National Forest Soils Inventory (NFSI) is the investigation of inorganic and organic pollutants. Forests are able to filter out large quantities of these substances from the atmosphere and incorporate them into the soil for a long time. The aim of this study was the integrative evaluation of organic and inorganic pollutant concentrations in forest soils in the state of Brandenburg, Germany. With the help of principle component analysis, the pollutant concentrations can essentially be explained by three significant environmental components, which explain 76% of the total variance of all pollutants examined within the scope of the NFSI. The first component characterizes the extent of the atmospheric pollution caused by flue gases and fly ash from lignite combustion in the 1970s and 1980s and is mainly charged by the organic pollutants HCB and PAH, and the elements arsenic and chromium. This component shows positive relation to both spatially interpolated calcium-deposition data from the 1980s (as an indicator for the dust emission from coal combustion) and crown defoliation data of pine stands from the forest condition survey in the early 1990s. The depositions of zinc and cadmium from industrial sources, vehicle traffic and the use of fertilizers in agriculture mainly characterize the second principle component. The use of the pesticides DDT and lindane in the early 1980s and the associated pollutants input into the forest soils are expressed by the third component. In expanding the term archiving function of soils, the results illustrate their particular importance for the long-term archiving of anthropogenic inputs and the associated potential stress factors for forests. KW - forest soils KW - heavy metals KW - organic pollutants KW - forest soil inventory KW - forest crown condition KW - lignite combustion KW - fly ash deposition KW - principle component analyses KW - Brandenburg Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:eb1-opus-3430 SN - 2076-3417 VL - 11 IS - 3 PB - MDPI ER - TY - CHAP A1 - Riek, Winfried A1 - Russ, Alexander A1 - Ziche, Daniel A1 - Hentschel, Rainer A1 - Brini, Andrea T1 - Prognose zur Entwicklung der Rot-Buche unter veränderten Wasserhaushaltsbedingungen T3 - Eberswalder forstliche Schriftenreihe - 71 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:eb1-opus-5276 SP - 104 EP - 128 ER - TY - CHAP A1 - Russ, Alexander A1 - Riek, Winfried A1 - Wessolek, Gerd T1 - Mapping of soil carbon stocks using scorpan modelling and relative depth gradients T2 - Pedometrics in an uncertain time and world N2 - Nowadays regional data on forest soil properties are increasingly demanded for various questions concerning forest management practices like tree species selection, liming, harvest intensity or the detection of risk areas. Thus data related to climate change and its site specific drought effects on one hand and current soil nutrient status on the other is especially required to support decision making. Besides soil texture, soil organic carbon is one of the most important key factors controlling soil nutrient status (eg. cation-exchange capacity) and soil water storage (e.g. field capacity) in the glacial deposits of north eastern lowlands. In contrast to soil texture, which can be considered as stable over periods relevant to practical forest management, for mapping soil organic carbon and its distribution throughout the soil profile a more dynamic regionalization approach considering contemporary measurements is needed. For this purpose, data on contemporary soil organic carbon stocks is taken from the second National Forest Soil Inventory and additional regional sampling points in Brandenburg (Germany). Potential covariates representing the soil forming factors: parent material, organisms (vegetation), age, relief and climate are obtained with high spatial resolution from forest site mapping, forest inventory, digital terrain analysis and climate models. The proposed regionalization approach captures the concepts of SCORPAN modelling and depth functions. While for estimation of carbon stocks in the entire soil solum stepwise regression analysis and geostatistical techniques are involved, the methodology to derive and map relative depth functions is based on cluster analysis and classification tree approach. The intended benefits by splitting regionalisation into plot level and relative vertical depth gradients are to ensure consistency of solum stocks and single soil depths and to avoid the construction of artificial depth gradients. Furthermore, the procedure allows a straightforward interpretation of covariates in the sense of pedogenetic processes, which: (a) supports variable selection and exclusion of spurious covariates during model development and (b) may provide direct decision support regarding environmental and management effects on soil organic carbon. The obtained statistical models contain covariates related to all five soil forming factors. But, the conducted analyses especially point towards high influences of depth to groundwater table and mean slope of catchment area on soil organic carbon storage. Invoking geostatistical techniques shows no remaining variation, to be explained by spatial position and thus don’t improve overall model performance. Cluster analysis of relative depth gradients results in five Clusters of acceptable heterogeneity. The highest differences between the clusters are observed across the portions of carbon stored in the forest floor. Relative depth gradients are especially distinguished by tree species composition and stand age. Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:eb1-opus-5286 ER - TY - BOOK A1 - Riek, Winfried A1 - Russ, Alexander ED - Ministerium für Landwirtschaft, Umwelt und Klimaschutz des Landes Brandenburg; Landesbetrieb Forst Brandenburg, T1 - Zustand der Waldböden im Land Brandenburg : Praxisempfehlungen für die nachhaltige und bodenpflegliche Bewirtschaftung der Wälder Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:eb1-opus-5294 UR - https://forst.brandenburg.de/sixcms/media.php/9/Waldboden_Broschuere.pdf ER - TY - JOUR A1 - Jochheim, Hubert A1 - Lüttschwager, Dietmar A1 - Riek, Winfried T1 - Stem distance as an explanatory variable for the spatial distribution and chemical conditions of stand precipitation and soil solution under beech (Fagus sylvatica L.) trees JF - Journal of Hydrology N2 - The partitioning of bulk precipitation (PR) in forest ecosystems and its chemical composition depends on both meteorological factors, such as precipitation amount and intensity, evaporation rate, and wind speed, and stand structural factors, such as stand density, canopy structure, bark texture, and spatiotemporal distribution and density of foliage. We analysed fluxes of water and element contained therein of a mature European beech (Fagus sylvatica L.) forest stand on sandy soils in northeastern Germany. We applied a radially symmetrical setup within a stem distance gradient to measure stand precipitation (SP) with its components of throughfall (TF) and stemflow (SF), as well as to measure soil moisture, the chemical composition of the soil solution, the soil chemistry, and the fine root distribution. The chemical analysis of the constituents covered the macroelements (Ca, Mg, K, Na, Al, Fe, Mn, Si, S, P), the cations and anions NH4+, NO3–, Cl-, SO42-, and a few heavy metals (Cu, Pb, Zn). With an average PR of 620 mm a-1, the partitioning resulted in 79% TF, 6% SF, and 15% canopy interception. TF volume increased with distance to stem during summer, but decreased during winter. Clear spatial gradients with increasing concentrations from PR, to different classes of TF as the distance from the trunk decreased, to SF were observed for nearly all elements. The contact of precipitation with leaves and the canopy structures alters the chemical composition of TF and SF by transferring elements from dry deposition or leaching of intracellular materials from the canopy and leads to the input of larger amounts of macroelements and heavy metals with the SP into the soil. Spatial patterns of canopy structures thus affect the spatial variation of TF and its constituents, which also affects the spatial distribution of roots and, at least in phases, the chemical composition of the topsoil solution. KW - Throughfall; Stemflow; Soil solution; Stem distance; Element flux; Fagus; sylvatica Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:eb1-opus-5306 SN - 0022-1694 SN - 1879-2707 IS - 608 PB - Elsevier ER - TY - JOUR A1 - Ziche, Daniel A1 - Grüneberg, Erik A1 - Riek, Winfried A1 - Wellbrock, Nicole ED - Johann Heinrich von Thünen-Institut, T1 - Vergleich der Daten der LUCAS 2015-Inventur und der zweiten Bodenzustandserhebung im Wald : Untersuchungen zur Vergleichbarkeit und Repräsentanz zweier bodenkundlicher Inventuren in Deutschland T2 - Thünen Report; 94 N2 - Die Produktivität von Waldökosystemen wird durch die Bereitstellung von Nährstoffen und Wasser gewährleistet. Somit ist das Wissen über die chemischen und physikalischen Eigenschaften der Böden essentiell sowohl zur Beurteilung des Bodenzustands als auch der Güte des Waldstandorts. Hierfür können Daten aus zwei bundesweiten Bodenzustandserhebung im Wald (BZE-Wald) von über 1.800 Probepunkten eines 8 x 8 km-Grundrasters herangezogen werden. Die Erhebungen fanden zwischen 1986 bis 1994 (BZE I-Wald) und 2006 bis 2008 (BZE II-Wald) nach einheitlichem Aufnahmeverfahren statt. Das LUCAS-Projekts zielt auf die Erstellung eines harmonisierten Datensatz zur Landbedeckung und Landnutzung innerhalb der Europäischen Union (EU). Das Europäische Datenzentrum (ESDAC) stellt 265.000 georeferenzierte Punkte auf einem 2 x 2 km-Raster bereit, die jeweils in den Jahren 2009 und 2015 an 10 % der Punkte am gleichen Standort beprobt wurden. Angesichts von zwei parallellaufender Bodeninventuren stellt sich die Frage einer potentiellen Verknüpfung miteinander. In dieser Studie werden die LUCAS-Bodendaten der Inventur des Jahres 2015 mit den entsprechenden bundesweiten BZE-Daten verglichen und auf ihre Repräsentativität überprüft. Um eine flächengewichtete Hochrechnung für Deutschland zu ermöglichen, erfolgte eine Zordnung der Inventurpunkte des LUCAS-Programms anhand ihrer Koordinaten zu den bei der bundesweiten BZE-Auswertung verwendeten 16 BZE-Substratklassen. Alle Klassen wurden hinsichtlich signifikanter und systematischer Unterschiede zwischen beiden Inventuren überprüft. Darüber hinaus wurden die BZE-Daten dahingehend evaluiert, inwieweit die ausschließlich im LUCAS Programm verwendete Tiefenstufe 0-20 cm im Vergleich zum Mineralboden bis in 90 cm Tiefe und der Humusauflage bei der Berechnung von Vorräten zukommt. Der Vergleich der bodenchemischen Kennwerte ergab deutliche Unterschiede zwischen den Inventuren. Sowohl die pH(H2O)-Werte als auch die C/N-Verhältnisse waren bei LUCAS 2015 niedriger, die Konzentrationen von C und N jedoch höher als bei der BZE II. Die Vorräte an Kohlenstoff und Sticksoff weisen noch größere Abweichungen gegenüber der BZE II aufgrund der Unsicherheiten bei der Ableitung von Trockenrohdichten aus Kartenmaterial auf. Im Gegensatz dazu erfolgte durch die BZE II eine volumenbezogene Beprobung an fast allen Standorten. Eine Ableitung von Trockenrohdichten aus Kartenmaterial führt bei der LUCAS-Inventur zu einer hohen Unsicherheit der Ergebnisse und zu einer Überschätzung von Vorratsänderungen. Die höheren Kohlenstoff- und Stickstoffkonzentrationen bei der LUCAS-Inventur könnte an einer unzureichend genauen Trennung der organischen Auflage vom Mineralboden liegen, da dieser durch Bestandteile der Auflage aufkonzentriert würde. Während der Erhebung der BZE-Wald wurde explizit auf die systematische Trennung beider Kompartimente geachtet. Weiterhin steht die Anzahl der beprobten LUCAS-Waldpunkte im Missverhältnis zur Waldfläche, da in Nord- und Süddeutschland zu wenig Probepunkte vorkamen. Allerdings sind die Waldanteile der LUCAS-Gesamtinventur mit denen der dritten Bundeswaldinventur vergleichbar. Die Stichprobengröße von LUCAS 2015 umfasst etwa 25 % der BZE II-Stichprobe. Hierdurch sind einige Substrattypen nur unzureichend belegt, weshalb zum einen wesentliche Bodeneigenschaften unberücksichtigt blieben und andererseits eine flächengewichtete Hochrechnung erschwert werden würde. Infolge der geringeren Stichprobe weichen die bodenchemischen Kennwerte der einzelnen Substratgruppen zwischen den Messnetzen ab. Außerdem erhöhen sich die Unsicherheiten durch die Reduzierung der Stichprobe. Somit ließen sich Bodenveränderungen bei einer Wiederholungsinventur schwerer detektieren. Die Daten aus den Bodeninventuren sind für die Treibhausgasberichterstattung relevant, da Kohlenstoffvorräten für die organische Auflage und für den Mineralboden bis zu einer Tiefe von mindestens 30 cm zu berichten sind. Im Mittel werden nach den Daten der BZE II 16 % des bis 90 cm Tiefe vorkommenden Kohlenstoffs in der Auflage gespeichert, wobei diese mit der LUCAS-Inventur nicht beprobt wurde. Der in der organischen Auflage gebundene Kohlenstoff ist vulnerabel gegenüber Klima- und Umwelteinflüssen, so dass eine Auswertung diesbezüglich nicht möglich ist. Weiterhin wurde bei LUCAS 2015 nur die oberen 20 cm des Mineralbodens beprobt und damit lediglich 42 % des bei der BZE II abgeschätzten Kohlenstoffs erfasst. Durch das Fehlen der Auflage und die geringere Tiefe sind die Daten aus LUCAS 2015 nur eingeschränkt für die Treibhausgasberichterstattung nutzbar. Aufgrund einer geringeren Repräsentativität sowie größeren Unsicherheiten und Diskrepanzen von LUCAS 2015 gegenüber der BZE im Wald würde eine Vereinigung beider Datensätze keine zusätzlichen Synergien erzeugen. N2 - The productivity of forest ecosystems depends on the supply of both nutrients and water by soils. Therefore, the knowledge of the chemical and physical soil properties is crucial for assessing the soil condition as well as the quality of forest sites. For this purpose, data are available from two nationwide Forest Soil Inventories (NFSI) on more than 1,800 sample plots of an 8 x 8 km grid. The inventories were conducted between 1986 and 1994 (NFSI I) and 2006 and 2009 (NFSI II) in accordance with harmonized surveying techniques. The LUCAS Project aims at the development of a harmonized dataset on land cover and land use within the European Union (EU). Approximately 265.000 georeferenced plots on a 2 x 2 km grid were available from the European Soil Data Centre (ESDAC). Soil samples were taken in 2009 and in 2015 at approximately 10 % of these plots at the same locations. Considering two almost parallel running soil inventories, questions have arisen to their potential links to one another. In this study, the LUCAS soil data from the 2015 inventory were compared with the corresponding NFSI II data and reviewed under the aspect of representativeness. In order to enable an area weighted estimation for Germany the plots of the LUCAS program were attributed to the same 16 soil parent material groups used in the German NFSI data using geographical coordinates. All classes were tested for significant and systematic differences between the inventories. To quantify C stocks, it is important to compare the depth level 0-20 cm of the LUCAS program to Germanies NFSI sampling scheme, where data available for the organic layer and the mineral soil down to 90 cm. The comparison of various chemical soil parameters showed clear differences between the inventories. The pH(H2O) and the C/N ratio derived from LUCAS 2015 was lower while carbon (C) and nitrogen (N) concentrations were higher compared to the NFSI II. The C and N stocks deviate even more from the NFSI II due to uncertainties in the estimation of bulk densities derived from maps. By contrast Germany’s NFSI, were volume-based sampling was obligatory for almost all plots. As a result, fine earth stock estimates from map derived bulk densities could result in highly uncertain and overestimated stocks change rates. Higher C and N concentrations of the LUCAS inventory could be attributed to an insufficient separation of the organic layer from the mineral soil because if the separation is not practiced carefully, residues of the organic layer can contaminate the mineral soil sample and cause significant higher concentrations. The soil sampling of the NFSI focused explicitly of the systematic separation of both compartments. The number of the sampled forest plots of LUCAS 2015 showed a lack of representativeness because in the northern and southern parts of Germany an insufficient number of plots were sampled. Nevertheless, the proportion of the forest area of the total LUCAS inventory is comparable with Germany’s Third National Forest Inventory. The selected LUCAS 2015 samples comprise 25 % of the NFSI II plots which results in an insufficient coverage of various soil groups. This means that soil properties remain unconsidered and that the area-weighted extrapolation could become more difficult. Chemical soil parameter within in individual substrate groups differed between the sampling grids due to the smaller sample of LUCAS 2015 compared to the NFSI II. Moreover, the reduction of sampling plots results in an increase of uncertainties. Thus, the detection of changes in soil conditions could be more difficult in respect to repeated sampling. Soil inventory data are of importance in greenhouse gas reporting because C stocks the organic layer and the mineral soil down to 90 cm must be reported. The analysis of the NFSI II revealed that the organic layer comprises 16 % of the C stored in the entire soil profile. The organic layer was not sampled in the LUCAS inventory. Nevertheless, changes in C stored in the organic layer is vulnerable to impacts of climate and other environmental and anthropogenic variables but the effects cannot be considered with LUCAS 2015. Due to the LUCAS 2015 mineral soil sampling depth down to 20 cm only 42 % of the stored C was detected in the entire soil profile. Therefore, data based on LUCAS 2015 are insufficiently qualified for the greenhouse gas reporting due to the lack of a sampled organic layer and the limitation to the sampling depth of 20 cm. Compared to Germany’s NFSI, the results based on the LUCAS inventory revealed a smaller representativity and were associated with larger uncertainties as well as discrepancies. Consequently, the union of both data sets will not result in additional synergies. T2 - Comparison of the LUCAS 2015 inventory with the second National Forest Soil Inventory : Comparability and representativeness of two soil inventories conducted in Germany KW - Boden; Wald; Inventur; Probenahme; Karten; Konzentrationen; Vorräte; Kohlenstoff; Stickstoff; pH-Wert; Trockenrohdichte; Unsicherheiten; Harmonisierung; Repräsentativität KW - Soil; Forest; Monitoring; Inventory; Sampling; Mapping; Stocks; Concentrations; Carbon; Nitrogen; pH-Value; Bulk density; Uncertainties; Representativity; Harmonisation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:eb1-opus-5314 UR - https://literatur.thuenen.de/digbib_extern/dn064841.pdf SN - 978-3-86576-239-9 SN - 2196-2324 PB - Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei ER - TY - GEN A1 - Benning, Raphael A1 - Petzold, Rainer A1 - Danigel, Johanna A1 - Mayer, Simon A1 - Profft, Ingolf A1 - Steinicke, Christian A1 - Hafner, Silke A1 - Ahrends, Bernd A1 - Heinz, Franziska A1 - Puhlmann, Heike A1 - von Wilpert, Klaus A1 - Amberger, Hagen A1 - Gauer, Jürgen A1 - Pieper, Andreas A1 - Wirner, Michael A1 - Wallor, Evelyn A1 - Riek, Winfried A1 - Janott, Michael A1 - Kölling, Christian A1 - Mette, Tobias T1 - BWI 2012 Umweltdatenbank Bodenprofile T2 - BWI 2012 Umweltdatenbank N2 - Ziel des Moduls Bodenprofile im Projekt WP-KS-KW (Waldproduktivität - Klimawandel - Kohlenstoffspeicherung) war es, für 26.450 Punkte der deutschen Bundeswaldinventur (BWI) Bodenleitprofile mit boden-physikalischen Grundlagendaten zu erstellen. Die Grundlage der Ableitung der Standorts- und Bodeninformationen bildeten die in den Bundesländern zur Verfügung stehenden Informationen aus der Standorts- und Bodenkartierung. Um den oft historisch gewachsenen Feinheiten der einzelnen Kartierungsverfahren gerecht zu werden, wurden Standorts- und Bodenkundler aus jedem Bundesland in das Projekt eingebunden. Für 26.450 Traktecken wurden Standorts- und Leitprofildaten nach einheitlichen Vorgaben erhoben und in der Datenbank zusammengeführt. Das Parameterspektrum umfasst im Wesentlichen: (1) Standortseinheit mit Bodentyp, Wasserhaushalts-/ Nährstoffansprache, Kalkung, (2) Leitprofil mit obligatorischen Horizontangaben zu Bodenart, Skelett, Trockenrohdichte (TRD), nutzbare Feldkapazität (nFK), (3) Leitprofil mit fakultativen Horizontangaben zu Basensättigung, organischer Kohlenstoffgehalt (Corg), Entkalkungstiefe, (4) Quellen- und Qualitätsschlüssel zu allen Parametern. Die Standortseinheit liegt für 25.069 (95 %) Traktecken vor, das Leitprofil für 24.735 (93.5 %). KW - Bundeswaldinventur; Standort; Bodenprofil; Bodentyp; Wasserhaushalt; Trophie; Textur; Skelett; Dichte; nutzbare Feldkapazität; Geologie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:eb1-opus-6427 PB - Open Agrar Repositorium CY - Göttingen ER - TY - CHAP A1 - Riek, Winfried A1 - Russ, Alexander A1 - Grüll, Martin T1 - Zur Abschätzung des standörtlichen Anbaurisikos von Baumarten im Klimawandel im nordostdeutschen Tiefland T2 - Wald im Wandel - Risiken und Lösungsansätze : Tagungsband zum 15. Eberswalder Winterkolloquium 2020 T3 - Eberswalder forstliche Schriftenreihe - 69 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:eb1-opus-5811 SP - 49 EP - 71 ER -